广东省广州市海珠区2015届高三8月摸底考试高三理科数学答题卡
- 格式:rtf
- 大小:1.24 MB
- 文档页数:4
海珠区2014学年高三综合测试(一)试题数 学(理科)【试卷综评】本次试卷从题型设置、考察知识的范围等方面保持稳定,试题难度适中,试题在考查高中数学基本概念、基本技能和基本方法等数学基础知识,突出三基,强化三基的同时,突出了对学生能力的考查,注重了对学科的内在联系和知识的综合、重点知识的考查,以它的知识性、思辨性、灵活性,基础性充分体现了考素质,考基础,考方法,考潜能的检测功能。
试题中无偏题,怪题,起到了引导高中数学向全面培养学生数学素质的方向发展的作用。
突出考查数学主干知识 ,侧重于中学数学学科的基础知识和基本技能的考查;侧重于知识交汇点的考查。
全面考查了考试说明中要求的内容。
一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【题文】1.已知集合{}21M x x ==,{}2320N x x x =-+=,则M N ⋃= A .{1,2} B .{1,1,2}- C .{1,2}- D .{1}【知识点】集合的并集的求法.A1【答案解析】B 解析:因为集合{}21M x x ==,即{}11M x x 或==-,又因为{}1,2N =,所以M N ⋃={1,1,2}-,故选B.【思路点拨】先化简集合M ,再求结果即可.【题文】2.设复数1z ,2z 在复平面内的对应点关于实轴对称,11z i =+,则12z z = A. 2 B. 2- C.1i + D. 1i - 【知识点】复数的运算.L4【答案解析】A 解析:因为复数1z ,2z 在复平面内的对应点关于实轴对称,11z i =+,则21z i =-,所以12z z =()()1+1=2i i -,故选A.【思路点拨】先利用已知条件求出2z 再计算结果即可.【题文】3.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是 A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥ 【知识点】空间中的平行关系、垂直关系.G4、G5【答案解析】B 解析:对于选项A :m 、n 平行、相交、异面都有可能;选项B 显然成立 【思路点拨】利用空间中线面平行、垂直的判定与性质确定结论。
图17432109878试卷类型:A2015年广州市普通高中毕业班综合测试(一)2015广州一模 数学(理科)2015.3 本试卷共4页,21小题, 满分150分.考试用时120分钟. 注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号。
用黑色字迹钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. ()()22221211236n n n n ++++++=()*n ∈N . 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知全集{}1,2,3,4,5U =, 集合{}3,4,5M =, {}1,2,5N =, 则集合{}1,2可以表示为 A .M N B .()U M N ð C .()U MN ð D .()()U U M N 痧2.已知向量()3,4a =,若5λ=a ,则实数λ的值为A .15 B .1 C .15± D .1± 3. 若某市8所中学参加中学生合唱比赛的得分用茎叶图表示(如图1),其中茎为十位数,叶为个位数,则这组数据的中位数和平均数分别是 A. 91, 91.5 B. 91, 92 C. 91.5, 91.5 D. 91.5, 924. 直线10x ay ++=与圆()2214x y +-=的位置关系是22222222侧视图正视图222222A. 相交B. 相切C. 相离D. 不能确定5. 若直线3y x =上存在点(),x y 满足约束条件40,280,,x y x y x m ++>⎧⎪-+≥⎨⎪≤⎩则实数m 的取值范围是A. ()1,-+∞B. [)1,-+∞C. (),1-∞-D. (],1-∞- 6. 已知某锥体的正视图和侧视图如图2,其体积为233,则该锥体的俯视图可以是图2A. B. C. D. 7. 已知a 为实数,则1a ≥是关于x 的绝对值不等式1x x a +-≤有解的 A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 8. 已知i 是虚数单位,C 是全体复数构成的集合,若映射:f C →R 满足: 对任意12,z z C ∈,以及任意λ∈R , 都有()()()()()121211f z z f z f z λλλλ+-=+-, 则称映射f 具有性质P . 给出如下映射:① 1:f C →R , ()1f z x y =-, z x y =+i (,x y ∈R );② 2:f C →R , ()22f z x y =-, z x y =+i (,x y ∈R );③ 3:f C →R , ()32f z x y =+, z x y =+i (,x y ∈R );其中, 具有性质P 的映射的序号为 A. ① ② B. ① ③ C. ② ③ D. ① ② ③二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9. 已知tan 2α=,则tan 2α的值为 .10. 已知e 为自然对数的底数,若曲线y x =e x在点()1,e 处的切线斜率为 .图3OADE C B 11. 已知随机变量X 服从正态分布()2,1N . 若()130.6826P X ≤≤=,则()3P X > 等于 .12. 已知幂函数()223(mm f x xm --+=∈Z )为偶函数,且在区间()0,+∞上是单调增函数,则()2f 的值为 .13.已知,n k ∈N *,且k n ≤,k C k n n =C 11k n --,则可推出C 12n +C 23n +C 3n k ++C k n n ++C (n n n =C 01n -+C 11n -++C 11k n --++C 11)n n --12n n -=⋅, 由此,可推出C 122n +C 223n +C 32n k ++C 2k n n ++C n n = .(二)选做题(14~15题,考生只能从中选做一题) 14. (坐标系与参数方程选做题)在直角坐标系xOy 中,曲线1C 和2C 的参数方程分别为cos sin ,(cos sin x y θθθθθ=+⎧⎨=-⎩为参数)和2,(x t t y t =-⎧⎨=⎩为参数).以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,则曲线1C 与2C 的交点的极坐标...为 . 15. (几何证明选讲选做题)如图3,BC 是圆O 的一条弦,延长BC 至点E , 使得22BC CE ==,过E 作圆O 的切线,A 为切点,BAC ∠的平分线AD 交BC 于点D , 则DE 的长为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()()sin 0,06f x A x A πωω⎛⎫=+>> ⎪⎝⎭的图象在y 轴右侧的第一个最高点和第一个最低点的坐标分别为()02x ,和022x ,π⎛⎫+- ⎪⎝⎭. (1)求函数()f x 的解析式; (2)求0sin 4x π⎛⎫+ ⎪⎝⎭的值.图4OF ED C B A 图5FE PODB A17. (本小题满分12分)袋子中装有大小相同的白球和红球共7个,从袋子中任取2个球都是白球的概率为17,每个球被取到的机会均等. 现从袋子中每次取1个球,如果取出的是白球则不再放回,设在取得红球之前已取出的白球个数为X . (1)求袋子中白球的个数; (2)求X 的分布列和数学期望.18. (本小题满分14分)如图4,在边长为4的菱形ABCD 中,60DAB ︒∠=,点E ,F 分别是边CD ,CB 的 中点,ACEF O =,沿EF 将△CEF 翻折到△PEF ,连接PA,PB,PD ,得到如图5的五棱锥P ABFED -,且10PB =.(1)求证:BD ⊥平面POA ;(2)求二面角--B AP O 的正切值.19. (本小题满分14分)已知数列{}n a 的各项均为正数,其前n 项和为n S ,且满足111,21n n a a S +==+,n ∈N *.(1)求2a 的值;(2)求数列{}n a 的通项公式;(3)是否存在正整数k , 使k a , 21k S -, 4k a 成等比数列? 若存在, 求k 的值; 若不存在, 请说明理由.20. (本小题满分14分)已知椭圆1C 的中心在坐标原点,两焦点分别为双曲线222:12x C y -=的顶点,直线20+=x y 与椭圆1C 交于A ,B 两点,且点A 的坐标为(2,1)-,点P 是椭圆1C 上异于点A ,B 的任意一点,点Q 满足0AQ AP ⋅=,0BQ BP ⋅=,且A ,B ,Q 三点不共线.(1) 求椭圆1C 的方程; (2) 求点Q 的轨迹方程;(3) 求ABQ ∆面积的最大值及此时点Q 的坐标.21. (本小题满分14分) 已知函数()()2ln 12a f x x x x =++-()0a ≥. (1)若()0f x >对()0,x ∈+∞都成立,求a 的取值范围; (2)已知e 为自然对数的底数,证明:∀n ∈N *,e 22212111n n n n ⎛⎫⎛⎫⎛⎫<++⋅⋅⋅+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭e <.2015年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题. 9. 43-10. 2e 11. 0.1587 12. 16 13. ()212n n n -+⋅ 14. 2,4π⎛⎫⎪⎝⎭15. 3说明: 第14题答案可以是2,2,4k k ππ⎛⎫+∈ ⎪⎝⎭Z . 三、解答题:本大题共6小题,满分80分.16.(本小题满分12分)(本小题主要考查三角函数的图象与性质、三角两角和公式等等知识,考查化归与转化的数学思想方法,以及运算求解能力)(1)解:由题意可得2,A =, …………………………1分00222T x x ππ⎛⎫=+-= ⎪⎝⎭, …………………………3分 ∴.T π= …………………………4分 由,2πωπ=得2=ω, …………………………5分题号 1 2 3 4 5 6 7 8 答案BDCAACBB∴()2sin 26f x x π⎛⎫=+ ⎪⎝⎭. …………………………6分(2)解: ∵ 点()0,2x 是函数()2sin 26f x x π⎛⎫=+ ⎪⎝⎭在y 轴右侧的第一个最高点, ∴ 0262x ππ+=. …………………………7分∴ 06x π=. …………………………8分 ∴0sin 4x π⎛⎫+⎪⎝⎭sin 64ππ⎛⎫=+ ⎪⎝⎭…………………………9分 sincoscossin6464ππππ=+ …………………………10分12322222=⨯+⨯…………………………11分 264+=. …………………………12分 17.(本小题满分12分)(本小题主要考查古典概型、解方程、随机变量的分布列与均值(数学期望)等知识,考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识)(1)解:设袋子中有n (n ∈N *)个白球,依题意得,22717n C C =,………………………1分即()1127672n n -=⨯, 化简得,260n n --=, …………………………2分解得,3n =或2n =-(舍去). …………………………3分 ∴袋子中有3个白球. …………………………4分 (2)解:由(1)得,袋子中有4个红球,3个白球. …………………………5分X 的可能取值为0,1,2,3, …………………………6分()407P X ==, ()3421767P X ==⨯=, ()3244276535P X ==⨯⨯=,()321413765435P X ==⨯⨯⨯=. ………………10分∴X 的分布列为: X 0 12 3GH F EPODBA…………………………11分∴4241301237735355EX =⨯+⨯+⨯+⨯=. …………………………12分 18.(本小题满分14分)(本小题主要考查空间线面关系、二面角、空间向量及坐标运算等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) (1)证明:∵点E ,F 分别是边CD ,CB 的中点,∴BD ∥EF . …………………………1分 ∵菱形ABCD 的对角线互相垂直,∴BD AC ⊥. ∴EF AC ⊥. ∴EF AO ⊥,EF PO ⊥. …………………………2分 ∵AO ⊂平面POA ,PO ⊂平面POA ,AO PO O =, ∴EF ⊥平面POA . …………………………3分∴BD ⊥平面POA . …………………………4分 (2)解法1:设AO BD H =,连接BO , ∵60DAB ︒∠=, ∴△ABD 为等边三角形.∴4BD =,2BH =,23HA =,3HO PO ==. ……5分 在R t △BHO 中,227BO BH HO =+=,在△PBO 中,22210+==BO PO PB ,∴PO BO ⊥. …………………………6分 ∵PO EF ⊥,EF BO O =,EF ⊂平面BFED ,BO ⊂平面BFED , ∴PO ⊥平面BFED . …………………………7分 过H 作⊥HG AP ,垂足为G ,连接BG ,由(1)知⊥BH 平面POA ,且⊂AP 平面POA , ∴⊥BH AP .∵=HG BH H ,⊂HG 平面BHG ,⊂BH 平面BHG ,∴⊥AP 平面BHG . …………………………8分 ∵⊂BG 平面BHG ,∴⊥AP BG . …………………………9分 ∴∠BGH 为二面角--B AP O 的平面角. …………………………10分 在Rt △POA 中,2230=+=AP AO PO ,在Rt △POA 和Rt △HGA 中,90,︒∠=∠=∠=∠POA HGA PAO HAG , ∴Rt △POA ~Rt △HGA . …………………………11分P 47 27 435 135z yxH F EPODBA∴=PO PAHG HA. ∴32330530⋅⨯===PO HA HG PA . …………………………12分 在Rt △BHG 中,230tan 3305∠===BH BGH HG . ……………………13分 ∴二面角--B AP O 的正切值为303. …………………………14分 解法2:设AOBD H =,连接BO ,∵60DAB ︒∠=, ∴△ABD 为等边三角形.∴4BD =,2BH =,23HA =,3HO PO ==.………………………5分 在R t △BHO 中,227BO BH HO =+=,在△PBO 中,22210+==BO PO PB ,∴PO BO ⊥. …………………………6分 ∵PO EF ⊥,EF BO O =,EF ⊂平面BFED ,BO ⊂平面BFED , ∴PO ⊥平面BFED . …………………………7分 以O 为原点,OF 所在直线为x 轴,AO 所在直线为y 轴,OP 所在直线为z 轴, 建立空间直角坐标系-O xyz ,则()0,33,0-A ,()2,3,0-B ,()0,0,3P ,()0,3,0-H .…………8分 ∴()0,33,3=AP ,()2,23,0=AB . 设平面PAB 的法向量为=n (),,x y z ,由⊥n AP ,⊥n AB ,得 3330,2230.⎧+=⎪⎨+=⎪⎩y z x y ……9分令1=y ,得3=-z ,3=-x .∴平面PAB 的一个法向量为=n ()3,1,3--. …………………………10分由(1)知平面PAO 的一个法向量为()2,0,0=-BH , ……………………11分设二面角--B AP O 的平面角为θ, 则cos θ=cos ,n BH⋅=n BH n BH233913132==⨯.………………………12分 ∴2130sin 1cos13θθ=-=,sin 30tan cos 3θθθ==.………………………13分 ∴二面角--B AP O 的正切值为303. …………………………14分 19.(本小题满分14分)(本小题主要考查等差数列、数列的前n 项和等知识,考查化归与转化的数学思想方法,以及运算求解能力和创新意识) (1)解:∵111,21n n a a S +==+,∴21121213a S a =+=+=. …………………………1分(2)解法1:由121n n a S +=+,得121n n n S S S +-=+, …………………………2分故()211n n S S +=+. …………………………3分∵0n a >,∴0n S >. ∴11n n S S +=+. …………………………4分∴数列{}nS 是首项为11S =,公差为1的等差数列.∴()11n S n n =+-=. …………………………5分 ∴2n S n =. …………………………6分当2n ≥时,()221121n n n a S S n n n -=-=--=-, …………………………8分又11a =适合上式,∴21n a n =-. …………………………9分解法2:由121n n a S +=+,得()2114n n a S +-=, …………………………2分 当2n ≥时,()2114n n a S --=, …………………………3分 ∴()()()22111144n n n n n a a S S a +----=-=. …………………………4分∴2211220n n n n a a a a ++---=.∴()()1120n n n n a a a a +++--=. …………………………5分 ∵ 0n a >,∴12n n a a +-=. …………………………6分 ∴数列{}n a 从第2项开始是以23a =为首项,公差为2的等差数列.……………7分 ∴()()322212n a n n n =+-=-≥. …………………………8分 ∵11a =适合上式,∴21n a n =-. …………………………9分 解法3:由已知及(1)得11a =,23a =,猜想21n a n =-. …………………………2分 下面用数学归纳法证明.① 当1n =,2时,由已知11211a ==⨯-,23a ==221⨯-,猜想成立. ………3分 ② 假设n k =()2k ≥时,猜想成立,即21k a k =-, …………………………4分 由已知121k k a S +=+,得()2114k k a S +-=, 故()2114k k a S --=.∴()()()22111144k k k k k a a S S a +----=-=. …………………………5分∴22211220k k k k a a a a ++---=.∴()()1120k kk k a a aa +++--=. …………………………6分∵10,0k k a a +>>,∴120k k a a +--=. …………………………7分 ∴()12212211k k a a k k +=+=-+=+-. …………………………8分 故当1n k =+时,猜想也成立.由①②知,猜想成立,即21n a n =-. …………………………9分(3)解:由(2)知21n a n =-, ()21212n n n S n +-==.假设存在正整数k , 使k a , 21k S -, 4k a 成等比数列,则2214k k k S a a -=⋅. …………………………10分即()()()4212181k k k -=-⋅-. …………………………11分 ∵ k 为正整数, ∴ 210k -≠. ∴ ()32181k k -=-.∴ 328126181k k k k -+-=-.化简得 32460k k k --=. …………………………12分 ∵ 0k ≠,∴ 24610k k --=.解得2664431384k ±+⨯±==, 与k 为正整数矛盾. ……………………13分 ∴ 不存在正整数k , 使k a , 21k S -, 4k a 成等比数列. …………………………14分20.(本小题满分14分)(本小题主要考查椭圆的方程、双曲线的方程、直线与圆锥曲线的位置关系等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力)(1)解法1: ∵ 双曲线222:12x C y -=的顶点为1(2,0)F -,2(2,0)F , …………1分 ∴ 椭圆1C 两焦点分别为1(2,0)F -,2(2,0)F .设椭圆1C 方程为12222=+by a x ()0a b >>,∵ 椭圆1C 过点A (2,1)-,∴ 1224a AF AF =+=,得2a =. ………………………2分 ∴ ()22222b a =-=. ………………………3分∴ 椭圆1C 的方程为 22142x y +=. ………………………4分 解法2: ∵ 双曲线222:12x C y -=的顶点为1(2,0)F -,2(2,0)F , ……………………1分∴ 椭圆1C 两焦点分别为1(2,0)F -,2(2,0)F .设椭圆1C 方程为12222=+by a x ()0a b >>,∵ 椭圆1C 过点A (2,1)-, ∴22211a b +=. ① ………………………2分 . ∵ 222a b =+, ② ………………………3分 由①②解得24a =, 22b =.∴ 椭圆1C 的方程为 22142x y +=. ………………………4分 (2)解法1:设点),(y x Q ,点),(11y x P ,由A (2,1)-及椭圆1C 关于原点对称可得B (2,1)-, ∴(2,1)AQ x y =+-,11(2,1)AP x y =+-,(2,1)BQ x y =-+,11(2,1)BP x y =-+.由 0AQ AP ⋅=, 得 11(2)(2)(1)(1)0x x y y +++--=, ……………………5分 即 11(2)(2)(1)(1)x x y y ++=---. ①同理, 由0BQ BP ⋅=, 得 11(2)(2)(1)(1)x x y y --=-++. ② ……………6分①⨯②得 222211(2)(2)(1)(1)x x y y --=--. ③ ………………………7分由于点P 在椭圆1C 上, 则2211142x y +=,得221142x y =-, 代入③式得 2222112(1)(2)(1)(1)y x y y ---=--.当2110y -≠时,有2225x y +=,当2110y -=,则点(2,1)P --或(2,1)P ,此时点Q 对应的坐标分别为(2,1)或(2,1)-- ,其坐标也满足方程2225x y +=. ………………………8分当点P 与点A 重合时,即点P (2,1)-,由②得 23y x =-,解方程组2225,23,x y y x ⎧+=⎪⎨=-⎪⎩ 得点Q 的坐标为()2,1-或2,22⎛⎫- ⎪ ⎪⎝⎭. 同理, 当点P 与点B 重合时,可得点Q 的坐标为()2,1-或2,22⎛⎫- ⎪ ⎪⎝⎭.∴点Q 的轨迹方程为 2225x y +=, 除去四个点()2,1-,2,22⎛⎫- ⎪ ⎪⎝⎭, ()2,1-, 2,22⎛⎫- ⎪ ⎪⎝⎭. ………………………9分 解法2:设点),(y x Q ,点),(11y x P ,由A (2,1)-及椭圆1C 关于原点对称可得B (2,1)-, ∵0AQ AP ⋅=,0BQ BP ⋅=, ∴AQ AP ⊥,BQ BP ⊥. ∴1111122y y x x --⨯=-++()12x ≠-,① ……………………5分1111122y y x x ++⨯=---()12x ≠. ② ……………………6分①⨯② 得 12222111122y y x x --⨯=--. (*) ………………………7分∵ 点P 在椭圆1C 上, ∴ 2211142x y +=,得221122x y =-, 代入(*)式得2212211112122x y x x --⨯=--,即2211122y x --⨯=-, 化简得 2225x y +=. 若点(2,1)P --或(2,1)P , 此时点Q 对应的坐标分别为(2,1)或(2,1)-- ,其坐标也满足方程2225x y +=. ………………………8分当点P 与点A 重合时,即点P (2,1)-,由②得 23y x =-,解方程组2225,23,x y y x ⎧+=⎪⎨=-⎪⎩ 得点Q 的坐标为()2,1-或2,22⎛⎫- ⎪ ⎪⎝⎭.同理, 当点P 与点B 重合时,可得点Q 的坐标为()2,1-或2,22⎛⎫- ⎪⎪⎝⎭. ∴点Q 的轨迹方程为 2225x y +=, 除去四个点()2,1-,2,22⎛⎫- ⎪ ⎪⎝⎭, ()2,1-,2,22⎛⎫- ⎪ ⎪⎝⎭. ………………………9分 (3) 解法1:点Q (),x y 到直线:AB 20x y +=的距离为23x y+.△ABQ 的面积为2221(22)(11)23x y S +=++--⋅………………………10分 2x y =+22222x y xy =++. ………………………11分而22222(2)()422y y xy x x =⨯⨯≤+(当且仅当22y x =时等号成立) ∴22222222522224522y S x y xy x y x x y =++≤+++=+522=. ……12分 当且仅当22yx =时, 等号成立. 由222,225,y x x y ⎧=⎪⎨⎪+=⎩解得2,22,x y ⎧=⎪⎨⎪=⎩或2,22.x y ⎧=-⎪⎨⎪=-⎩………………………13分 ∴△ABQ 的面积最大值为522, 此时,点Q 的坐标为2,22⎛⎫ ⎪ ⎪⎝⎭或2,22⎛⎫-- ⎪ ⎪⎝⎭.…14分 解法2:由于()()22221123AB =++--=,故当点Q 到直线AB 的距离最大时,△ABQ 的面积最大.………………………10分 设与直线AB 平行的直线为20x y m ++=,由2220,25,x y m x y ⎧++=⎪⎨+=⎪⎩消去x ,得22542250y my c ++-=, 由()223220250m m ∆=--=,解得522m =±. ………………………11分若522m =,则2y =-,22x =-;若522m =-,则2y =,22x =.…12分 故当点Q 的坐标为2,22⎛⎫ ⎪ ⎪⎝⎭或2,22⎛⎫-- ⎪ ⎪⎝⎭时,△ABQ 的面积最大,其值为()2222221522212S AB +⨯=⨯=+. ………………………14分 21.(本小题满分14分)(本小题主要考查函数的导数、不等式等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力、抽象概括能力与创新意识) (1)解:∵()()2ln 12a f x x x x =++-,其定义域为()1,-+∞, ∴()()11111x ax a f x ax x x+-'=+-=++. …………………………1分 ① 当0a =时,()1xf x x'=-+,当x ∈()0,+∞时,()0f x '<, 则()f x 在区间()0,+∞上单调递减,此时,()()00f x f <=,不符合题意. …2分 ② 当01a <<时,令()0f x '=,得10x =,210ax a-=>, 当x ∈10a ,a -⎛⎫ ⎪⎝⎭时,()0f x '<,则()f x 在区间10a ,a -⎛⎫⎪⎝⎭上单调递减,此时,()()00f x f <=,不符合题意. …………………………3分③ 当1a =时,()21x f x x'=+,当x ∈()0,+∞时,()0f x '>,则()f x 在区间()0,+∞上单调递增,此时,()()00f x f >=,符合题意. ……4分 ④ 当1a >时,令()0f x '=,得10x =,210ax a-=<,当x ∈()0,+∞时,()0f x '>, 则()f x 在区间()0,+∞上单调递增,此时,()()00f x f >=,符合题意. ……5分 综上所述,a 的取值范围为[)1,+∞. …………………………6分 (2)证明:由(1)可知,当0a =时,()0f x <对()0,x ∈+∞都成立,即()ln 1x x +<对()0,x ∈+∞都成立. …………………………7分∴2222221212ln 1ln 1ln 1n nn n n n nn⎛⎫⎛⎫⎛⎫++++++<+++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.………………8分 即ln 2222121211112n n n n n n n n ⎡⎤++++⎛⎫⎛⎫⎛⎫+++<= ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 由于n ∈N *,则111111222221n n n +=+≤+=⨯. …………………………9分 ∴ln 222121111n n n n ⎡⎤⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. ∴ 22212111n n n n ⎛⎫⎛⎫⎛⎫+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭e <. …………………………10分 由(1)可知,当1a =时,()0f x >对()0,x ∈+∞都成立, 即()21ln 12x x x -<+对()0,x ∈+∞都成立. …………………………11分 ∴2222224442221211212ln 1ln 1ln 12n n n n nn n nn n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++-+++<++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.…………………………12分即()()()2422212111126ln 11122n n n n n n n n n n n ++⎡⎤⎢⎥+⎡⎤⎛⎫⎛⎫⎛⎫-<+++⎢⎥ ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎢⎥⎢⎥⎣⎦. 得323222643112ln 11112n n n n n n n n +--⎡⎤⎛⎫⎛⎫⎛⎫<+++ ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦由于n ∈N *,则()()32232333363316431611212122n n n n n n n n n n n +-+-+--=≥=. …………………………13分∴12<ln 22212111n n n n ⎡⎤⎛⎫⎛⎫⎛⎫+++ ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. ∴e 22212111n n n n ⎛⎫⎛⎫⎛⎫<+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭. …………………………14分 ∴e 22212111n n n n ⎛⎫⎛⎫⎛⎫<+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭e <.试卷类型:A2015年广州市普通高中毕业班综合测试(二)2015广州二模 数学(理科)2015.4参考公式:球的表面积公式24S R =π,其中R 是球的半径.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.命题“若2x =,则2320x x -+=”的逆否命题是A .若2x ≠,则2320x x -+≠B .若2320x x -+=,则2x =C .若2320x x -+≠,则2x ≠D .若2x ≠,则2320x x -+=2.已知0a b >>,则下列不等关系式中正确的是A .sin sin a b >B .22log log a b <C .1122a b <D .1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭3.已知函数()4,0,1,0,x x f x x x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩则()2f f =⎡⎤⎣⎦ A .14 B .12C .2D .44.函数()sin y A x ωϕ=+()0,0,0A ωϕ>><<π的图象的一部分如图1所示, 则此函数的解析式为A .3sin y x ππ⎛⎫=+ ⎪44⎝⎭B .3sin y x π3π⎛⎫=+ ⎪44⎝⎭C .3sin y x ππ⎛⎫=+ ⎪24⎝⎭D .3sin y x π3π⎛⎫=+ ⎪24⎝⎭5.已知函数()223f x x x =-++,若在区间[]4,4-上任取一个实数0x ,则使()00f x ≥成立的概率为y xO 1 5 3 -3图1A .425B .12C .23D .16.如图2,圆锥的底面直径2AB =,母线长3VA =,点C 在母线VB 上,且1VC =, 有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是A .13B .7C .433 D .3327.已知两定点()1,0A -,()1,0B ,若直线l 上存在点M ,使得3MA MB +=,则称直线l 为“M 型直线”.给出下列直线:①2x =;②3y x =+;③21y x =--;④1y =;⑤23y x =+.其中是“M 型直线”的条数为A .1B .2C .3D .48.设(),P x y 是函数()y f x =的图象上一点,向量()()51,2x =-a ,()1,2y x =-b ,且//a b .数列{}n a是公差不为0的等差数列,且()()()12936f a f a f a ++⋅⋅⋅+=,则129a a a ++⋅⋅⋅+= A .0 B .9 C .18 D .36二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.已知i 为虚数单位,复数1i1iz -=+,则z = . 10.执行如图3所示的程序框图,则输出的z 的值是 .11.已知()sin 6f x x π⎛⎫=+⎪⎝⎭,若3cos 5α=02απ⎛⎫<< ⎪⎝⎭,则12f απ⎛⎫+= ⎪⎝⎭ .12.5名志愿者中安排4人在周六、周日两天参加社区公益活动.若每天安排2人,则不同的安排方案共有_________种(用数字作答). 13.在边长为1的正方形ABCD 中,以A 为起点,其余顶点为终点的向量分别为1a ,2a ,3a ;以C 为起点,其余顶点为终点的向量分别为1c ,2c ,3c .若m 为()()i j s t +∙+a a c c 的最小值,其中{}{},1,2,3i j ⊆,{}{},1,2,3s t ⊆,则m = .x=1, y=2z=xy是z<20? x =yy =z输出z结束否开始图3AV CB图2(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图4,在平行四边形ABCD 中,4AB =,点E 为边DC 的中点, AE 与BC 的延长线交于点F ,且AE 平分BAD ∠,作DG AE ⊥,垂足为G ,若1DG =,则AF 的长为 . 15.(坐标系与参数方程选做题)在平面直角坐标系中,已知曲线1C 和2C 的方程分别为32,12x t y t=-⎧⎨=-⎩(t 为参数)和24,2x t y t=⎧⎨=⎩(t 为参数),则曲线1C 和2C 的交点有 个. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知△ABC 的三边a ,b ,c 所对的角分别为A ,B ,C ,且::7:5:3a b c =. (1)求cos A 的值;(2)若△ABC 的面积为453,求△ABC 外接圆半径的大小. 17.(本小题满分12分)某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一人答一份).现从回收的年龄在20~60岁的问卷中随机抽取了n 份,统计结果如下面的图表所示.组号年龄分组 答对全卷 的人数 答对全卷的人数 占本组的概率 1 [20,30) 28 b2 [30,40) 27 0.93 [40,50) 5 0.54 [50,60]a0.4(1)分别求出a ,b ,c ,n 的值; (2)从第3,4组答对全卷的人中用分层抽样的方法抽取6人,在所抽取的6人中随机抽取2人授予“环保之星”,记X 为第3组被授予“环保之星”的人数,求X 的分布列与数学期望.18.(本小题满分14分) 如图5,已知六棱柱111111ABCDEF A BC D E F -的侧棱 垂直于底面,侧棱长与底面边长都为3,M ,N 分别 是棱AB ,1AA 上的点,且1AM AN ==. (1)证明:M ,N ,1E ,D 四点共面;(2)求直线BC 与平面1MNE D 所成角的正弦值.BACDFG 图4年龄频率/组距20 30 40 50 60 0.010 c 0.0350.0250 C 1ABA 1B 1D 1 CDMNEFE 1F 119.(本小题满分14分)已知点(),n n nP a b ()n ∈*N 在直线l :31y x =+上,1P 是直线l 与y 轴的交点,数列{}n a 是公差为1的等差数列.(1)求数列{}n a ,{}n b 的通项公式; (2)求证:22212131111116n PP PP PP ++++<.20.(本小题满分14分)已知圆心在x 轴上的圆C 过点()0,0和()1,1-,圆D 的方程为()2244x y -+=.(1)求圆C 的方程;(2)由圆D 上的动点P 向圆C 作两条切线分别交y 轴于A ,B 两点,求AB 的取值范围.21.(本小题满分14分)已知函数()ln f x a x =-11x x -+,()e xg x =(其中e 为自然对数的底数). (1)若函数()f x 在区间()0,1内是增函数,求实数a 的取值范围;(2)当0b >时,函数()g x 的图象C 上有两点(),e b P b ,(),e bQ b --,过点P ,Q 作图象C 的切线分别记为1l ,2l ,设1l 与2l 的交点为()00,M x y ,证明00x >.2015年广州市普通高中毕业班综合测试(二)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题,满分40分.题号 1 2 3 4 5 6 7 8答案 C D A A B B C C二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题,满分30分.其中14~15题是选做题,考生只能选做一题.题号 9 10 1112 131415答案1327210305-43116.(本小题满分12分) 解:(1)因为::7:5:3a b c =,所以可设7a k =,5b k =,3c k =()0k >,……2分 由余弦定理得,222cos 2b c a A bc +-=()()()222537253k k k k k+-=⨯⨯……3分 12=-.…4分 (2)由(1)知,1cos 2A =-, 因为A 是△ABC 的内角, 所以2sin 1cos A A =-32=.……6分 由(1)知5b k =,3c k =, 因为△ABC 的面积为453,所以1sin 4532bc A =,……8分 即135345322k k ⨯⨯⨯=, 解得23k =.………10分由正弦定理2sin a R A =,即71432sin 32k R A ==,…………11分解得14R =.所以△ABC 外接圆半径的大小为14.12分 17.(本小题满分12分)解:(1)根据频率直方分布图,得()0.0100.0250.035101c +++⨯=,解得0.03c =.1分第3组人数为105.05=÷,所以1001.010=÷=n .…………2分 第1组人数为1000.3535⨯=,所以28350.8b =÷=.……3分 第4组人数为2525.0100=⨯,所以250.410a =⨯=.……4分 (2)因为第3,4组答对全卷的人的比为5:101:2=,所以第3,4组应依次抽取2人,4人.5分 依题意X 的取值为0,1,2.…………6分()022426C C 20C 5P X ===,…7分()112426C C 81C 15P X ===,8分()202426C C 12C 15P X ===,9分所以X 的分布列为:X 0 12P25 815115所以2812012515153EX =⨯+⨯+⨯=. …………12分 18.(本小题满分14分)第(1)问用几何法,第(2)问用向量法:(1)证明:连接1A B ,11B D ,BD ,11A E , 在四边形1111A B D E 中,1111A E B D 且1111=A E B D , 在四边形11BB D D 中,11BD B D 且11=BD B D ,所以11A E BD 且11=A E BD ,所以四边形11A BDE 是平行四边形.………………………………………10分 C 1ABA 1B 1D 1CDM NEFE 1F 1所以11A B E D .……2分在△1ABA 中,1AM AN ==,13AB AA ==, 所以1AM ANAB AA =, 所以1MN BA .…………4分 所以1MNDE .所以M ,N ,1E ,D 四点共面.……6分(2)解:以点E 为坐标原点,EA ,ED ,1EE 所在的直线分别为x 轴,y 轴,z 轴,建立如图的空间直角坐标系,则()33,3,0B ,339,,022C ⎛⎫⎪ ⎪⎝⎭,()0,3,0D ,()10,0,3E ,()33,1,0M ,8分则333,,022BC ⎛⎫=- ⎪⎪⎝⎭,()10,3,3DE =-,()33,2,0DM =-.……10分设(),,x y z =n 是平面1MNE D 的法向量,则10,0.DE DM ⎧=⎪⎨=⎪⎩n n 即330,3320.y z x y -+=⎧⎪⎨-=⎪⎩ 取33y =,则2x =,33z =.所以()2,33,33=n 是平面1MNE D 的一个法向量.………12分 设直线BC 与平面1MNE D 所成的角为θ, 则sin BC BCθ=n nxzyC 1ABA 1B 1D 1CDMNEFE 1F 1()()2222223332333302217411633323333022⎛⎫⨯-+⨯+⨯ ⎪⎝⎭==⎛⎫⎛⎫++⨯-++ ⎪ ⎪⎝⎭⎝⎭. 故直线BC 与平面1MNE D 所成角的正弦值为174116.………14分 第(1)(2)问均用向量法:(1)证明:以点E 为坐标原点,EA ,ED ,1EE 所在的直线分别为x 轴,y 轴,z 轴,建立如图的空间直角坐标系, 则()33,3,0B ,339,,022C ⎛⎫⎪ ⎪⎝⎭,()0,3,0D , ()10,0,3E ,()33,1,0M ,()33,0,1N ,2分所以()10,3,3DE =-,()0,1,1MN =-. …3分 因为13DE MN =,且MN 与1DE 不重合, 所以1DE MN .…5分所以M ,N ,1E ,D 四点共面.……6分 (2)解:由(1)知333,,022BC ⎛⎫=- ⎪⎪⎝⎭,()10,3,3DE =-,()33,2,0DM =-. (10)分(特别说明:由于给分板(1)6分(2)8分,相当于把(1)中建系与写点坐标只给2分在此加2分)设(),,x y z =n 是平面1MNE D 的法向量,则10,0.DE DM ⎧=⎪⎨=⎪⎩n n 即330,3320.y z x y -+=⎧⎪⎨-=⎪⎩ 取33y =,则2x =,33z =.所以()2,33,33=n 是平面1MNE D 的一个法向量.………12分xzyC 1A BA 1B 1D 1CDMNEFE 1F 1设直线1BC 与平面1MNE D 所成的角为θ, 则sin BC BCθ=n n()()2222223332333302217411633323333022⎛⎫⨯-+⨯+⨯ ⎪⎝⎭==⎛⎫⎛⎫++⨯-++ ⎪ ⎪⎝⎭⎝⎭. 故直线BC 与平面1MNE D 所成角的正弦值为174116.………14分 第(1)(2)问均用几何法:(1)证明:连接1A B ,11B D ,BD ,11A E , 在四边形1111A B D E 中,1111A E B D 且1111=A E B D , 在四边形11BB D D 中,11BD B D 且11=BD B D ,所以11A E BD 且11=A E BD ,所以四边形11A BDE 是平行四边形. 所以11A BE D .……2分在△1ABA 中,1AM AN ==,13AB AA ==, 所以1AM ANAB AA =, 所以1MN BA .…………4分 所以1MNDE .所以M ,N ,1E ,D 四点共面.……6分 (2)连接AD ,因为BCAD ,所以直线AD 与平面1MNE D 所成的角即为直线BC 与平面1MNE D 所成的角.……7分连接DN ,设点A 到平面DMN 的距离为h ,直线AD 与平面1MNE D 所成的角为θ,C 1ABA 1B 1 D 1CDMNEFE 1F 1则sin hADθ=.8分 因为A DMN D AMN V V --=,即1133DMN AMN S h S DB ∆∆⨯⨯=⨯⨯.…9分 在边长为3的正六边形ABCDEF 中,33DB =,6DA =, 在△ADM 中,6DA =,1AM =,60DAM ∠=, 由余弦定理可得,31DM =.在Rt △DAN 中,6DA =,1AN =,所以37DN =. 在Rt △AMN 中,1AM =,1AN =,所以2MN =. 在△DMN 中,31DM =,37DN =,2MN =, 由余弦定理可得,2cos 31DMN ∠=-,所以29sin 31DMN ∠=. 所以158sin 22DMN S MN DM DMN ∆=⨯⨯⨯∠=.…………11分 又12AMN S ∆=,12分 所以3358AMN DMN S DB h S ∆∆⨯==.………13分 所以174sin 116h AD θ==. 故直线BC 与平面1MNE D 所成角的正弦值为174116.………14分 19.(本小题满分14分)(1)解:因为()111,P a b 是直线l :31y x =+与y 轴的交点()0,1, 所以10a =,11b =.……2分 因为数列{}n a 是公差为1的等差数列, 所以1n a n =-.4分因为点(),n n n P a b 在直线l :31y x =+上,所以31n n b a =+32n =-.所以数列{}n a ,{}n b 的通项公式分别为1n a n =-,32n b n =-()*n ∈N . (6)分(2)证明:因为()10,1P ,()1,32n P n n --,所以()1,31n P n n ++.所以()222211310n PP n n n +=+=.……7分 所以222121311111n PP PP PP ++++22211111012n ⎛⎫=+++⎪⎝⎭.…………8分 因为()()2221144112141212121214n n n n n n n ⎛⎫<===- ⎪--+-+⎝⎭-,…10分 所以,当2n ≥时,222121311111n PP PP PP ++++111111210352121n n ⎡⎤⎛⎫<+-++- ⎪⎢⎥-+⎝⎭⎣⎦………11分 15110321n ⎛⎫=- ⎪+⎝⎭………12分 16<. 又当1n =时,212111106PP =<.……13分 所以22212131+111116n PP PP PP +++<.………14分 20.(本小题满分14分)解:(1)方法一:设圆C 的方程为:()222x a y r -+=()0r >,1分因为圆C 过点()0,0和()1,1-,所以()22222,11.a r a r ⎧=⎪⎨--+=⎪⎩3分 解得1a =-,1r =.所以圆C 的方程为()2211x y ++=.4分方法二:设()0,0O ,()1,1A -,依题意得,圆C 的圆心为线段OA 的垂直平分线l 与x 轴的交点C .……1分 因为直线l 的方程为1122y x -=+,即1y x =+,2分 所以圆心C 的坐标为()1,0-.………3分所以圆C 的方程为()2211x y ++=.4分(2)方法一:设圆D 上的动点P 的坐标为()00,x y ,则()220044x y -+=, 即()2200440y x =--≥,解得026x ≤≤.…………5分由圆C 与圆D 的方程可知,过点P 向圆C 所作两条切线的斜率必存在, 设PA 的方程为:()010y y k x x -=-, 则点A 的坐标为()0100,y k x -, 同理可得点B 的坐标为()0200,y k x -, 所以120AB k k x =-,因为PA ,PB 是圆C 的切线,所以1k ,2k 满足00211k y kx k -+-=+,即1k ,2k 是方程()()2220000022110x x k y x k y +-++-=的两根,……7分即()0012200201220021,21.2y x k k x x y k k x x ⎧++=⎪+⎪⎨-⎪=⎪+⎩所以120AB k k x =-()()22000022000412122y y x x x x x x -+⎡⎤=-⎢⎥++⎣⎦……9分 因为()220044y x =--,所以()02056222x AB x -=+.………10分设()()0020562x f x x -=+,则()()00305222x f x x -+'=+.11分由026x ≤≤,可知()0f x 在222,5⎡⎫⎪⎢⎣⎭上是增函数,在22,65⎛⎤⎥⎝⎦上是减函数,………12分所以()0max 2225564fx f ⎛⎫==⎡⎤ ⎪⎣⎦⎝⎭, ()()(){}min0131min 2,6min ,484f x f f ⎧⎫===⎡⎤⎨⎬⎣⎦⎩⎭, 所以AB 的取值范围为522,4⎡⎤⎢⎥⎣⎦.14分方法二:设圆D 上的动点P 的坐标为()00,x y ,则()220044x y -+=, 即()2200440y x =--≥,解得026x ≤≤.…………5分 设点()0,A a ,()0,B b , 则直线PA :00y ay a x x --=,即()0000y a x x y ax --+=, 因为直线PA 与圆C 相切,所以()0022001a y ax y a x -+=-+,化简得()2000220x a y a x +--=. ①同理得()2000220x b y b x +--=, ②由①②知a ,b 为方程()2000220x x y x x +--=的两根,…7分即00002,2.2y a b x x ab x ⎧+=⎪+⎪⎨-⎪=⎪+⎩所以()24AB a b a b ab =-=+-200002422y x x x ⎛⎫=+ ⎪++⎝⎭ ()()2000204422y x x x ++=+.…9分因为()220044y x =--,所以()02056222x AB x -=+…………10分()2001652222x x =-+++.…………11分 令012t x =+,因为026x ≤≤,所以1184t ≤≤.所以222165AB t t =-+252522163264t ⎛⎫=--+⎪⎝⎭,12分 当532t =时,max 524AB =, 当14t =时,min 2AB =. 所以AB 的取值范围为522,4⎡⎤⎢⎥⎣⎦.14分21.(本小题满分14分)(1)解法一:因为函数()ln f x a x =-11x x -+在区间()0,1内是增函数, 所以()()2201a f x x x '=-≥+()01x <<.………1分 即()2120a x x +-≥()01x <<,即()221xa x ≥+2分212x x =++()01x <<, 因为21122x x <++在()0,1x ∈内恒成立,所以12a ≥.故实数a 的取值范围为1,2⎡⎫+∞⎪⎢⎣⎭.…4分 解法二:因为函数()ln f x a x =-11x x -+在区间()0,1内是增函数, 所以()()2201a f x x x '-+≥=()01x <<.………1分 即()2120a x x +-≥()01x <<,即()2210ax a x a +-+≥()01x <<,2分设()()221g x ax a x a =+-+,当0a =时,得20x -≥,此时不合题意.当0a <时,需满足()()00,10,g g ≥⎧⎪⎨≥⎪⎩即()0,210,a a a a ≥⎧⎪⎨+-+≥⎪⎩解得12a ≥,此时不合题意.当0a >时,需满足()222140a a --≤⎡⎤⎣⎦或()()00,10,10,g g a a ⎧⎪≥⎪≥⎨⎪-⎪-<⎩或()()00,10,11,g g a a ⎧⎪≥⎪≥⎨⎪-⎪->⎩解得12a ≥或1a >, 所以12a ≥.综上所述,实数a 的取值范围为1,2⎡⎫+∞⎪⎢⎣⎭.………4分 (2)证明:因为函数()e xg x =,所以()e xg x '=.过点(),e b P b ,(),e bQ b --作曲线C 的切线方程为:1l :()e e b b y x b =-+,2l :()e e b b y x b --=++,因为1l 与2l 的交点为()00,M x y ,由()()e e ,e e ,b bb by x b y x b --⎧=-+⎪⎨=++⎪⎩ 6分消去y ,解得()()()0e +e e e eeb b b b bbb x -----=-. ①…7分下面给出判定00x >的两种方法: 方法一:设e bt =,………8分 因为0b >,所以1t >,且ln b t =. 所以()()2202+1ln 11t t t x t --=-.………9分设()()()22+1ln 1h t t t t =--()1t >,则()12ln h t t t t t '=-+()1t >.……10分 令()12ln u t t t t t =-+()1t >,则()212ln 1u t t t'=+-.当1t >时,ln 0t >,2110t ->,所以()212ln 10u t t t'=+->,……11分所以函数()u t 在()1,+∞上是增函数, 所以()()10u t u >=,即()0h t '>,12分 所以函数()h t 在()1,+∞上是增函数, 所以()()10h t h >=.…13分因为当1t >时,210t ->,所以()()2202+1ln 101t t t x t --=>-.14分。
试卷类型:A2015年广州市普通高中毕业班综合测试(二)数学(理科)2015.4参考公式:球的表面积公式24S R =π,其中R 是球的半径.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.命题“若2x =,则2320x x -+=”的逆否命题是A .若2x ≠,则2320x x -+≠ B .若2320x x -+=,则2x =C .若2320x x -+≠,则2x ≠D .若2x ≠,则2320x x -+=2.已知0a b >>,则下列不等关系式中正确的是A .sin sin a b >B .22log log a b <C .1122a b < D .1133a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭3.已知函数()40,1,0,x f x x x x ⎧≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩则()2f f =⎡⎤⎣⎦ A .14 B .12C .2D .44.函数()sin y A x ωϕ=+()0,0,0A ωϕ>><<π的图象的一部分如图1所示, 则此函数的解析式为A .3sin y x ππ⎛⎫=+⎪44⎝⎭ B .3sin y x π3π⎛⎫=+ ⎪44⎝⎭图1C .3sin y x ππ⎛⎫=+⎪24⎝⎭ D .3sin y x π3π⎛⎫=+ ⎪24⎝⎭5.已知函数()223f x x x =-++,若在区间[]4,4-上任取一个实数0x ,则使()00f x ≥成立的概率为 A .425 B .12 C .23D .16.如图2,圆锥的底面直径2AB =,母线长3VA =,点C 在母线VB 上,且1VC =, 有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是 A BC .3D .27.已知两定点()1,0A -,()1,0B ,若直线l 上存在点M ,使得3MA MB +=,则称直线l 为“M 型直线”.给出下列直线:①2x =;②3y x =+;③21y x =--;④1y =;⑤23y x =+.其中是“M 型直线”的条数为A .1B .2C .3D .48.设(),P x y 是函数()y f x =的图象上一点,向量()()51,2x =-a ,()1,2y x =-b ,且//a b .数列{}n a是公差不为0的等差数列,且()()()12936f a f a f a ++⋅⋅⋅+=,则129a a a ++⋅⋅⋅+= A.0 B.9 C.18 D.36二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题) 9.已知i 为虚数单位,复数1i1iz -=+,则z = . 10.执行如图3所示的程序框图,则输出的z 的值是 .AVCB图211.已知()sin 6f x x π⎛⎫=+⎪⎝⎭,若3cos 5α=02απ⎛⎫<< ⎪⎝⎭,则12f απ⎛⎫+= ⎪⎝⎭ .12.5名志愿者中安排4人在周六、周日两天参加社区公益活动.若每天安排2人,则不同的安排方案共有_________种(用数字作答).13.在边长为1的正方形ABCD 中,以A 为起点,其余顶点为终点的向量分别为1a ,2a ,3a ;以C 为起点,其余顶点为终点的向量分别为1c ,2c ,3c .若m 为()()i j s t +•+a a c c 的最小值,其中{}{},1,2,3i j ⊆,{}{},1,2,3s t ⊆,则m = . (二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图4,在平行四边形ABCD 中,4AB =,点E 为边DC 的中点, AE 与BC 的延长线交于点F ,且AE 平分BAD ∠,作DG AE ⊥,垂足为G ,若1DG =,则AF 的长为 . 15.(坐标系与参数方程选做题)在平面直角坐标系中,已知曲线1C 和2C 的方程分别为32,12x t y t=-⎧⎨=-⎩(t 为参数)和24,2x t y t =⎧⎨=⎩(t 为参数),则曲线1C 和2C 的交点有 个. 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知△ABC 的三边a ,b ,c 所对的角分别为A ,B ,C ,且::7:5:3a b c =. (1)求cos A 的值;B ACDFG 图4(2)若△ABC的面积为ABC 外接圆半径的大小. 17.(本小题满分12分)某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一人答一份).现从回收的年龄在20~60岁的问卷中随机抽取了n组号年龄 分组 答对全卷 的人数答对全卷的人数 占本组的概率1 [20,30)28 b2 [30,40)270.93 [40,50)50.54 [50,60]a0.4(1)分别求出a ,b ,c ,n 的值;(2)从第3,4组答对全卷的人中用分层抽样的方法抽取6人,在所抽取的6人中随机抽取2人授予“环保之星”,记X 为第3组被授予“环保之星”的人数,求X 的分布列与数学期望.18.(本小题满分14分)如图5,已知六棱柱111111ABCDEF A B C D E F 的侧棱C 1A 1B 1 D 1E 1F 1垂直于底面,侧棱长与底面边长都为3,M,N分别是棱AB ,1AA 上的点,且1AM AN ==. (1)证明:M ,N ,1E ,D 四点共面; (2)求直线BC 与平面1MNE D 所成角的正弦值.19.(本小题满分14分)已知点(),n n n P a b ()n ∈*N在直线l :31y x =+上,1P 是直线l 与y 轴的交点,数列{}n a 是公差为1的等差数列.(1)求数列{}n a ,{}n b 的通项公式; (2)求证:22212131111116n PP PP PP ++++<.20.(本小题满分14分)已知圆心在x 轴上的圆C 过点()0,0和()1,1-,圆D 的方程为()2244x y -+=.(1)求圆C 的方程;(2)由圆D 上的动点P 向圆C 作两条切线分别交y 轴于A ,B 两点,求AB 的取值范围.21.(本小题满分14分)已知函数()ln f x a x =-11x x -+,()e xg x =(其中e 为自然对数的底数). (1)若函数()f x 在区间()0,1内是增函数,求实数a 的取值范围; (2)当0b >时,函数()g x 的图象C 上有两点(),e b P b ,(),ebQ b --,过点P ,Q 作图象C 的切线分别记为1l ,2l ,设1l 与2l 的交点为()00,M x y ,证明00x >.2015年广州市普通高中毕业班综合测试(二)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题,满分40分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题,满分30分.其中14~15题是选做题,考生只能选做一题.16.(本小题满分12分) 解:(1)因为::7:5:3a b c =,所以可设7a k =,5b k =,3c k =()0k >,…………………………………………………………2分由余弦定理得,222cos 2b c a A bc +-=()()()222537253k k k k k+-=⨯⨯…………………………………………………………3分12=-.………………………………………………………………………………………………4分 (2)由(1)知,1cos 2A =-,因为A 是△ABC 的内角,所以sin A =2=6分 由(1)知5b k =,3c k =, 因为△ABC的面积为1sin 2bc A =,……………………………………………8分即15322k k ⨯⨯⨯=,解得k =10分 由正弦定理2sin a R A =,即72sin 2k R A ==,…………………………………………………11分解得14R =.所以△ABC 外接圆半径的大小为14. (12)分17.(本小题满分12分)解:(1)根据频率直方分布图,得()0.0100.0250.035101c +++⨯=,解得0.03c =.……………………………………………………………………………………………1分 第3组人数为105.05=÷,所以1001.010=÷=n .…………………………………………………2分第1组人数为1000.3535⨯=,所以28350.8b =÷=.……………………………………………3分第4组人数为2525.0100=⨯,所以250.410a =⨯=.……………………………………………4分(2)因为第3,4组答对全卷的人的比为5:101:2=,所以第3,4组应依次抽取2人,4人.…………………………………………………………………5分依题意X 的取值为0,1,2.……………………………………………………………………………6分()022426C C 20C 5P X ===,…………………………………………………………………………………7分()112426C C 81C 15P X ===,………………………………………………………………………………8分()202426C C 12C 15P X ===,………………………………………………………………………………9分所以X 的分布列为:12815115所以2812012515153EX =⨯+⨯+⨯=. ………………………………………………………………12分18.(本小题满分14分)………………………………………10分第(1)问用几何法,第(2)问用向量法: (1)证明:连接1A B ,11B D ,BD ,11A E ,在四边形1111A B D E 中,1111A E B D 且1111=A E B D ,C 1ABA 1B 1D 1CDMNEFE 1F 1在四边形11BB D D 中,11BD B D 且11=BD B D ,所以11A E BD 且11=A E BD ,所以四边形11A BDE 是平行四边形. 所以11A BE D .………………………………2分在△1ABA 中,1AM AN ==,13AB AA ==, 所以1AM ANAB AA =, 所以1MN BA .…………………………………………………………………………………………4分 所以1MNDE .所以M ,N ,1E ,D 四点共面.………………………………………………………………………6分(2)解:以点E 为坐标原点,EA ,ED ,1EE 所在的直线分别为x 轴,y 轴,z 轴,建立如图的空间直角坐标系,则()B,9,,022C ⎛⎫⎪ ⎪⎝⎭,()0,3,0D ,()10,0,3E,()M ,…………………………8分则3,022BC ⎛⎫=- ⎪ ⎪⎝⎭,()10,3,3DE =-,()32,0DM =-.……………………………………………………………………………………10分设(),,x y z =n 是平面1MNE D 的法向量,则10,0.DE DM ⎧=⎪⎨=⎪⎩n n即330,20.y z y -+=⎧⎪⎨-=⎪⎩取y =2x=,z =所以(=n 是平面1MNE D 的一个法向量.………………………………………………12分设直线BC 与平面1MNE D 所成的角为θ, 则sin BC BCθ=n n116==. 故直线BC 与平面1MNE D 所成角的正弦值为116.………………………………………………14分第(1)(2)问均用向量法:(1)证明:以点E 为坐标原点,EA ,ED ,1EE所在的直线分别为x 轴,y 轴,z 轴,建立如图的空间直角坐标系,则()B ,9,02C ⎫⎪⎪⎝⎭,()0,3,0D ,()10,0,3E ,()M ,()N ,……………2分所以()10,3,3DE =-,()0,1,1MN =-. ………………3分 因为13DE MN =,且MN 与1DE 不重合, 所以1DE MN .…………………………………………5分所以M ,N ,1E ,D 四点共面.………………………………………………………………………6分(2)解:由(1)知3,02BC ⎛⎫= ⎪⎪⎝⎭,()10,3,3DE =-,()32,0DM =-.………………10分(特别说明:由于给分板(1)6分(2)8分,相当于把(1)中建系与写点坐标只给2分在此加2分)设(),,x y z =n 是平面1MNE D 的法向量,则10,0.DE DM ⎧=⎪⎨=⎪⎩n n即330,20.y z y -+=⎧⎪⎨-=⎪⎩取y =2x =,z =所以(=n 是平面1MNE D 的一个法向量.………………………………………………12分设直线1BC 与平面1MNE D 所成的角为θ, 则sin BC BCθ=n n==故直线BC 与平面1MNE D 14分第(1)(2)问均用几何法:(1)证明:连接1A B ,11B D ,BD ,11A E ,在四边形1111A B D E 中,1111A E B D 且1111=A E B D , 在四边形11BB D D 中,11BD B D 且11=BD B D ,所以11A E BD 且11=A E BD ,D 1E 1所以四边形11A BDE 是平行四边形. 所以11A BE D .………………………………2分在△1ABA 中,1AM AN ==,13AB AA ==, 所以1AM ANAB AA =, 所以1MN BA .…………………………………………………………………………………………4分 所以1MNDE .所以M ,N ,1E ,D 四点共面.………………………………………………………………………6分(2)连接AD ,因为BCAD ,所以直线AD 与平面1MNE D 所成的角即为直线BC 与平面1MNE D 所成的角.…………………7分连接DN ,设点A 到平面DMN 的距离为h ,直线AD 与平面1MNE D 所成的角为θ, 则sin hADθ=.……………………………………………………………………………………………8分 因为A DMN D AMNV V --=,即1133DMN AMN S h S DB ∆∆⨯⨯=⨯⨯.…………………………………………9分 在边长为3的正六边形ABCDEF中,DB =6DA =, 在△ADM 中,6DA =,1AM =,60DAM ∠=,由余弦定理可得,DM =在Rt △DAN 中,6DA =,1AN =,所以DN = 在Rt △AMN 中,1AM =,1AN =,所以MN = 在△DMN中,DM =DN =,MN =由余弦定理可得,cos DMN∠=∠=,所以sin DMN所以1sin 22DMN S MN DM DMN ∆=⨯⨯⨯∠=.…………………………………………………11分又12AMN S ∆=,……………………………………………………………………………………………12分所以AMN DMN S DB h S ∆∆⨯==.…………………………………………………………………………13分所以sin 116h AD θ==. 故直线BC 与平面1MNE D所成角的正弦值为116.………………………………………………14分19.(本小题满分14分)(1)解:因为()111,P a b 是直线l :31y x =+与y 轴的交点()0,1,所以10a =,11b =.……………………………………………………………………………………2分 因为数列{}n a 是公差为1的等差数列,所以1n a n =-.……………………………………………………………………………………………4分 因为点(),n n n P a b 在直线l :31y x =+上, 所以31n n b a =+32n =-. 所以数列{}n a ,{}n b 的通项公式分别为1n a n =-,32n b n =-()*n ∈N .………………………6分(2)证明:因为()10,1P ,()1,32n P n n --,所以()1,31n P n n ++. 所以()222211310n PP n n n +=+=. (7)分所以222121311111n PP PP PP ++++22211111012n ⎛⎫=+++⎪⎝⎭.……………………………………8分因为()()2221144112141212121214n n n n n n n ⎛⎫<===- ⎪--+-+⎝⎭-,……………………………10分 所以,当2n ≥时,222121311111n PP PP PP ++++111111210352121n n ⎡⎤⎛⎫<+-++- ⎪⎢⎥-+⎝⎭⎣⎦……………………………………………………………11分15110321n ⎛⎫=- ⎪+⎝⎭………………………………………………………………………………………12分 16<. 又当1n =时,212111106PP =<.………………………………………………………………………13分所以22212131+111116n PP PP PP +++<.……………………………………………………………14分20.(本小题满分14分)解:(1)方法一:设圆C 的方程为:()222x a y r-+=()0r >,………………………………………1分因为圆C 过点()0,0和()1,1-,所以()22222,11.a r a r ⎧=⎪⎨--+=⎪⎩………………………………………………………………………………3分 解得1a =-,1r =.所以圆C 的方程为()2211x y ++=.…………………………………………………………………4分方法二:设()0,0O ,()1,1A -,依题意得,圆C 的圆心为线段OA 的垂直平分线l 与x 轴的交点C .………………………………1分因为直线l 的方程为1122y x -=+,即1y x =+,……………………………………………………2分所以圆心C 的坐标为()1,0-.…………………………………………………………………………3分 所以圆C 的方程为()2211x y ++=.…………………………………………………………………4分(2)方法一:设圆D 上的动点P 的坐标为()00,x y ,则()220044x y -+=,即()2200440y x =--≥,解得026x ≤≤.…………………………………………………………………………………………5分 由圆C 与圆D 的方程可知,过点P 向圆C 所作两条切线的斜率必存在, 设PA 的方程为:()010y y k x x -=-, 则点A 的坐标为()0100,y k x -, 同理可得点B 的坐标为()0200,y k x -, 所以120AB k k x =-,因为PA ,PB 是圆C 的切线,所以1k ,2k1=,即1k ,2k 是方程()()2220000022110xx k y x k y +-++-=的两根,………………………………7分即()0012200201220021,21.2y x k k x x y k k x x ⎧++=⎪+⎪⎨-⎪=⎪+⎩所以120AB k k x =-x =9分 因为()220044y x =--,所以AB =10分设()()0020562x f x x -=+,则()()00305222x f x x -+'=+.………………………………………………………………………………11分由026x ≤≤,可知()0f x 在222,5⎡⎫⎪⎢⎣⎭上是增函数,在22,65⎛⎤⎥⎝⎦上是减函数,……………………12分所以()0max 2225564fx f ⎛⎫==⎡⎤ ⎪⎣⎦⎝⎭,()()(){}min0131min 2,6min ,484f x f f ⎧⎫===⎡⎤⎨⎬⎣⎦⎩⎭,所以AB的取值范围为4⎦.…………………………………………………………………14分方法二:设圆D 上的动点P 的坐标为()00,x y , 则()220044x y -+=,即()2200440y x =--≥,解得026x ≤≤.…………………………………………………………………………………………5分 设点()0,A a ,()0,B b , 则直线PA :00y ay a x x --=,即()0000y a x x y ax --+=, 因为直线PA 与圆C1=,化简得()2000220x a y a x +--=. ①同理得()2000220x b y b x +--=, ②由①②知a ,b 为方程()2000220x x y x x +--=的两根,…………………………………………7分即00002,2.2y a b x x ab x ⎧+=⎪+⎪⎨-⎪=⎪+⎩所以AB a b =-===.……………………………………………………………………9分因为()220044y x =--,所以AB =10分=………………………………………………………………11分令012t x =+,因为026x ≤≤,所以1184t ≤≤.所以AB ==,………………………………………12分当532t =时,max 4AB =,当14t =时,min AB =所以AB的取值范围为4⎦.…………………………………………………………………14分21.(本小题满分14分)(1)解法一:因为函数()ln f x a x =-11x x -+在区间()0,1内是增函数,所以()()2201a f x x x '=-≥+()01x <<.……………………………………………………………1分即()2120a x x +-≥()01x <<,即()221xa x ≥+……………………………………………………………………………………………2分212x x =++()01x <<, 因为21122x x <++在()0,1x ∈内恒成立,所以12a ≥.故实数a 的取值范围为1,2⎡⎫+∞⎪⎢⎣⎭.……………………………………………………………………4分 解法二:因为函数()ln f x a x =-11x x -+在区间()0,1内是增函数, 所以()()2201a f x x x '-+≥=()01x <<.……………………………………………………………1分即()2120a x x +-≥()01x <<,即()2210ax a x a +-+≥()01x <<, (2)分设()()221g x ax a x a =+-+,当0a =时,得20x -≥,此时不合题意.当0a <时,需满足()()00,10,g g ≥⎧⎪⎨≥⎪⎩即()0,210,a a a a ≥⎧⎪⎨+-+≥⎪⎩解得12a ≥,此时不合题意.当0a >时,需满足()222140a a --≤⎡⎤⎣⎦或()()00,10,10,g g a a ⎧⎪≥⎪≥⎨⎪-⎪-<⎩或()()00,10,11,g g a a⎧⎪≥⎪≥⎨⎪-⎪->⎩ 解得12a ≥或1a >,所以12a ≥. 综上所述,实数a 的取值范围为1,2⎡⎫+∞⎪⎢⎣⎭.……………………………………………………………4分(2)证明:因为函数()e xg x =,所以()e xg x '=.过点(),e b P b ,(),e b Q b --作曲线C 的切线方程为:1l :()e e b b y x b =-+, 2l :()e e b b y x b --=++,因为1l 与2l 的交点为()00,M x y ,由()()e e ,e e ,b bb by x b y x b --⎧=-+⎪⎨=++⎪⎩ ………………………………………………………………………………6分 消去y ,解得()()()0e +e e e eeb b b b bbb x -----=-. ①…………………………………………7分下面给出判定00x >的两种方法:方法一:设e bt =,………………………………………………………………………………………8分因为0b >,所以1t >,且ln b t =. 所以()()2202+1ln 11t t t x t --=-. (9)分设()()()22+1ln 1h t t t t =--()1t >,则()12ln h t t t t t '=-+()1t >.………………………………………………………………………10分 令()12ln u t t t t t =-+()1t >,则()212ln 1u t t t'=+-.当1t >时,ln 0t >,2110t ->,所以()212ln 10u t t t '=+->,………………………………11分所以函数()u t 在()1,+∞上是增函数,所以()()10u t u >=,即()0h t '>,…………………………………………………………………12分所以函数()h t 在()1,+∞上是增函数,所以()()10h t h >=.…………………………………………………………………………………13分 因为当1t >时,210t ->, 所以()()2202+1ln 101t t t x t --=>-.…………………………………………………………………14分 方法二:由①得0x ()221+e 11e b b b --=--. 设2e b t -=,…………………………………………………………………………………………………8分 因为0b >,所以01t <<,且ln 2t b =-. 于是21ln b t -=,……………………………………………………………………………………………9分 所以()01+221ln 1ln 1b t b t x b t t t t +⎛⎫=+=+ ⎪--⎝⎭.…………………………………………………………10分由(1)知当12a =时,()1ln 2f x x =-11x x -+在区间()0,1上是增函数,………………………… 11分 所以()ln 2t f t =-()1101t f t -<=+, 即ln 2t <11t t -+. …………………………………………………………………………………………12分 即210ln 1t t t ++>-,………………………………………………………………………………………13分 已知0b >, 所以0210ln 1t x b t t +⎛⎫=+> ⎪-⎝⎭.…………………………………………………………………………14分欢迎下载,资料仅供参考!!!。
图17432109878试卷类型:A2015年广州市普通高中毕业班综合测试(一)数学(理科)2015.3 本试卷共4页,21小题, 满分150分.考试用时120分钟. 注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号。
用黑色字迹钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. ()()22221211236n n n n ++++++=()*n ∈N . 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知全集{}1,2,3,4,5U =, 集合{}3,4,5M =, {}1,2,5N =, 则集合{}1,2可以表示为 A .M N B .()U M N ð C .()U MN ð D .()()U U M N 痧2.已知向量()3,4a =,若5λ=a ,则实数λ的值为A .15 B .1 C .15± D .1± 3. 若某市8所中学参加中学生合唱比赛的得分用茎叶图表示(如图1),其中茎为十位数,叶为个位数,则这组数据的中位数和平均数分别是 A. 91, 91.5 B. 91, 92 C. 91.5, 91.5 D. 91.5, 924. 直线10x ay ++=与圆()2214x y +-=的位置关系是A. 相交B. 相切C. 相离D. 不能确定侧视图正视图5. 若直线3y x=上存在点(),x y满足约束条件40,280,,x yx yx m++>⎧⎪-+≥⎨⎪≤⎩则实数m的取值范围是A. ()1,-+∞ B. [)1,-+∞C. (),1-∞- D. (],1-∞-6. 已知某锥体的正视图和侧视图如图2,图2A. B. D.7. 已知a为实数,则1a≥是关于x的绝对值不等式1x x a+-≤有解的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8. 已知i是虚数单位,C是全体复数构成的集合,若映射:f C→R满足: 对任意12,z z C∈,以及任意λ∈R , 都有()()()()()121211f z z f z f zλλλλ+-=+-, 则称映射f具有性质P. 给出如下映射:①1:f C→R , ()1f z x y=-, z x y=+i(,x y∈R);②2:f C→R , ()22f z x y=-, z x y=+i(,x y∈R);③3:f C→R , ()32f z x y=+, z x y=+i(,x y∈R);其中, 具有性质P的映射的序号为A. ①②B. ①③C. ②③D. ①②③二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9. 已知tan2α=,则tan2α的值为.10. 已知e为自然对数的底数,若曲线y x=e x在点()1,e处的切线斜率为.11. 已知随机变量X服从正态分布()2,1N. 若()130.6826P X≤≤=,则()3P X>图3等于 . 12. 已知幂函数()223(m m f x xm --+=∈Z )为偶函数,且在区间()0,+∞上是单调增函数,则()2f 的值为 .13.已知,n k ∈N *,且k n ≤,k C k n n =C 11k n --,则可推出C 12n +C 23n +C 3n k ++C k n n ++C (n n n =C 01n -+C 11n -++C 11k n --++C 11)n n --12n n -=⋅, 由此,可推出C 122n +C 223n +C 32n k ++C 2k n n ++C n n = .(二)选做题(14~15题,考生只能从中选做一题) 14. (坐标系与参数方程选做题)在直角坐标系xOy 中,曲线1C 和2C 的参数方程分别为cos sin ,(cos sin x y θθθθθ=+⎧⎨=-⎩为参数)和2,(x t t y t=-⎧⎨=⎩为参数).以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,则曲线1C 与2C 的交点的极坐标...为 . 15. (几何证明选讲选做题)如图3,BC 是圆O 的一条弦,延长BC 至点E , 使得22BC CE ==,过E 作圆O 的切线,A 为切点,BAC ∠的平分线AD 交BC 于点D , 则DE 的长为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()()sin 0,06f x A x A πωω⎛⎫=+>> ⎪⎝⎭的图象在y 轴右侧的第一个最高点和第一个最低点的坐标分别为()02x ,和022x ,π⎛⎫+- ⎪⎝⎭. (1)求函数()f x 的解析式; (2)求0sin 4x π⎛⎫+ ⎪⎝⎭的值.图4OF ED C B A 图5FE PODB A袋子中装有大小相同的白球和红球共7个,从袋子中任取2个球都是白球的概率为17,每个球被取到的机会均等. 现从袋子中每次取1个球,如果取出的是白球则不再放回,设在取得红球之前已取出的白球个数为X . (1)求袋子中白球的个数; (2)求X 的分布列和数学期望.18. (本小题满分14分)如图4,在边长为4的菱形ABCD 中,60DAB ︒∠=,点E ,F 分别是边CD ,CB 的 中点,ACEF O =,沿EF 将△CEF 翻折到△PEF ,连接PA,PB,PD ,得到如图5的五棱锥P ABFED -,且PB =(1)求证:BD ⊥平面POA ;(2)求二面角--B AP O 的正切值.19. (本小题满分14分)已知数列{}n a 的各项均为正数,其前n 项和为n S ,且满足111,1n a a +==,n ∈N *.(1)求2a 的值;(2)求数列{}n a 的通项公式;(3)是否存在正整数k , 使k a , 21k S -, 4k a 成等比数列? 若存在, 求k 的值; 若不存在, 请说明理由.已知椭圆1C 的中心在坐标原点,两焦点分别为双曲线222:12x C y -=的顶点,直线0=x 与椭圆1C 交于A ,B 两点,且点A 的坐标为(1),点P 是椭圆1C 上异于点A ,B 的任意一点,点Q 满足0AQ AP ⋅=,0BQ BP ⋅=,且A ,B ,Q 三点不共线.(1) 求椭圆1C 的方程; (2) 求点Q 的轨迹方程;(3) 求ABQ ∆面积的最大值及此时点Q 的坐标.21. (本小题满分14分) 已知函数()()2ln 12a f x x x x =++-()0a ≥. (1)若()0f x >对()0,x ∈+∞都成立,求a 的取值范围;(2)已知e 为自然对数的底数,证明:∀n ∈N *22212111n n n n ⎛⎫⎛⎫⎛⎫<++⋅⋅⋅+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭e <.2015年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题. 9. 43-10. 2e 11. 0.1587 12. 16 13. ()212n n n -+⋅14. 4π⎫⎪⎭15. 说明: 第14题答案可以是2,4k k ππ⎫+∈⎪⎭Z . 三、解答题:本大题共6小题,满分80分.16.(本小题满分12分)(本小题主要考查三角函数的图象与性质、三角两角和公式等等知识,考查化归与转化的数学思想方法,以及运算求解能力)(1)解:由题意可得2,A =, …………………………1分00222T x x ππ⎛⎫=+-= ⎪⎝⎭, …………………………3分 ∴.T π= …………………………4分 由,2πωπ=得2=ω, …………………………5分∴()2sin 26f x x π⎛⎫=+⎪⎝⎭. …………………………6分(2)解: ∵ 点()0,2x 是函数()2sin 26f x x π⎛⎫=+ ⎪⎝⎭在y 轴右侧的第一个最高点, ∴ 0262x ππ+=. …………………………7分∴ 06x π=. …………………………8分 ∴0sin 4x π⎛⎫+⎪⎝⎭sin 64ππ⎛⎫=+ ⎪⎝⎭…………………………9分 sincoscossin6464ππππ=+ …………………………10分12222=⨯+ …………………………11分4=. …………………………12分 17.(本小题满分12分)(本小题主要考查古典概型、解方程、随机变量的分布列与均值(数学期望)等知识,考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识)(1)解:设袋子中有n (n ∈N *)个白球,依题意得,22717n C C =,………………………1分即()1127672n n -=⨯, 化简得,260n n --=, …………………………2分解得,3n =或2n =-(舍去). …………………………3分 ∴袋子中有3个白球. …………………………4分 (2)解:由(1)得,袋子中有4个红球,3个白球. …………………………5分X 的可能取值为0,1,2,3, …………………………6分()407P X ==, ()3421767P X ==⨯=, ()3244276535P X ==⨯⨯=,()321413765435P X ==⨯⨯⨯=. ………………10分∴X 的分布列为:…………………………11分GH F EPODBA∴4241301237735355EX =⨯+⨯+⨯+⨯=. …………………………12分 18.(本小题满分14分)(本小题主要考查空间线面关系、二面角、空间向量及坐标运算等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) (1)证明:∵点E ,F 分别是边CD ,CB 的中点,∴BD ∥EF . …………………………1分 ∵菱形ABCD 的对角线互相垂直,∴BD AC ⊥. ∴EF AC ⊥. ∴EF AO ⊥,EF PO ⊥. …………………………2分 ∵AO ⊂平面POA ,PO ⊂平面POA ,AO PO O =, ∴EF ⊥平面POA . …………………………3分∴BD ⊥平面POA . …………………………4分 (2)解法1:设AO BD H =,连接BO , ∵60DAB ︒∠=, ∴△ABD 为等边三角形.∴4BD =,2BH =,HA =HO PO ==……5分 在R t △BHO中,BO在△PBO 中,22210+==BO PO PB ,∴PO BO ⊥. …………………………6分 ∵PO EF ⊥,EF BO O =,EF ⊂平面BFED ,BO ⊂平面BFED , ∴PO ⊥平面BFED . …………………………7分 过H 作⊥HG AP ,垂足为G ,连接BG ,由(1)知⊥BH 平面POA ,且⊂AP 平面POA , ∴⊥BH AP .∵=HG BH H ,⊂HG 平面BHG ,⊂BH 平面BHG ,∴⊥AP 平面BHG . …………………………8分 ∵⊂BG 平面BHG ,∴⊥AP BG . …………………………9分 ∴∠BGH 为二面角--B AP O 的平面角. …………………………10分 在Rt △POA中,AP在Rt △POA 和Rt △HGA 中,90,︒∠=∠=∠=∠POA HGA PAO HAG , ∴Rt △POA ~Rt △HGA . …………………………11分 ∴=PO PAHG HA.∴⋅===PO HA HG PA …………………………12分A在Rt △BHG中,tan ∠===BH BGH HG . ……………………13分 ∴二面角--B AP O…………………………14分 解法2:设AOBD H =,连接BO ,∵60DAB ︒∠=, ∴△ABD 为等边三角形.∴4BD =,2BH =,HA =HO PO ==………………………5分 在R t △BHO中,BO在△PBO 中,22210+==BO PO PB ,∴PO BO ⊥. …………………………6分 ∵PO EF ⊥,EF BO O =,EF ⊂平面BFED ,BO ⊂平面BFED , ∴PO ⊥平面BFED . …………………………7分 以O 为原点,OF 所在直线为x 轴,AO 所在直线为y 轴,OP 所在直线为z 轴, 建立空间直角坐标系-O xyz ,则()0,-A,()2,B,(P,()0,H .…………8分∴(=AP,()=AB . 设平面PAB 的法向量为=n (),,x y z ,由⊥n AP ,⊥n AB ,得0,20.⎧+=⎪⎨+=⎪⎩x 令1=y ,得3=-z,=x ∴平面PAB 的一个法向量为=n ()3-. 由(1)知平面PAO 的一个法向量为()2,0,0=-BH , ……………………11分 设二面角--B AP O 的平面角为θ, 则cos θ=cos ,n BH⋅=n BH nBH==………………………12分∴sin 13θ==sin tan cos 3θθθ==.………………………13分∴二面角--B AP O 的正切值为3…………………………14分 19.(本小题满分14分)(本小题主要考查等差数列、数列的前n 项和等知识,考查化归与转化的数学思想方法,以及运算求解能力和创新意识)(1)解:∵111,1n a a +==,∴2113a ===. …………………………1分(2)解法1:由11n a +=,得11n n S S +-=, …………………………2分故)211n S +=. …………………………3分∵0n a >,∴0n S >.1=. …………………………4分∴数列1=,公差为1的等差数列.()11n n =+-=. …………………………5分 ∴2n S n =. …………………………6分当2n ≥时,()221121n n n a S S n n n -=-=--=-, …………………………8分又11a =适合上式,∴21n a n =-. …………………………9分解法2:由11n a +=,得()2114n n a S +-=, …………………………2分 当2n ≥时,()2114n n a S --=, …………………………3分 ∴()()()22111144n n n n n a a S S a +----=-=. …………………………4分∴2211220n n n n a a a a ++---=.∴()()1120n n n n a a a a +++--=. …………………………5分 ∵ 0n a >,∴12n n a a +-=. …………………………6分 ∴数列{}n a 从第2项开始是以23a =为首项,公差为2的等差数列.……………7分 ∴()()322212n a n n n =+-=-≥. …………………………8分 ∵11a =适合上式,∴21n a n =-. …………………………9分 解法3:由已知及(1)得11a =,23a =,猜想21n a n =-. …………………………2分 下面用数学归纳法证明.① 当1n =,2时,由已知11211a ==⨯-,23a ==221⨯-,猜想成立. ………3分 ② 假设n k =()2k ≥时,猜想成立,即21k a k =-, …………………………4分由已知11k a +=,得()2114k k a S +-=, 故()2114k k a S --=.∴()()()22111144k k k k k a a S S a +----=-=. …………………………5分∴22211220k k k k a a a a ++---=.∴()()1120k kk k a a aa +++--=. …………………………6分∵10,0k k a a +>>,∴120k k a a +--=. …………………………7分 ∴()12212211k k a a k k +=+=-+=+-. …………………………8分 故当1n k =+时,猜想也成立.由①②知,猜想成立,即21n a n =-. …………………………9分 (3)解:由(2)知21n a n =-, ()21212n n n S n +-==.假设存在正整数k , 使k a , 21k S -, 4k a 成等比数列,则2214k k k S a a -=⋅. …………………………10分即()()()4212181k k k -=-⋅-. …………………………11分 ∵ k 为正整数, ∴ 210k -≠. ∴ ()32181k k -=-.∴ 328126181k k k k -+-=-.化简得 32460k k k --=. …………………………12分 ∵ 0k ≠,∴ 24610k k --=.解得6384k ±==, 与k 为正整数矛盾. ……………………13分 ∴ 不存在正整数k , 使k a , 21k S -, 4k a 成等比数列. …………………………14分20.(本小题满分14分)(本小题主要考查椭圆的方程、双曲线的方程、直线与圆锥曲线的位置关系等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力)(1)解法1: ∵ 双曲线222:12x C y -=的顶点为1(0)F ,20)F , …………1分∴ 椭圆1C 两焦点分别为1(0)F ,20)F .设椭圆1C 方程为12222=+by a x ()0a b >>,∵ 椭圆1C 过点A (1),∴ 1224a AF AF =+=,得2a =. ………………………2分∴ 2222b a =-=. ………………………3分∴ 椭圆1C 的方程为 22142x y +=. ………………………4分解法2: ∵ 双曲线222:12x C y -=的顶点为1(0)F ,20)F , ……………………1分∴ 椭圆1C 两焦点分别为1(0)F ,20)F .设椭圆1C 方程为12222=+by a x ()0a b >>,∵ 椭圆1C 过点A (1), ∴22211a b +=. ① ………………………2分 . ∵ 222a b =+, ② ………………………3分 由①②解得24a =, 22b =.∴ 椭圆1C 的方程为 22142x y +=. ………………………4分 (2)解法1:设点),(y x Q ,点),(11y x P ,由A (1)及椭圆1C 关于原点对称可得B 1)-,∴(1)AQ x y =-,11(1)AP x y =-,(1)BQ x y =+,11(1)BP x y =+.由 0AQ AP ⋅=, 得 11((1)(1)0x x y y +--=, ……………………5分即 11((1)(1)x x y y =---. ①同理, 由0BQ BP ⋅=, 得 11((1)(1)x x y y =-++. ② ……………6分①⨯②得 222211(2)(2)(1)(1)x x y y --=--. ③ ………………………7分由于点P 在椭圆1C 上, 则2211142x y +=,得221142x y =-, 代入③式得 2222112(1)(2)(1)(1)y x y y ---=--.当2110y -≠时,有2225x y +=,当2110y -=,则点(1)P -或P ,此时点Q 对应的坐标分别为或(1)- ,其坐标也满足方程2225x y +=. ………………………8分当点P 与点A 重合时,即点P (1),由②得 3y -,解方程组2225,3,x y y ⎧+=⎪⎨=-⎪⎩ 得点Q的坐标为)1-或2⎫-⎪⎪⎝⎭. 同理, 当点P 与点B 重合时,可得点Q的坐标为()或22⎛⎫- ⎪ ⎪⎝⎭.∴点Q 的轨迹方程为 2225x y +=,除去四个点)1-,22⎛⎫- ⎪ ⎪⎝⎭, (), 22⎛⎫- ⎪ ⎪⎝⎭. ………………………9分 解法2:设点),(y x Q ,点),(11y x P ,由A (1)及椭圆1C 关于原点对称可得B 1)-, ∵0AQ AP ⋅=,0BQ BP ⋅=, ∴AQ AP ⊥,BQ BP ⊥.1=-(1x ≠,① ……………………5分1=-(1x ≠. ② ……………………6分①⨯② 得 12222111122y y x x --⨯=--. (*) ………………………7分 ∵ 点P 在椭圆1C 上, ∴ 2211142x y +=,得221122x y =-, 代入(*)式得2212211112122x y x x --⨯=--,即2211122y x --⨯=-, 化简得 2225x y +=.若点(1)P -或P , 此时点Q对应的坐标分别为或(1)- ,其坐标也满足方程2225x y +=. ………………………8分当点P 与点A 重合时,即点P (1),由②得3y -,解方程组2225,3,x y y ⎧+=⎪⎨=-⎪⎩ 得点Q的坐标为)1-或2⎫-⎪⎪⎝⎭.同理, 当点P 与点B 重合时,可得点Q的坐标为()或2⎛⎫⎪⎪⎝⎭. ∴点Q 的轨迹方程为 2225x y +=,除去四个点)1-,22⎛⎫- ⎪ ⎪⎝⎭, (),22⎛⎫- ⎪ ⎪⎝⎭. ………………………9分 (3) 解法1:点Q (),x y 到直线:AB 0x =.△ABQ的面积为S =10分x ==………………………11分而222(2)42y x x =⨯⨯≤+(当且仅当2x =∴S =≤=2=. ……12分当且仅当2x =, 等号成立.由22225,x x y ⎧=⎪⎨⎪+=⎩解得,22,x y ⎧=⎪⎨⎪=⎩或22.x y ⎧=-⎪⎨⎪=-⎩………………………13分 ∴△ABQ的面积最大值为2, 此时,点Q的坐标为2⎫⎪⎪⎝⎭或2⎛⎫- ⎪ ⎪⎝⎭.…14分 解法2:由于AB =,故当点Q 到直线AB 的距离最大时,△ABQ 的面积最大. (1)0分 设与直线AB 平行的直线为0x m +=,由220,25,x m x y ⎧++=⎪⎨+=⎪⎩消去x ,得225250y c ++-=, 由()223220250m m ∆=--=,解得m =. ………………………11分若2m =,则2y =-,2x =-;若2m =-,则2y =,2x =.…12分 故当点Q的坐标为22⎛⎫ ⎪ ⎪⎝⎭或22⎛⎫-- ⎪ ⎪⎝⎭时,△ABQ 的面积最大,其值为122S AB ==. ………………………14分 21.(本小题满分14分)(本小题主要考查函数的导数、不等式等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力、抽象概括能力与创新意识) (1)解:∵()()2ln 12a f x x x x =++-,其定义域为()1,-+∞, ∴()()11111x ax a f x ax x x+-'=+-=++. …………………………1分 ① 当0a =时,()1xf x x'=-+,当x ∈()0,+∞时,()0f x '<, 则()f x 在区间()0,+∞上单调递减,此时,()()00f x f <=,不符合题意. …2分 ② 当01a <<时,令()0f x '=,得10x =,210ax a-=>, 当x ∈10a ,a -⎛⎫ ⎪⎝⎭时,()0f x '<,则()f x 在区间10a ,a -⎛⎫⎪⎝⎭上单调递减,此时,()()00f x f <=,不符合题意. …………………………3分③ 当1a =时,()21x f x x'=+,当x ∈()0,+∞时,()0f x '>,则()f x 在区间()0,+∞上单调递增,此时,()()00f x f >=,符合题意. ……4分 ④ 当1a >时,令()0f x '=,得10x =,210ax a-=<,当x ∈()0,+∞时,()0f x '>, 则()f x 在区间()0,+∞上单调递增,此时,()()00f x f >=,符合题意. ……5分 综上所述,a 的取值范围为[)1,+∞. …………………………6分 (2)证明:由(1)可知,当0a =时,()0f x <对()0,x ∈+∞都成立,即()ln 1x x +<对()0,x ∈+∞都成立. …………………………7分∴2222221212ln 1ln 1ln 1n nn n n n nn⎛⎫⎛⎫⎛⎫++++++<+++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.………………8分 即ln 2222121211112n n n n n n n n ⎡⎤++++⎛⎫⎛⎫⎛⎫+++<= ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 由于n ∈N *,则111111222221n n n +=+≤+=⨯. …………………………9分 ∴ln 222121111n n n n ⎡⎤⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. ∴ 22212111n n n n ⎛⎫⎛⎫⎛⎫+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭e <. …………………………10分 由(1)可知,当1a =时,()0f x >对()0,x ∈+∞都成立, 即()21ln 12x x x -<+对()0,x ∈+∞都成立. …………………………11分 ∴2222224442221211212ln 1ln 1ln 12n n n n nn n nn n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++-+++<++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.…………………………12分即()()()2422212111126ln 11122n n n n n n n n n n n ++⎡⎤⎢⎥+⎡⎤⎛⎫⎛⎫⎛⎫-<+++⎢⎥ ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎢⎥⎢⎥⎣⎦. 得323222643112ln 11112n n n n n n n n +--⎡⎤⎛⎫⎛⎫⎛⎫<+++ ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦由于n ∈N *,则()()32232333363316431611212122n n n n n n n n n n n+-+-+--=≥=. …………………………13分∴12<ln 22212111n n n n ⎡⎤⎛⎫⎛⎫⎛⎫+++ ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.∴22212111n n n n ⎛⎫⎛⎫⎛⎫<+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭. …………………………14分 22212111n n n n ⎛⎫⎛⎫⎛⎫<+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭e <.。
海珠区2015届高三理科综合一、单项选择题:本大题共16小题,每小题4分,共64分。
在每小题给出的四个选项中,只有一个选项符合题目要求,选对的得4分,选错或不答的得0分。
7.下列说法不正确的是 A.天然气作为化工原料主要用于合成氨和生产甲醇 B.甲醛的水溶液俗称福尔马林,具有杀菌、防腐性能 C.乙二醇是重要的化工原料,它可以用于配制化妆品,起保湿作用 D.医药中,常用酒精来消毒,是因为酒精能够使细菌蛋白质发生变性 8.在水溶液中能大量共存的一组离子是 A.NH4+、Ag+、PO43-、Cl-B. H+、I-、NO3-、Cl-C.NH4+、OH-、Cl-、Ba2+D. Mg2+、Na+、NO3-、SO42- 9.设NA为阿伏加德罗常数的数值,下列说法正确的是(N-14 O-16 C-12 H-1) A.常温常压下,46 g的NO2和N2O4混合气体含有的原子数为3NA B.标准状况下,22.4 L CH2Cl2中含有的氯原子数目为2NA C.16g CH4与18 g NH4+ 所含质子数相等 D.1molCu在足量硫蒸气中反应时转移2NA个电子 10.下列说法正确的是 A与铜质水龙头连接处的钢质水管不易发生腐蚀 B. 用电解法提取氯化铜废液中的铜,可以用碳棒连 接电源的正极,另一电极用铜片 C. 右图1中,接通开关时Zn腐蚀速率增大,Zn上放出气体的速率也增大 D右图2所示装置可发生反应的离子方程式为 Zn + 2H+=Zn2++ H2↑,且a、b电极不可能是同种材料 11.下列表述正确的是 A氧化铁是一种碱性氧化物,常用作红色油漆和涂料 B在医疗上碳酸钠、氢氧化铝均可用于治疗胃酸过多 CNa2O2与水反应,红热的Fe与水蒸气反应均能生成碱 D人造刚玉熔点很高,可用作高级耐火材料,主要成分是SiO2 12.室温下,下列溶液的离子浓度关系正确的是 A.pH=2的H2C2O4溶液与pH=12的NaOH溶液任意比例混合 c(Na+)+ c(H+)=c(OH-)+c( HC2O4-) B.NaHSO4溶液:c(H+)=c(SO42-)十c(OH-) C.Na2S溶液:c(Na+)>c(HS-)>c(OH-)>c(H2S)D.pH=2的盐酸与pH=12的氨水等体积混合,所得溶液中 c(Cl-)>c(H+)>c(NH4+)>c(OH-) 二、双项选择题:本大题共9小题,每小题6分,共54分.在每小题给出四个选项中,有两个选项符合题目要求,全部选对的得6分,只选1个且正确的得3分,有选错或不答的得0分. 22. 短周期元素R、T、Q、W在元素周期表中的相对位置如右下图所示,其中Q单质可制成半导体材料。
图17432109878试卷类型:A2015年广州市普通高中毕业班综合测试(一)数学(理科)2015.3 本试卷共4页,21小题, 满分150分.考试用时120分钟. 注意事项:1.答卷前,考生务必用2B 铅笔在“考生号”处填涂考生号。
用黑色字迹钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时,请先用2B 铅笔填涂选做题题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. ()()22221211236n n n n ++++++=()*n ∈N . 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知全集{}1,2,3,4,5U =, 集合{}3,4,5M =, {}1,2,5N =, 则集合{}1,2可以表示为 A .M N B .()U M N ð C .()U MN ð D .()()U U M N 痧2.已知向量()3,4a =,若5λ=a ,则实数λ的值为A .15 B .1 C .15± D .1± 3. 若某市8所中学参加中学生合唱比赛的得分用茎叶图表示(如图1),其中茎为十位数,叶为个位数,则这组数据的中位数和平均数分别是 A. 91, 91.5 B. 91, 92 C. 91.5, 91.5 D. 91.5, 924. 直线10x ay ++=与圆()2214x y +-=的位置关系是A. 相交B. 相切C. 相离D. 不能确定侧视图正视图5. 若直线3y x=上存在点(),x y满足约束条件40,280,,x yx yx m++>⎧⎪-+≥⎨⎪≤⎩则实数m的取值范围是A. ()1,-+∞ B. [)1,-+∞C. (),1-∞- D. (],1-∞-6. 已知某锥体的正视图和侧视图如图2,图2A. B. D.7. 已知a为实数,则1a≥是关于x的绝对值不等式1x x a+-≤有解的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8. 已知i是虚数单位,C是全体复数构成的集合,若映射:f C→R满足: 对任意12,z z C∈,以及任意λ∈R , 都有()()()()()121211f z z f z f zλλλλ+-=+-, 则称映射f具有性质P. 给出如下映射:①1:f C→R , ()1f z x y=-, z x y=+i(,x y∈R);②2:f C→R , ()22f z x y=-, z x y=+i(,x y∈R);③3:f C→R , ()32f z x y=+, z x y=+i(,x y∈R);其中, 具有性质P的映射的序号为A. ①②B. ①③C. ②③D. ①②③二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9. 已知tan2α=,则tan2α的值为.10. 已知e为自然对数的底数,若曲线y x=e x在点()1,e处的切线斜率为.11. 已知随机变量X服从正态分布()2,1N. 若()130.6826P X≤≤=,则()3P X>图3等于 . 12. 已知幂函数()223(m m f x xm --+=∈Z )为偶函数,且在区间()0,+∞上是单调增函数,则()2f 的值为 .13.已知,n k ∈N *,且k n ≤,k C k n n =C 11k n --,则可推出C 12n +C 23n +C 3n k ++C k n n ++C (n n n =C 01n -+C 11n -++C 11k n --++C 11)n n --12n n -=⋅, 由此,可推出C 122n +C 223n +C 32n k ++C 2k n n ++C n n = .(二)选做题(14~15题,考生只能从中选做一题) 14. (坐标系与参数方程选做题)在直角坐标系xOy 中,曲线1C 和2C 的参数方程分别为cos sin ,(cos sin x y θθθθθ=+⎧⎨=-⎩为参数)和2,(x t t y t=-⎧⎨=⎩为参数).以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,则曲线1C 与2C 的交点的极坐标...为 . 15. (几何证明选讲选做题)如图3,BC 是圆O 的一条弦,延长BC 至点E , 使得22BC CE ==,过E 作圆O 的切线,A 为切点,BAC ∠的平分线AD 交BC 于点D , 则DE 的长为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()()sin 0,06f x A x A πωω⎛⎫=+>> ⎪⎝⎭的图象在y 轴右侧的第一个最高点和第一个最低点的坐标分别为()02x ,和022x ,π⎛⎫+- ⎪⎝⎭. (1)求函数()f x 的解析式; (2)求0sin 4x π⎛⎫+ ⎪⎝⎭的值.图4OF ED C B A 图5FE PODB A袋子中装有大小相同的白球和红球共7个,从袋子中任取2个球都是白球的概率为17,每个球被取到的机会均等. 现从袋子中每次取1个球,如果取出的是白球则不再放回,设在取得红球之前已取出的白球个数为X . (1)求袋子中白球的个数; (2)求X 的分布列和数学期望.18. (本小题满分14分)如图4,在边长为4的菱形ABCD 中,60DAB ︒∠=,点E ,F 分别是边CD ,CB 的 中点,ACEF O =,沿EF 将△CEF 翻折到△PEF ,连接PA,PB,PD ,得到如图5的五棱锥P ABFED -,且PB =(1)求证:BD ⊥平面POA ;(2)求二面角--B AP O 的正切值.19. (本小题满分14分)已知数列{}n a 的各项均为正数,其前n 项和为n S ,且满足111,1n a a +==,n ∈N *.(1)求2a 的值;(2)求数列{}n a 的通项公式;(3)是否存在正整数k , 使k a , 21k S -, 4k a 成等比数列? 若存在, 求k 的值; 若不存在, 请说明理由.已知椭圆1C 的中心在坐标原点,两焦点分别为双曲线222:12x C y -=的顶点,直线0=x 与椭圆1C 交于A ,B 两点,且点A 的坐标为(1),点P 是椭圆1C 上异于点A ,B 的任意一点,点Q 满足0AQ AP ⋅=,0BQ BP ⋅=,且A ,B ,Q 三点不共线.(1) 求椭圆1C 的方程; (2) 求点Q 的轨迹方程;(3) 求ABQ ∆面积的最大值及此时点Q 的坐标.21. (本小题满分14分) 已知函数()()2ln 12a f x x x x =++-()0a ≥. (1)若()0f x >对()0,x ∈+∞都成立,求a 的取值范围;(2)已知e 为自然对数的底数,证明:∀n ∈N *22212111n n n n ⎛⎫⎛⎫⎛⎫<++⋅⋅⋅+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭e <.2015年广州市普通高中毕业班综合测试(一)数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共8小题,每小题5分,满分40分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题. 9. 43-10. 2e 11. 0.1587 12. 16 13. ()212n n n -+⋅14. 4π⎫⎪⎭15. 说明: 第14题答案可以是2,4k k ππ⎫+∈⎪⎭Z . 三、解答题:本大题共6小题,满分80分.16.(本小题满分12分)(本小题主要考查三角函数的图象与性质、三角两角和公式等等知识,考查化归与转化的数学思想方法,以及运算求解能力)(1)解:由题意可得2,A =, …………………………1分00222T x x ππ⎛⎫=+-= ⎪⎝⎭, …………………………3分 ∴.T π= …………………………4分 由,2πωπ=得2=ω, …………………………5分∴()2sin 26f x x π⎛⎫=+⎪⎝⎭. …………………………6分(2)解: ∵ 点()0,2x 是函数()2sin 26f x x π⎛⎫=+ ⎪⎝⎭在y 轴右侧的第一个最高点, ∴ 0262x ππ+=. …………………………7分∴ 06x π=. …………………………8分 ∴0sin 4x π⎛⎫+⎪⎝⎭sin 64ππ⎛⎫=+ ⎪⎝⎭…………………………9分 sincoscossin6464ππππ=+ …………………………10分12222=⨯+ …………………………11分4=. …………………………12分 17.(本小题满分12分)(本小题主要考查古典概型、解方程、随机变量的分布列与均值(数学期望)等知识,考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识)(1)解:设袋子中有n (n ∈N *)个白球,依题意得,22717n C C =,………………………1分即()1127672n n -=⨯, 化简得,260n n --=, …………………………2分解得,3n =或2n =-(舍去). …………………………3分 ∴袋子中有3个白球. …………………………4分 (2)解:由(1)得,袋子中有4个红球,3个白球. …………………………5分X 的可能取值为0,1,2,3, …………………………6分()407P X ==, ()3421767P X ==⨯=, ()3244276535P X ==⨯⨯=,()321413765435P X ==⨯⨯⨯=. ………………10分∴X 的分布列为:…………………………11分GH F EPODBA∴4241301237735355EX =⨯+⨯+⨯+⨯=. …………………………12分 18.(本小题满分14分)(本小题主要考查空间线面关系、二面角、空间向量及坐标运算等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) (1)证明:∵点E ,F 分别是边CD ,CB 的中点,∴BD ∥EF . …………………………1分 ∵菱形ABCD 的对角线互相垂直,∴BD AC ⊥. ∴EF AC ⊥. ∴EF AO ⊥,EF PO ⊥. …………………………2分 ∵AO ⊂平面POA ,PO ⊂平面POA ,AO PO O =, ∴EF ⊥平面POA . …………………………3分∴BD ⊥平面POA . …………………………4分 (2)解法1:设AO BD H =,连接BO , ∵60DAB ︒∠=, ∴△ABD 为等边三角形.∴4BD =,2BH =,HA =HO PO ==……5分 在R t △BHO中,BO在△PBO 中,22210+==BO PO PB ,∴PO BO ⊥. …………………………6分 ∵PO EF ⊥,EF BO O =,EF ⊂平面BFED ,BO ⊂平面BFED , ∴PO ⊥平面BFED . …………………………7分 过H 作⊥HG AP ,垂足为G ,连接BG ,由(1)知⊥BH 平面POA ,且⊂AP 平面POA , ∴⊥BH AP .∵=HG BH H ,⊂HG 平面BHG ,⊂BH 平面BHG ,∴⊥AP 平面BHG . …………………………8分 ∵⊂BG 平面BHG ,∴⊥AP BG . …………………………9分 ∴∠BGH 为二面角--B AP O 的平面角. …………………………10分 在Rt △POA中,AP在Rt △POA 和Rt △HGA 中,90,︒∠=∠=∠=∠POA HGA PAO HAG , ∴Rt △POA ~Rt △HGA . …………………………11分 ∴=PO PAHG HA.∴⋅===PO HA HG PA …………………………12分A在Rt △BHG中,tan ∠===BH BGH HG . ……………………13分 ∴二面角--B AP O…………………………14分 解法2:设AOBD H =,连接BO ,∵60DAB ︒∠=, ∴△ABD 为等边三角形.∴4BD =,2BH =,HA =HO PO ==………………………5分 在R t △BHO中,BO在△PBO 中,22210+==BO PO PB ,∴PO BO ⊥. …………………………6分 ∵PO EF ⊥,EF BO O =,EF ⊂平面BFED ,BO ⊂平面BFED , ∴PO ⊥平面BFED . …………………………7分 以O 为原点,OF 所在直线为x 轴,AO 所在直线为y 轴,OP 所在直线为z 轴, 建立空间直角坐标系-O xyz ,则()0,-A,()2,B,(P,()0,H .…………8分∴(=AP,()=AB . 设平面PAB 的法向量为=n (),,x y z ,由⊥n AP ,⊥n AB ,得0,20.⎧+=⎪⎨+=⎪⎩x 令1=y ,得3=-z,=x ∴平面PAB 的一个法向量为=n ()3-. 由(1)知平面PAO 的一个法向量为()2,0,0=-BH , ……………………11分 设二面角--B AP O 的平面角为θ, 则cos θ=cos ,n BH⋅=n BH nBH==………………………12分∴sin 13θ==sin tan cos 3θθθ==.………………………13分∴二面角--B AP O 的正切值为3…………………………14分 19.(本小题满分14分)(本小题主要考查等差数列、数列的前n 项和等知识,考查化归与转化的数学思想方法,以及运算求解能力和创新意识)(1)解:∵111,1n a a +==,∴2113a ===. …………………………1分(2)解法1:由11n a +=,得11n n S S +-=, …………………………2分故)211n S +=. …………………………3分∵0n a >,∴0n S >.1=. …………………………4分∴数列1=,公差为1的等差数列.()11n n =+-=. …………………………5分 ∴2n S n =. …………………………6分当2n ≥时,()221121n n n a S S n n n -=-=--=-, …………………………8分又11a =适合上式,∴21n a n =-. …………………………9分解法2:由11n a +=,得()2114n n a S +-=, …………………………2分 当2n ≥时,()2114n n a S --=, …………………………3分 ∴()()()22111144n n n n n a a S S a +----=-=. …………………………4分∴2211220n n n n a a a a ++---=.∴()()1120n n n n a a a a +++--=. …………………………5分 ∵ 0n a >,∴12n n a a +-=. …………………………6分 ∴数列{}n a 从第2项开始是以23a =为首项,公差为2的等差数列.……………7分 ∴()()322212n a n n n =+-=-≥. …………………………8分 ∵11a =适合上式,∴21n a n =-. …………………………9分 解法3:由已知及(1)得11a =,23a =,猜想21n a n =-. …………………………2分 下面用数学归纳法证明.① 当1n =,2时,由已知11211a ==⨯-,23a ==221⨯-,猜想成立. ………3分 ② 假设n k =()2k ≥时,猜想成立,即21k a k =-, …………………………4分由已知11k a +=,得()2114k k a S +-=, 故()2114k k a S --=.∴()()()22111144k k k k k a a S S a +----=-=. …………………………5分∴22211220k k k k a a a a ++---=.∴()()1120k kk k a a aa +++--=. …………………………6分∵10,0k k a a +>>,∴120k k a a +--=. …………………………7分 ∴()12212211k k a a k k +=+=-+=+-. …………………………8分 故当1n k =+时,猜想也成立.由①②知,猜想成立,即21n a n =-. …………………………9分 (3)解:由(2)知21n a n =-, ()21212n n n S n +-==.假设存在正整数k , 使k a , 21k S -, 4k a 成等比数列,则2214k k k S a a -=⋅. …………………………10分即()()()4212181k k k -=-⋅-. …………………………11分 ∵ k 为正整数, ∴ 210k -≠. ∴ ()32181k k -=-.∴ 328126181k k k k -+-=-.化简得 32460k k k --=. …………………………12分 ∵ 0k ≠,∴ 24610k k --=.解得6384k ±==, 与k 为正整数矛盾. ……………………13分 ∴ 不存在正整数k , 使k a , 21k S -, 4k a 成等比数列. …………………………14分20.(本小题满分14分)(本小题主要考查椭圆的方程、双曲线的方程、直线与圆锥曲线的位置关系等知识,考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力和运算求解能力)(1)解法1: ∵ 双曲线222:12x C y -=的顶点为1(0)F ,20)F , …………1分∴ 椭圆1C 两焦点分别为1(0)F ,20)F .设椭圆1C 方程为12222=+by a x ()0a b >>,∵ 椭圆1C 过点A (1),∴ 1224a AF AF =+=,得2a =. ………………………2分∴ 2222b a =-=. ………………………3分∴ 椭圆1C 的方程为 22142x y +=. ………………………4分解法2: ∵ 双曲线222:12x C y -=的顶点为1(0)F ,20)F , ……………………1分∴ 椭圆1C 两焦点分别为1(0)F ,20)F .设椭圆1C 方程为12222=+by a x ()0a b >>,∵ 椭圆1C 过点A (1), ∴22211a b +=. ① ………………………2分 . ∵ 222a b =+, ② ………………………3分 由①②解得24a =, 22b =.∴ 椭圆1C 的方程为 22142x y +=. ………………………4分 (2)解法1:设点),(y x Q ,点),(11y x P ,由A (1)及椭圆1C 关于原点对称可得B 1)-,∴(1)AQ x y =-,11(1)AP x y =-,(1)BQ x y =+,11(1)BP x y =+.由 0AQ AP ⋅=, 得 11((1)(1)0x x y y +--=, ……………………5分即 11((1)(1)x x y y =---. ①同理, 由0BQ BP ⋅=, 得 11((1)(1)x x y y =-++. ② ……………6分①⨯②得 222211(2)(2)(1)(1)x x y y --=--. ③ ………………………7分由于点P 在椭圆1C 上, 则2211142x y +=,得221142x y =-, 代入③式得 2222112(1)(2)(1)(1)y x y y ---=--.当2110y -≠时,有2225x y +=,当2110y -=,则点(1)P -或P ,此时点Q 对应的坐标分别为或(1)- ,其坐标也满足方程2225x y +=. ………………………8分当点P 与点A 重合时,即点P (1),由②得 3y -,解方程组2225,3,x y y ⎧+=⎪⎨=-⎪⎩ 得点Q的坐标为)1-或2⎫-⎪⎪⎝⎭. 同理, 当点P 与点B 重合时,可得点Q的坐标为()或22⎛⎫- ⎪ ⎪⎝⎭.∴点Q 的轨迹方程为 2225x y +=,除去四个点)1-,22⎛⎫- ⎪ ⎪⎝⎭, (), 22⎛⎫- ⎪ ⎪⎝⎭. ………………………9分 解法2:设点),(y x Q ,点),(11y x P ,由A (1)及椭圆1C 关于原点对称可得B 1)-, ∵0AQ AP ⋅=,0BQ BP ⋅=, ∴AQ AP ⊥,BQ BP ⊥.1=-(1x ≠,① ……………………5分1=-(1x ≠. ② ……………………6分①⨯② 得 12222111122y y x x --⨯=--. (*) ………………………7分 ∵ 点P 在椭圆1C 上, ∴ 2211142x y +=,得221122x y =-, 代入(*)式得2212211112122x y x x --⨯=--,即2211122y x --⨯=-, 化简得 2225x y +=.若点(1)P -或P , 此时点Q对应的坐标分别为或(1)- ,其坐标也满足方程2225x y +=. ………………………8分当点P 与点A 重合时,即点P (1),由②得3y -,解方程组2225,3,x y y ⎧+=⎪⎨=-⎪⎩ 得点Q的坐标为)1-或2⎫-⎪⎪⎝⎭.同理, 当点P 与点B 重合时,可得点Q的坐标为()或2⎛⎫⎪⎪⎝⎭. ∴点Q 的轨迹方程为 2225x y +=,除去四个点)1-,22⎛⎫- ⎪ ⎪⎝⎭, (),22⎛⎫- ⎪ ⎪⎝⎭. ………………………9分 (3) 解法1:点Q (),x y 到直线:AB 0x =.△ABQ的面积为S =10分x ==………………………11分而222(2)42y x x =⨯⨯≤+(当且仅当2x =∴S =≤=2=. ……12分当且仅当2x =, 等号成立.由22225,x x y ⎧=⎪⎨⎪+=⎩解得,22,x y ⎧=⎪⎨⎪=⎩或22.x y ⎧=-⎪⎨⎪=-⎩………………………13分 ∴△ABQ的面积最大值为2, 此时,点Q的坐标为2⎫⎪⎪⎝⎭或2⎛⎫- ⎪ ⎪⎝⎭.…14分 解法2:由于AB =,故当点Q 到直线AB 的距离最大时,△ABQ 的面积最大. (1)0分 设与直线AB 平行的直线为0x m +=,由220,25,x m x y ⎧++=⎪⎨+=⎪⎩消去x ,得225250y c ++-=, 由()223220250m m ∆=--=,解得m =. ………………………11分若2m =,则2y =-,2x =-;若2m =-,则2y =,2x =.…12分 故当点Q的坐标为22⎛⎫ ⎪ ⎪⎝⎭或22⎛⎫-- ⎪ ⎪⎝⎭时,△ABQ 的面积最大,其值为122S AB ==. ………………………14分 21.(本小题满分14分)(本小题主要考查函数的导数、不等式等知识,考查数形结合、化归与转化、分类与讨论的数学思想方法,以及运算求解能力、抽象概括能力与创新意识) (1)解:∵()()2ln 12a f x x x x =++-,其定义域为()1,-+∞, ∴()()11111x ax a f x ax x x+-'=+-=++. …………………………1分 ① 当0a =时,()1xf x x'=-+,当x ∈()0,+∞时,()0f x '<, 则()f x 在区间()0,+∞上单调递减,此时,()()00f x f <=,不符合题意. …2分 ② 当01a <<时,令()0f x '=,得10x =,210ax a-=>, 当x ∈10a ,a -⎛⎫ ⎪⎝⎭时,()0f x '<,则()f x 在区间10a ,a -⎛⎫⎪⎝⎭上单调递减,此时,()()00f x f <=,不符合题意. …………………………3分③ 当1a =时,()21x f x x'=+,当x ∈()0,+∞时,()0f x '>,则()f x 在区间()0,+∞上单调递增,此时,()()00f x f >=,符合题意. ……4分 ④ 当1a >时,令()0f x '=,得10x =,210ax a-=<,当x ∈()0,+∞时,()0f x '>, 则()f x 在区间()0,+∞上单调递增,此时,()()00f x f >=,符合题意. ……5分 综上所述,a 的取值范围为[)1,+∞. …………………………6分 (2)证明:由(1)可知,当0a =时,()0f x <对()0,x ∈+∞都成立,即()ln 1x x +<对()0,x ∈+∞都成立. …………………………7分∴2222221212ln 1ln 1ln 1n nn n n n nn⎛⎫⎛⎫⎛⎫++++++<+++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.………………8分 即ln 2222121211112n n n n n n n n ⎡⎤++++⎛⎫⎛⎫⎛⎫+++<= ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. 由于n ∈N *,则111111222221n n n +=+≤+=⨯. …………………………9分 ∴ln 222121111n n n n ⎡⎤⎛⎫⎛⎫⎛⎫+++< ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦. ∴ 22212111n n n n ⎛⎫⎛⎫⎛⎫+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭e <. …………………………10分 由(1)可知,当1a =时,()0f x >对()0,x ∈+∞都成立, 即()21ln 12x x x -<+对()0,x ∈+∞都成立. …………………………11分 ∴2222224442221211212ln 1ln 1ln 12n n n n nn n nn n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++-+++<++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.…………………………12分即()()()2422212111126ln 11122n n n n n n n n n n n ++⎡⎤⎢⎥+⎡⎤⎛⎫⎛⎫⎛⎫-<+++⎢⎥ ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎢⎥⎢⎥⎣⎦. 得323222643112ln 11112n n n n n n n n +--⎡⎤⎛⎫⎛⎫⎛⎫<+++ ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦由于n ∈N *,则()()32232333363316431611212122n n n n n n n n n n n+-+-+--=≥=. …………………………13分∴12<ln 22212111n n n n ⎡⎤⎛⎫⎛⎫⎛⎫+++ ⎪⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.∴22212111n n n n ⎛⎫⎛⎫⎛⎫<+++ ⎪⎪⎪⎝⎭⎝⎭⎝⎭. …………………………14分 22212111n n n n ⎛⎫⎛⎫⎛⎫<+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭e <.。
2015届高三摸底考试数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分。
在每小题给出的四个选项中,只有一项是符合题意要求的。
1设集合A={2|320x x x-+=},则满足A B={0,1,2}的集合B的个数是( )A 1B 3C 4D 62.i为虚数单位,复平面内表示复数z=(1+i)(2+i)的点在( )A.第一象限B.第二象限C.第三象限D.第四象限3.“1a=”是“函数axsinaxcosy22-=的最小正周期为π”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件4.右图是一容量为100的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为()A.11B.11.5C.12D.12.55.执行上图所示的程序框图,则输出的结果是()A.5B.7C.9D.116、由曲线23,y x y x==围成的封闭图形的面积为()A.712B.14C.13D.1127.已知O是坐标原点,点()1,0A-,若()y xM,为平面区域⎪⎩⎪⎨⎧≤≤≥+212yxyx上的一个动点,则OA OM+的取值范围是()A []51,B []52,C[]21,D[]50,8.对于集合A,如果定义了一种运算“⊕”,使得集合A中的元素间满足下列4个条件:(ⅰ),a b A∀∈,都有a b A⊕∈;(ⅱ)e A∃∈,使得对a A∀∈,都有e a a e a⊕=⊕=;(ⅲ)a A∀∈,a A'∃∈,使得a a a a e''⊕=⊕=;宝安中学,潮阳一中,桂城中学,南海中学,普宁二中,中山一中,仲元中学(ⅳ),,a b c A ∀∈,都有()()a b c a b c ⊕⊕=⊕⊕,则称集合A 对于运算“⊕”构成“对称集”.下面给出三个集合及相应的运算“⊕”: ①{}A =整数,运算“⊕”为普通加法;②{}A =复数,运算“⊕”为普通减法; ③{}A =正实数,运算“⊕”为普通乘法.其中可以构成“对称集”的有( ) A ①②B ①③C ②③D ①②③二、填空题:本题共7小题,考生作答6小题,每小题5分,共30分 (一)必做题(9~13题)9. 若a x f x x lg 22)(-+=是奇函数,则实数a =_________。
广东省广州市海珠区2015届高三上学期8月摸底数学试卷(文科)一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M={x|x2=1},N={1,2},则M∪N=()A.{1,2} B.{﹣1,1,2} C.{﹣1,2} D.{1}2.(5分)设复数z1,z2在复平面内的对应点关于实轴对称,z1=1+i,则z1z2=()A.2 B.﹣2 C.1+i D.1﹣i3.(5分)已知a=,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a4.(5分)若a∈R,则a=0是a(a﹣1)=0的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件5.(5分)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α6.(5分)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=()A.31 B.32 C.63 D.647.(5分)下列函数在其定义域上既是奇函数又是减函数的是()A.f(x)=x3B.f(x)=sinx C.f(x)=D.f(x)=﹣x|x| 8.(5分)由不等式组确定的平面区域记为Ω1,不等式组确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为()A.B.C.D.9.(5分)已知抛物线y2=4x与双曲线=1(a>0,b>0)有相同的焦点F,点A是两曲线的一个交点,且AF⊥x轴,则双曲线的离心率为()A.+2 B.+1 C.+1 D.+110.(5分)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.二、填空题:本大题共3小题,考生作答4小题,每小题5分,满分15分.(一)必做题(11~13题)11.(5分)已知某程序的框图如图,若分别输入的x的值为0,1,2,执行该程序后,输出的y的值分别为a,b,c,则a+b+c=.12.(5分)在△ABC中,角A,B,C所对边分别为a,b,c,且,B=45°,面积S=2,则b等于.(5分)如图,对大于或等于2的正整数m的n次幂进行如下方式的“分裂”(其中m,n∈N*):13.例如72的“分裂”中最小的数是1,最大的数是13;若m3的“分裂”中最小的数是241,则最大的数是.(二)选做题(14、15题,考生只能从中选做一题)【坐标系与参数方程选做题】14.(5分)在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点M的极坐标为(4,),曲线C的参数方程为(α为参数).则点M 到曲线C上的点的距离的最小值为.【几何证明选讲选做题】15.如图,过圆O外一点P分别作圆的切线和割线交圆于A,B,且PB=9,C是圆上一点使得BC=4,∠BAC=∠APB,则AB=.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(12分)已知函数f(x)=2cos(﹣),x∈R.(1)求f(x)的单调递减区间;(2)若sinθ=,θ∈(,π),求f(4θ+π).17.(12分)为增强市民的环保意思,某市面向全市增招义务宣传志愿者.从符合条件的志愿者中随机抽取20名志愿者,其年龄频率分布直方图如图所示,其中年龄(岁)分成五组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45).得到的频率分布直方图(局部)如图所示.(1)求第4组的频率,并在图中补画直方图;(2)从20名志愿者中再选出年龄低于30岁的志愿者3名担任主要宣讲人,求这3名主要宣讲人的年龄在同一组的概率.18.(14分)如图,四棱锥P﹣ABCD中,侧面△ADE为等边三角形,底面BCDE是等腰梯形,且CD∥BE,DE=2,CD=4,∠CDE=60°,M为DE的中点,F为AC的中点,且AC=4.(1)求证:平面AED⊥平面BCD;(2)求证:FB∥平面ADE;(3)求四棱锥A﹣BCDE的体积.19.(14分)已知公差不为0的等差数列{a n}的前n项和为S n,若S5=25,且S1,S2,S4成等比数列.(1)求数列{a n}的通项公式;(2)求证:对一切正整数n,有++…+<.20.(14分)在平面直角坐标系xOy中,动点P到两点,的距离之和等于4,设点P的轨迹为曲线C,直线l过点E(﹣1,0)且与曲线C交于A,B两点.(1)求曲线C的轨迹方程;(2)是否存在△AOB面积的最大值,若存在,求出△AOB的面积;若不存在,说明理由.21.(14分)已知函数f(x)=x﹣1+(a∈R,e为自然对数的底数).(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(Ⅱ)求函数f(x)的极值;(Ⅲ)当a=1的值时,若直线l:y=kx﹣1与曲线y=f(x)没有公共点,求k的最大值.广东省广州市海珠区2015届高三上学期8月摸底数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M={x|x2=1},N={1,2},则M∪N=()A.{1,2} B.{﹣1,1,2} C.{﹣1,2} D.{1}考点:并集及其运算.专题:集合.分析:利用并集定义求解.解答:解:∵集合M={x|x2=1}={﹣1,1},N={1,2},∴M∪N={﹣1,1,2}.故选:B.点评:本题考查并集的求法,是基础题,解题时要认真审题.2.(5分)设复数z1,z2在复平面内的对应点关于实轴对称,z1=1+i,则z1z2=()A.2 B.﹣2 C.1+i D.1﹣i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的对称关系,求出复数z2,然后求解z1z2即可.解答:解:复数z1,z2在复平面内的对应点关于实轴对称,z1=1+i,所以z2=1﹣i,∴z1z2=(1+i)(1﹣i)=2.故选:A.点评:本题考查复数的代数形式的混合运算,复数的对称,考查计算能力.3.(5分)已知a=,b=log2,c=log,则()A.a>b>c B.a>c>b C.c>a>b D.c>b>a考点:对数的运算性质.专题:计算题;综合题.分析:利用指数式的运算性质得到0<a<1,由对数的运算性质得到b<0,c>1,则答案可求.解答:解:∵0<a=<20=1,b=log2<log21=0,c=log=log23>log22=1,∴c>a>b.故选:C.点评:本题考查指数的运算性质和对数的运算性质,在涉及比较两个数的大小关系时,有时借助于0、1这样的特殊值能起到事半功倍的效果,是基础题.4.(5分)若a∈R,则a=0是a(a﹣1)=0的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:由a(a﹣1)=0解得a=0或1.即可判断出.解答:解:由a(a﹣1)=0解得a=0或1.∴a=0是a(a﹣1)=0的充分而不必要条件.故选:A.点评:本题考查了充要条件的判定方法,属于基础题.5.(5分)已知m,n表示两条不同直线,α表示平面,下列说法正确的是()A.若m∥α,n∥α,则m∥n B.若m⊥α,n⊂α,则m⊥nC.若m⊥α,m⊥n,则n∥αD.若m∥α,m⊥n,则n⊥α考点:空间中直线与直线之间的位置关系.专题:空间位置关系与距离.分析:A.运用线面平行的性质,结合线线的位置关系,即可判断;B.运用线面垂直的性质,即可判断;C.运用线面垂直的性质,结合线线垂直和线面平行的位置即可判断;D.运用线面平行的性质和线面垂直的判定,即可判断.解答:解:A.若m∥α,n∥α,则m,n相交或平行或异面,故A错;B.若m⊥α,n⊂α,则m⊥n,故B正确;C.若m⊥α,m⊥n,则n∥α或n⊂α,故C错;D.若m∥α,m⊥n,则n∥α或n⊂α或n⊥α,故D错.故选B.点评:本题考查空间直线与平面的位置关系,考查直线与平面的平行、垂直的判断与性质,记熟这些定理是迅速解题的关键,注意观察空间的直线与平面的模型.6.(5分)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=()A.31 B.32 C.63 D.64考点:等比数列的前n项和.专题:等差数列与等比数列.分析:由等比数列的性质可得S2,S4﹣S2,S6﹣S4成等比数列,代入数据计算可得.解答:解:S2=a1+a2,S4﹣S2=a3+a4=(a1+a2)q2,S6﹣S4=a5+a6=(a1+a2)q4,所以S2,S4﹣S2,S6﹣S4成等比数列,即3,12,S6﹣15成等比数列,可得122=3(S6﹣15),解得S6=63故选:C点评:本题考查等比数列的性质,得出S2,S4﹣S2,S6﹣S4成等比数列是解决问题的关键,属基础题.7.(5分)下列函数在其定义域上既是奇函数又是减函数的是()A.f(x)=x3B.f(x)=sinx C.f(x)=D.f(x)=﹣x|x|考点:函数奇偶性的判断;函数单调性的判断与证明.专题:函数的性质及应用.分析:逐一判断四个答案中,给定函数的奇偶性和单调性,可得结论.解答:解:A中,f(x)=x3是奇函数,但不是减函数,B中,f(x)=sinx是奇函数,但不是减函数,C中,f(x)=是奇函数,但不是减函数,D中,f(x)=﹣x|x|=,既是奇函数又是减函数,故选:D点评:本题考查的知识点是函数奇偶性的判断,函数单调性的判断与证明,熟练掌握各基本初等函数的图象和性质是解答的关键.8.(5分)由不等式组确定的平面区域记为Ω1,不等式组确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为()A.B.C.D.考点:几何概型;简单线性规划.专题:概率与统计.分析:作出不等式组对应的平面区域,求出对应的面积,利用几何槪型的概率公式即可得到结论.解答:解:平面区域Ω1,为三角形AOB,面积为,平面区域Ω2,为△AOB内的四边形BDCO,其中C(0,1),由,解得,即D(,),则三角形ACD的面积S==,则四边形BDCO的面积S=,则在Ω1中随机取一点,则该点恰好在Ω2内的概率为,故选:D.点评:本题主要考查几何槪型的概率计算,利用线性规划的知识求出对应的区域和面积是解决本题的关键.9.(5分)已知抛物线y2=4x与双曲线=1(a>0,b>0)有相同的焦点F,点A是两曲线的一个交点,且AF⊥x轴,则双曲线的离心率为()A.+2 B.+1 C.+1 D.+1考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据抛物线和双曲线有相同的焦点求得c,根据AF⊥x轴可判断出|AF|的值和A的坐标,代入双曲线方程,求得离心率e.解答:解:∵抛物线的焦点和双曲线的焦点相同,∴c=1∵A是它们的一个公共点,且AF垂直x轴设A点的纵坐标大于0∴|AF|=2,∴A(1,2)∵点A在双曲线上∴∵c=1,b2=c2﹣a2∴a=﹣1∴e==1+故选:D.点评:本题主要考查关于双曲线的离心率的问题,属于中档题.10.(5分)已知菱形ABCD的边长为2,∠BAD=120°,点E、F分别在边BC、DC上,=λ,=μ,若•=1,•=﹣,则λ+μ=()A.B.C.D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:利用两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义由•=1,求得4λ+4μ﹣2λμ=3 ①;再由•=﹣,求得﹣λ﹣μ+λμ=﹣②.结合①②求得λ+μ的值.解答:解:由题意可得若•=(+)•(+)=+++=2×2×cos120°++λ•+λ•μ=﹣2+4μ+4λ+λμ×2×2×cos120°=4λ+4μ﹣2λμ﹣2=1,∴4λ+4μ﹣2λμ=3 ①.•=﹣•(﹣)==(1﹣λ)•(1﹣μ)=(1﹣λ)•(1﹣μ)=(1﹣λ)(1﹣μ)×2×2×cos120°=(1﹣λ﹣μ+λμ)(﹣2)=﹣,即﹣λ﹣μ+λμ=﹣②.由①②求得λ+μ=,故答案为:.点评:本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量的数量积的定义,属于中档题.二、填空题:本大题共3小题,考生作答4小题,每小题5分,满分15分.(一)必做题(11~13题)11.(5分)已知某程序的框图如图,若分别输入的x的值为0,1,2,执行该程序后,输出的y的值分别为a,b,c,则a+b+c=6.考点:选择结构.专题:图表型.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数的函数值,将x的值分别代入即得.解答:解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算分段函数的函数值.当x=0时,则y=4°=1;当x=1时,则y=1;当x=2时,则y=22=4;则a+b+c=1+1+4=6故答案为:6.点评:本题主要考查了选择结构.考程序输出值也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.12.(5分)在△ABC中,角A,B,C所对边分别为a,b,c,且,B=45°,面积S=2,则b等于5.考点:余弦定理;三等分角问题.专题:计算题;解三角形.分析:利用三角形的面积公式求出边a;利用三角形的余弦定理求出边b.解答:解:∵,B=45°,面积S=2,∴S=acsinB==2a=2.∴a=1由余弦定理得b2=a2+c2﹣2accosB=12+(4)2﹣2×1××=25∴b=5.故答案为:5.点评:本题考查三角形的面积公式:三角形的面积等于任意两边与它们夹角正弦的一半、考查利用三角形的余弦定理求边长.(5分)如图,对大于或等于2的正整数m的n次幂进行如下方式的“分裂”(其中m,n∈N*):13.例如72的“分裂”中最小的数是1,最大的数是13;若m3的“分裂”中最小的数是241,则最大的数是271.考点:归纳推理.专题:计算题;推理和证明.分析:从23到(m﹣1)3,正好用去从3开始的连续奇数共2+3+4+…+(m﹣1)=,在m3的“分拆”的最大数是m2+m﹣1,即可得出结论.解答:解:由题意,从23到(m﹣1)3,正好用去从3开始的连续奇数共2+3+4+…+(m﹣1)=个,即241=3+×2解得m=16或m=﹣15(舍去)在m3的“分拆”的最大数是m2+m﹣1,∴所求最大的数是271.故答案为:271.点评:本题考查归纳推理,求解的关键是根据归纳推理的原理归纳出结论,如本题是建立关于m的方程的方法,求出m的值.(二)选做题(14、15题,考生只能从中选做一题)【坐标系与参数方程选做题】14.(5分)在直角坐标平面内,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知点M的极坐标为(4,),曲线C的参数方程为(α为参数).则点M 到曲线C上的点的距离的最小值为4.考点:参数方程化成普通方程.专题:计算题;坐标系和参数方程.分析:利用x=ρcosθ,y=ρsinθ即可把点M的坐标化为直角坐标,进而即可求出直线OM 的方程;再把曲线C的参数方程化为化为普通方程,再利用|MA|﹣r即可求出最小值.解答:解:点M的直角坐标为(4,4),由曲线C的参数方程(α为参数),化成普通方程为:(x﹣1)2+y2=1,圆心为A(1,0),半径为r=1,由于点M在曲线C外,故点M到曲线C上的点的距离的最小值为|MA|﹣r=5﹣1=4.故答案为:4.点评:充分利用极坐标与普通方程的互化公式及点M到曲线(圆)C上的点的距离的最小值为|MA|﹣r是解题的关键.【几何证明选讲选做题】15.如图,过圆O外一点P分别作圆的切线和割线交圆于A,B,且PB=9,C是圆上一点使得BC=4,∠BAC=∠APB,则AB=6.考点:圆的切线的性质定理的证明.专题:选作题;立体几何.分析:根据同弧所对的圆周角与弦切角相等,得到∠C=∠BAP,根据所给的两个角相等,得到两个三角形相似,根据相似三角形对应边成比例,得到比例式,代入已知的长度,求出结果.解答:解:∵∠BAC=∠APB,∠C=∠B AP,∴△PAB∽△ACB,∴∴AB2=PB•BC=9×4=36,∴AB=6,故答案为:6.点评:本题考查圆的切线的性质的应用,考查同弧所对的圆周角等于弦切角,考查三角形相似的判断和性质,本题是一个综合题目.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(12分)已知函数f(x)=2cos(﹣),x∈R.(1)求f(x)的单调递减区间;(2)若sinθ=,θ∈(,π),求f(4θ+π).考点:余弦函数的图象;运用诱导公式化简求值.专题:三角函数的图像与性质.分析:(1)令2kπ≤﹣≤2kπ+π,k∈z,求得x的范围,可得函数的减区间.(2)由sinθ=,θ∈(,π),求得cosθ、sin2θ、cos2θ的值,再根据f(4θ+π)=2cos[2θ+﹣]=2cos(2θ+),利用两角和的余弦公式,计算求得结果.解答:解:(1)对于函数f(x)=2cos(﹣),令2kπ≤﹣≤2kπ+π,k∈Z,求得4kπ+≤x≤4kπ+,故函数的减区间为[4kπ+,4kπ+],k∈Z.(2)∵sinθ=,θ∈(,π),∴cosθ=﹣,∴sin2θ=2sinθcosθ=﹣,cos2θ=1﹣2sin2θ=1﹣2×=.∴f(4θ+π)=2cos[2θ+﹣]=2cos(2θ+)=2cos2θcos﹣2sin2θsin=2××﹣2×(﹣)×=.点评:本题主要考查余弦函数的单调性,同角三角函数的基本关系、二倍角公式、两角和差的余弦公式的应用,属于基础题.17.(12分)为增强市民的环保意思,某市面向全市增招义务宣传志愿者.从符合条件的志愿者中随机抽取20名志愿者,其年龄频率分布直方图如图所示,其中年龄(岁)分成五组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45).得到的频率分布直方图(局部)如图所示.(1)求第4组的频率,并在图中补画直方图;(2)从20名志愿者中再选出年龄低于30岁的志愿者3名担任主要宣讲人,求这3名主要宣讲人的年龄在同一组的概率.考点:列举法计算基本事件数及事件发生的概率;频率分布直方图.专题:概率与统计.分析:(1)由直方图求出除[35,40)外的频率,得到在[35,40)内的频率,(2)求出用分层抽样方法抽取的20名中年龄低于30岁的人数,利用列举法求出基本事件总数和恰有3名在同一组的事件数,然后由古典概型概率计算公式求解.解答:解:(1)∵小矩形的面积等于频率,∴除[35,40)外的频率和为0.70.∴第4组的频率:1﹣0.70=0.30(2)用分层抽样的方法,则其中“年龄低于30岁”的人有5名,其中第一组有1人,第二组有4人,分别用a表示第一组的一人,用A,B,C,D表示第二组的4人,则任选三人总的事件有aAB,aAC,aAD,aBC,aBD,aCD,ABC,ABD,ACD,BCD,共10种,其中在同一组的有,ABC,ABD,ACD,BCD,共4种,故这3名主要宣讲人的年龄在同一组的概率P=点评:本题考查了频率分布直方图,考查了古典概型及其概率计算公式,是基础的计算题.18.(14分)如图,四棱锥P﹣ABCD中,侧面△ADE为等边三角形,底面BCDE是等腰梯形,且CD∥BE,DE=2,CD=4,∠CDE=60°,M为DE的中点,F为AC的中点,且AC=4.(1)求证:平面AED⊥平面BCD;(2)求证:FB∥平面ADE;(3)求四棱锥A﹣BCDE的体积.考点:棱柱、棱锥、棱台的体积;直线与平面平行的判定;平面与平面垂直的判定.专题:空间位置关系与距离.分析:(1)首先根据直线与平面垂直的判定定理证明AM⊥平面BCD,然后根据平面垂直的判定定理证明平面ADE⊥平面BCD.(2)取DC中点N,首先证明FN∥平面ADE,然后再证明BN∥平面ADE,再根据平面与平面平行的判定定理证明平面ADE∥平面FNB,最后由面面平行的性质证明FB∥平面ADE.(3)由AM⊥平面BCD,AM=,由此能求出四棱锥A﹣BCDE的体积.解答:(1)证明:∵△ADE是等边三角形,DE=2,M是DE的中点,∴AM⊥DE,AM=,∵底面BCDE是等腰梯形,且CD∥BE,DE=2,CD=4,∠CDE=60°,M为DE的中点,F为AC的中点,且AC=4∴在△DMC中,DM=1,MC2=16+1﹣2×4×1×cos60°=13,即MC=,在△AMC中,AM2+MC2=3+13=16=AC2,∴AM⊥MC,又AM⊥DE,MC∩DE=M,∴AM⊥平面BCD,∵AM⊂平面ADE,∴平面ADE⊥平面BCD.(2)证明:取DC的中点N,连结FN,NB,∵F,N分别是AC,DC的中点,∴FN∥AD,∵FN不包含于平面ADE,AD⊂平面ADE,∴FN∥平面ADE,∵N是DC的中点,∴BC=NC=2,又∠CDE=60°,∴△BCN是等边三角形,∴BN∥DE,∵FN∩BN=N,∴平面ADE∥平面FNB,∵FB⊆平面FNB,∴FB∥平面ADE.(3)解:由(1)知AM⊥平面BCD,AM=,∵底面BCDE是等腰梯形,且CD∥BE,DE=2,CD=4,∠CDE=60°,∴BE=4﹣1﹣1=2,等腰梯形BCDE的高为,∴四棱锥A﹣BCDE的体积:V===3.点评:本题考查平面与平面垂直的证明,考查直线与平面平行的证明,考查四棱锥的体积的求法,解题时要认真审题,注意空间思维能力的培养.19.(14分)已知公差不为0的等差数列{a n}的前n项和为S n,若S5=25,且S1,S2,S4成等比数列.(1)求数列{a n}的通项公式;(2)求证:对一切正整数n,有++…+<.考点:数列与不等式的综合;数列的求和.专题:等差数列与等比数列;不等式的解法及应用.分析:(1)设等差数列{a n}的首项为a1,公差为d,由题意列方程组求得首项和公差,则数列{a n}的通项公式可求;(2)由(1)中求得的通项公式得到,代入有++…+整理得答案.解答:(1)解:设等差数列{a n}的首项为a1,公差为d(d≠0),由S5=25,且S1,S2,S4成等比数列,得,解得:或.∵d≠0,∴,则a n=1+2(n﹣1)=2n﹣1;(2)证明:∵a n=2n﹣1,∴,∴++…+==<.点评:本题是数列与不等式综合题,考查了等差数列的通项公式,考查了裂项相消法求数列的和,训练了放缩法证明数列不等式,是中档题.20.(14分)在平面直角坐标系xOy中,动点P到两点,的距离之和等于4,设点P的轨迹为曲线C,直线l过点E(﹣1,0)且与曲线C交于A,B两点.(1)求曲线C的轨迹方程;(2)是否存在△AOB面积的最大值,若存在,求出△AOB的面积;若不存在,说明理由.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:综合题;圆锥曲线的定义、性质与方程.分析:(1)由椭圆定义可知,点P的轨迹C是以,为焦点,长半轴长为2的椭圆,由此能求出曲线C的方程.(2)存在△AOB面积的最大值.由直线l过点E(﹣1,0),设直线l的方程为 x=my﹣1,由,得(m2+4)y2﹣2my﹣3=0.由△=(2m)2+12(m2+4)>0.设A(x1,y1),B(x2,y2).解得,由此能求出S△AOB的最大值.解答:解:(1)由椭圆定义可知,点P的轨迹C是以,为焦点,长半轴长为2的椭圆.…(3分)故曲线C的方程为.…(5分)(2)存在△AOB面积的最大值.…(6分)因为直线l过点E(﹣1,0),设直线l的方程为 x=my﹣1或y=0(舍).则整理得(m2+4)y2﹣2my﹣3=0.…(7分)由△=(2m)2+12(m2+4)>0.设A(x1,y1),B(x2,y2).解得,.则.因为=.…(10分)设,,.则g(t)在区间上为增函数.所以.所以,当且仅当m=0时取等号,即.所以S△AOB的最大值为.…(13分)点评:本题考查曲线的轨迹方程的求法,考查三角形的面积的最大值的求法,解题时要认真审题,注意等价转化思想的合理运用.21.(14分)已知函数f(x)=x﹣1+(a∈R,e为自然对数的底数).(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(Ⅱ)求函数f(x)的极值;(Ⅲ)当a=1的值时,若直线l:y=kx﹣1与曲线y=f(x)没有公共点,求k的最大值.考点:利用导数研究函数的极值;利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:(Ⅰ)依题意,f′(1)=0,从而可求得a的值;(Ⅱ)f′(x)=1﹣,分①a≤0时②a>0讨论,可知f(x)在∈(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,从而可求其极值;(Ⅲ)令g(x)=f(x)﹣(kx﹣1)=(1﹣k)x+,则直线l:y=kx﹣1与曲线y=f(x)没有公共点⇔方程g(x)=0在R上没有实数解,分k>1与k≤1讨论即可得答案.解答:解:(Ⅰ)由f(x)=x﹣1+,得f′(x)=1﹣,又曲线y=f(x)在点(1,f(1))处的切线平行于x轴,∴f′(1)=0,即1﹣=0,解得a=e.(Ⅱ)f′(x)=1﹣,①当a≤0时,f′(x)>0,f(x)为(﹣∞,+∞)上的增函数,所以f(x)无极值;②当a>0时,令f′(x)=0,得e x=a,x=lna,x∈(﹣∞,lna),f′(x)<0;x∈(lna,+∞),f′(x)>0;∴f(x)在∈(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,故f(x)在x=lna处取到极小值,且极小值为f(lna)=lna,无极大值.综上,当当a≤0时,f(x)无极值;当a>0时,f(x)在x=lna处取到极小值lna,无极大值.(Ⅲ)当a=1时,f(x)=x﹣1+,令g(x)=f(x)﹣(kx﹣1)=(1﹣k)x+,则直线l:y=kx﹣1与曲线y=f(x)没有公共点,等价于方程g(x)=0在R上没有实数解.假设k>1,此时g(0)=1>0,g()=﹣1+<0,又函数g(x)的图象连续不断,由零点存在定理可知g(x)=0在R上至少有一解,与“方程g(x)=0在R上没有实数解”矛盾,故k≤1.又k=1时,g(x)=>0,知方程g(x)=0在R上没有实数解,所以k的最大值为1.点评:本题考查利用导数研究函数的极值,考查利用导数研究曲线上某点切线方程,突出分类讨论思想与等价转化思想的综合运用,属于中档题.。
试卷类型:A2015年广州市高考模拟考试数 学(理科) 2015.1本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用2B 铅笔在答题卡上的相应位置填涂考生号.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须填写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号(或题组号)对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,按要求交回试卷和答题卡.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知i 为虚数单位,复数对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 2. 已知集合,,则A. B. C. D. 3.设向量,, 若方向相反, 则实数的值是A .B .C .D . 4.一算法的程序框图如图1,若输出的, 则输入的的值可能为A .B .C .D . 5. 将函数的图象向左平移个单位,再向上 平移个单位,所得图象的函数解析式是 A . B . C . D .6. 用, ,表示空间中三条不同的直线,表示平面, 给出下列命题: ① 若, , 则∥; ② 若∥,∥, 则∥; ③ 若∥,∥, 则∥; ④ 若, , 则∥. 其中真命题的序号是A .① ②B .② ③C .① ④D .② ④7.已知双曲线的左,右焦点分别为,则△的周长为A .B .C .D .8. 已知映射():(,)0,0f P m n P m n '→≥≥.设点,,点是线段上一动点,.当点在线段上从点开始运动到点结束时,点的对应点所经过的路线长度为a a a a aD CA.B.C.D.二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9. 不等式的解集是.10. 已知数列是等差数列,且34512a a a++=,则的值为.11. 在平面直角坐标系中,设不等式组所表示的平面区域是,从区域中随机取点,则的概率是.12. 由,,,…,这十个数字组成的无重复数字的四位数中,十位数字与千位数字之差的绝对值等于的四位数的个数是.13. 已知函数, 则12340292015201520152015f f f f⎛⎫⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的值为.(二)选做题(14~15题,考生只能从中选做一题)14.(几何证明选讲选做题)如图2,圆的直径,直线与圆相切于点,于点D,若,设,则______.15.(坐标系与参数方程选讲选做题)图2在极坐标系中,设曲线与的交点分别为,,则线段的垂直平分线的极坐标方程为.三、解答题:本大题共6小题,满分80分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)已知函数R,是函数的一个零点.(1)求的值,并求函数的单调递增区间;(2)若,且,,求的值.17.(本小题满分12分)广州某商场根据以往某种商品的销售记录,绘制了日销售量的频率分布表(如表)和频率分布直方图(如图).日销售量/个表1将日销售量在各组的频率作为概率,并假设每天的销售量相互独立. (1)求,的值.(2)求在未来连续3天里,有连续..2天的日销售量都高于100个且另1天的日销售量不高于50 个的概率;(3)用表示在未来3天里日销售量高于100个的天数,求随机变量的分布列和数学期望.18.(本小题满分14分)如图,四边形是正方形,△与△均是以为直角顶点的等腰直角三角形, 点是的中点,点是边上的任意一点. (1)求证:;(2)求二面角的平面角的正弦值.19.(本小题满分14分) 已知数列的前项和满足:,为常数,且,. (1)求数列的通项公式;(2)若,设,且数列的前项和为,求证:.20.(本小题满分14分)已知椭圆()2222:10x y C a b a b+=>>的离心率为,且经过点.圆.(1)求椭圆的方程;(2)若直线与椭圆C有且只有一个公共点,且与圆相交于两点,问是否成立?请说明理由.21.(本小题满分14分)已知函数,R .(1)讨论函数的单调性;(2)若函数有两个极值点, , 且, 求的取值范围;(3)在(2)的条件下, 证明:.。
广州市2015年高三级调研考试数 学(理科) 2015.1本试卷共4页,21小题,满分150分.考试用时120分钟.一、选择题:本大题共8小题,每小题5分,满分40分. 1. 已知i 为虚数单位,复数z =()12i i +对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 2. 已知集合{}|11M x x =-<<,{|N x y ==,则MN =( )A. {}|01x x <<B. {}|01x x ≤<C. {}|0x x ≥D. {}|10x x -<≤ 3.设向量(,1)x =a ,(4,)x =b , 若,a b 方向相反, 则实数x 的值是( ) A .0 B .2± C .2 D .2- 4.一算法的程序框图如图1,若输出的12y =, 则输入的x 的值可能为( )A .1-B .0C .1D .55. 将函数sin(2)6y x π=+的图象向左平移6π再向上平移1个单位,所得图象的函数解析式是( A .22cos y x =B .22sin y x =C .1sin(2)3y x π=++ D .cos2y x =6. 用a ,b ,c 表示空间中三条不同的直线, γ表示平面, 给出下列命题: ① 若a b ⊥, b c ⊥, 则a ∥c ; ② 若a ∥b , a ∥c , 则b ∥c ; ③ 若a ∥γ, b ∥γ, 则a ∥b ;④ 若a ⊥γ, b ⊥γ, 则a ∥b . 其中真命题的序号是( ) A .① ② B .② ③ C .① ④ D .②④ 图1 7. 已知双曲线22:13x C y -=的左,右焦点分别为1F ,2F ,过点2F 的直线与双曲线C 的右支相交于P ,Q 两点,且点P 的横坐标为2,则△1PFQ 的周长为( )A .B .CD .DC8.已知映射():(,)0,0f P m n P m n '→≥≥.设点()3,1A ,()2,2B ,点M 是线段AB 上一动点,:f M M '→.当点M 在线段AB 上从点A 开始运动到点B 结束时,点M 的对应点M '所经过的路线长度为( ) A .12π B .6π C . 4π D . 3π二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9. 不等式212x x ->+的解集是 .10. 已知数列{}n a 是等差数列,且34512a a a ++=,则1237a a a a ++++的值为 .11. 在平面直角坐标系xOy 中,设不等式组11,02x y -≤≤⎧⎨≤≤⎩所表示的平面区域是W ,从区域W 中随机取点(),M x y ,则2OM ≤的概率是 .12. 由0,1,2,…,9这十个数字组成的无重复数字的四位数中,十位数字与千位数字 之差的绝对值等于7的四位数的个数是 . 13. 已知函数()sin 3f x x x =+π-, 则1234029()()()()2015201520152015f f f f ++++的 值为 .(二)选做题(14~15题,考生只能从中选做一题)14.(几何证明选讲选做题)如图2,圆O 的直径9AB =直线CE 与圆O 相切于点C ,AD CE ⊥于点D ,若1AD =,设ABC θ∠=,则sin θ=______.15.(坐标系与参数方程选讲选做题) 图2 在极坐标系中,设曲线1:2sin C ρθ=与2:2cos C ρθ=的交点分别为A ,B , 则线段AB 的垂直平分线的极坐标方程为 .三、解答题: 本大题共6小题,满分80分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知函数()sin cos f x x a x =+(x ∈R ),4π是函数()f x 的一个零点. (1)求a 的值,并求函数()f x 的单调递增区间;(2)若α,(0,)2βπ∈,且()4f απ+=,3()4f βπ+=,求()sin αβ+的值.图3日销售量/个a a a a a EFDCBAP17.(本小题满分12分)广州某商场根据以往某种商品的销售记录,绘制了日销售量的频率分布表(如表1)和频率分布直方图(如图3).表1将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立. (1)求1a ,3a 的值.(2)求在未来连续3天里,有连续..2天的日销售量都高于100个且另1天的日销售量不高于50个的概率;(3)用X 表示在未来3天里日销售量高于100个的天数,求随机变量X 的分布列和数学期望.18.(本小题满分14分)如图4,四边形A B C D 是正方形,△PAB 与△PAD 均是以A 为直角顶点的等腰直角三角形,点F 是PB 的中点,点E 是边BC 上的任意一点. (1)求证:AF EF ⊥;(2)求二面角A PC B --的平面角的正弦值.19.(本小题满分14分)已知数列{}n a 的前n 项和n S 满足:()11n n aS a a =--,a 为常数,且0a ≠,1a ≠.(1)求数列{}n a 的通项公式; (2)若13a =,设1111n n n n n a a b a a ++=-+-,且数列{}n b 的前n 项和为n T ,求证:13n T <.20.(本小题满分14分)已知椭圆()2222:10x y C a b a b +=>>(0,1).圆22221:C x y a b +=+. (1)求椭圆C 的方程;(2)若直线l ():0y kx m k =+≠与椭圆C 有且只有一个公共点M ,且l 与圆1C 相交于,A B 两点,问AM BM +=0是否成立?请说明理由.21.(本小题满分14分) 已知函数()2ln af x x x x=--,a ∈R . (1)讨论函数()f x 的单调性;(2)若函数()f x 有两个极值点1x ,2x , 且12x x <, 求a 的取值范围; (3)在(2)的条件下, 证明:()221f x x <-.2015年广州市高考模拟考试 数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一.选择题:本大题主要考查基本知识和基本运算.共8小题,每小题5分,满分40分.二.填空题:本大题主要考查基本知识和基本运算.本大题共7小题,考生作答6小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题. 9.()1,3,3⎛⎫-∞-+∞ ⎪⎝⎭10. 28 11.212π+ 12.280 13.8058- 14.1315.sin()4ρθπ+= 三.解答题: 本大题共6小题,满分80分.解答应写出文字说明、证明过程或演算步骤. 16.(1)解:∵4π是函数()f x 的一个零点, ∴ ()sincos 0444f a πππ=+=. ………………………………………………1分 ∴ 1a =-. ………………………………………………2分 ∴ ()sin cos f x x x =-)x x =- ………………………………3分4x π⎛⎫=- ⎪⎝⎭. …………………………………………………………4分由22242k x k ππππ-≤-≤π+,k ∈Z ,得32244k x k πππ-≤≤π+,k ∈Z ,…5分 ∴ 函数()f x 的单调递增区间是3[2,2]44k k πππ-π+(k ∈Z ). ………………………6分 (2)解:∵()4f απ+=,5α=.∴ sin 5α=. ………………7分 ∵ (0,)2απ∈,∴cos α==. ……………………………………8分∵3()4f βπ+=)2βπ+=cos β=. ……………9分 ∵ (0,)2βπ∈,∴ sin β==分 ∴()sin sin cos cos sin αβαβαβ+=+510510=+2=.……12分 17.(1)解:1010000250.a .==,3020000450.a .==. ………………………………2分 (2) 解:设1A 表示事件“日销售量高于100个”,2A 表示事件“日销售量不高于50个”, B 表示事件“在未来连续3天里有连续2天日销售量高于100个且另1天销售量不高于50个”.()103002001006P A ....=++=,()2015P A .=,()060601520108P B ....=⨯⨯⨯=. …………………………………………………5分(3)解:依题意,X 的可能取值为0,1,2,3,且()306XB ,.. ………………6分()0P X ==()33C 10.60.064⋅-=, ()1P X ==()213C 0.610.60.288⨯⨯-=,()2P X ==()223C 0.610.60.432⨯⨯-=,()3P X ==333C 0.60.216⨯=, ……10分 ∴X 的分布列为…………………………11分 ∴ EX 30.6 1.8=⨯=. …………………………………………12分HEFDCBAP18.(1)证明:∵F 是PB 的中点,且PA AB =,∴ AF PB ⊥. ……………………1分 ∵ △PAB 与△PAD 均是以A 为直角顶点的等腰直角三角形,∴ PA AD ⊥,PA AB ⊥. ∵ ADAB A =,AD ⊂平面ABCD ,AB ⊂平面ABCD ,∴ PA ⊥平面ABCD . ∵ BC ⊂平面ABCD ,∴ PA BC ⊥. …………………2分 ∵ 四边形ABCD 是正方形,∴ BC AB ⊥. …………………3分 ∵ PAAB A =,PA ⊂平面PAB ,AB ⊂平面PAB ,∴ BC ⊥平面PAB .∵ AF ⊂平面PAB ,∴ BC AF ⊥. …………………4分 ∵ PBBC B =,PB ⊂平面PBC ,BC ⊂平面PBC ,∴ AF ⊥平面PBC . …………………………5分 ∵ EF ⊂平面PBC ,∴ AF EF ⊥. ……………………………………………………6分 (2)解法1:作FH PC ⊥于H ,连接AH ,∵ AF ⊥平面PBC ,PC ⊂平面PBC ∴ AF PC ⊥. ……………………………………………………7分∵ AFFH F =,AF ⊂平面AFH ,FH ⊂平面AFH ,∴ PC ⊥平面AFH . ……………………………………………………8分 ∵ AH ⊂平面AFH ,∴ PC AH ⊥. ……………………………………………………9分 ∴∠AHF 为二面角A PC B --的平面角. ……………………………………………10分 设正方形ABCD 的边长为2,则2PA AB ==,AC = 在Rt△PAB中,12AF PB === …………………11分 在Rt△PAC中,PC=PA AC AH PC ⋅==,…………12分在Rt△AFH中,sin AF AHF AH ∠==. ………………………………………13分 ∴ 二面角A PC B --. ………………………………14分 解法2:以A 为坐标原点,分别以,,AD AB AP 所在直线为x 轴,y 轴,z 轴 , 建立空间直角坐标系A xyz -,设1PA =,则()0,0,1P ,()0,1,0B ,()1,1,0C ,(1D ∴()0,1,1PB =-,()1,0,0BC =. 设平面PBC 的法向量为,m x y z =(,),由0,0,m PB m BC ⎧⋅=⎪⎨⋅=⎪⎩ 得0,0.y z x -=⎧⎨=⎩ 令1y = ,得1z =,∴ ()0,1,1m =为平面PBC 的一个法向量. ∵ PA ⊥平面ABCD ,PA ⊂平面PAC ,∴ 平面PAC ⊥平面ABCD .连接BD ,则BD AC ⊥.∵平面PAC 平面ABCD AC =, BD ⊂平面ABCD ,∴BD ⊥平面PAC .……10分∴ 平面PAC 的一个法向量为()1,1,0BD =-. ………………………………………11分设二面角A PC B --的平面角为θ,则1cos cos ,2m BD m BD m BDθ⋅===. ………………………………………12分∴sin θ==. …………………………………………13分∴ 二面角A PC B --. ………………………………14分19.(1)解:∵111(1)1aa S a a ==--, ∴ 1a a =. ………………………………1分 当2n ≥时,1111n n n n n a aa S S a a a a --=-=---, …………………………………3分得1nn a a a -=, …………………………………………4分 ∴ 数列{}n a 是首项为a ,公比也为a 的等比数列. …………………………………5分 ∴1n n n a a aa -=⋅=. ………………………………………6分(2)证明:当13a =时,13n n a =, …………………………………………7分 ∴1111n n n n n a a b a a ++=-+-111133111133n n n n ++=-+-1113131n n +=-+-. ………………………8分 由11313nn <+,1111313n n ++>-, ………………………………………………10分 ∴n b =111111313133n n n n ++-<-+-. ………………………………………… 11分∴ 122231111111333333n n n n T b b b +⎛⎫⎛⎫⎛⎫=+++<-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11133n +=-.……13分∵ 1103n +-<,∴ 1111333n +-<,即13n T <. …………………………………14分 20.(1)解:∵ 椭圆2222:1x y C a b+=过点()0,1,∴ 21b =. ………………………1分∵2222c a b c a ==+,∴24a =. …………………………………………………3分 ∴椭圆C 的方程为2214x y +=. …………………………………………4分 (2)解法1:由(1)知,圆1C 的方程为225x y +=,其圆心为原点O . ………………5分 ∵直线l 与椭圆C 有且只有一个公共点M ,∴方程组22,14y kx m x y =+⎧⎪⎨+=⎪⎩ (*) 有且只有一组解. 由(*)得()222148440k x kmx m +++-=. ………………………………………6分从而()()()2228414440km km∆=-+-=,化简得2214m k =+.① ……………7分()228414214M km kmx k k =-=-++,22241414M Mk m m y kx m m k k =+=-+=++. ………9分 ∴ 点M 的坐标为224,1414kmm k k ⎛⎫-⎪++⎝⎭. ……………………………………10分 由于0k ≠,结合①式知0m ≠,∴OM k k ⨯=2211414414m k k km k +⨯=-≠--+. ……………………………………11分 ∴ OM 与AB 不垂直. ………………………………………………………………12分 ∴ 点M 不是线段AB 的中点. …………………………………………13分 ∴AM BM +=0不成立. ……………………………………………14分 解法2:由(1)知,圆1C 的方程为225x y +=,其圆心为原点O . ……………………5分 ∵直线l 与椭圆C 有且只有一个公共点M ,∴方程组22,14y kx m x y =+⎧⎪⎨+=⎪⎩ (*) 有且只有一组解. 由(*)得()222148440k x kmx m +++-=. …………………………………………6分从而()()()2228414440km km∆=-+-=,化简得2214m k =+.① ……………7分()228414214M km kmx k k =-=-++, ……………………………………………8分 由于0k ≠,结合①式知0m ≠,设()()1122,,,A x y B x y ,线段AB 的中点为(),N N N x y , 由22,5,y kx m x y =+⎧⎨+=⎩消去y ,得()2221250k x kmx m +++-=.……………………………9分 ∴ 12221N x x kmx k+==-+. …………………………………………10分 若N M x x =,得224114km kmk k-=-++ ,化简得30=,矛盾. …………………………11分 ∴ 点N 与点M 不重合. ……………………………………………………12分 ∴ 点M 不是线段AB 的中点. ………………………………………………13分 ∴ AM BM +=0不成立. ………………………………………………14分 21.(1)解: 函数()2ln af x x x x=--的定义域为()0,+∞,11 ()222221a x x a f x x x x -+'=+-=, ………………………………………………1分 令()0f x '=, 得220x x a -+=, 其判别式44a ∆=-,① 当0∆≤,即1a ≥时, 220x x a -+≥,()0f x '≥, 此时,()f x 在()0,+∞上单调递增; ……………………………………………………………………………………………2分② 当0∆>, 即1a <时, 方程220x x a -+=的两根为11x =211x =>,………………………………………………………3分 若0a ≤, 则10x ≤, 则()20,x x ∈时, ()0f x '<, ()2,x x ∈+∞时, ()0f x '>, 此时, ()f x 在()20,x 上单调递减, 在()2,x +∞上单调递增; ………………………4分 若0a >,则10x >, 则()10,x x ∈时, ()0f x '>,()12,x x x ∈时, ()0f x '<, ()2,x x ∈+∞时, ()0f x '>,此时, ()f x 在()10,x 上单调递增, 在()12,x x 上单调递减, 在()2,x +∞上单调递增. ……………………………………………………………………………………………5分 综上所述, 当0a ≤时, 函数()f x 在()20,x 上单调递减, 在()2,x +∞上单调递增; 当01a <<时, 函数()f x 在()10,x 上单调递增, 在()12,x x 上单调递减, 在()2,x +∞上单调递增;当1a ≥时, 函数()f x 在()0,+∞上单调递增. ……………………6分(2)解:由(1)可知, 函数()f x 有两个极值点1x ,2x ,等价于方程220x x a -+=在()0,+∞有两不等实根, 故01a <<. ………………………………………7分(3)证明: 由(1), (2)得01a <<, 21x =且212x <<, 2222a x x =-+. …8分()22222222222212ln 12ln 1x x f x x x x x x x x -+-+=---+=--, ………………9分 令()2ln 1g t t t =--, 12t <<,则()221t g t t t-'=-=, ………………………………………………10分 由于12t <<, 则()0g t '<, 故()g t 在()1,2上单调递减. …………………11分 故()()112ln110g t g <=--=. ……………………………………………12分 ∴()()22210f x x g x -+=<. …………………………………………13分 ∴()221f x x <-. ………………………………………………14分。
海珠区2014学年高三综合测试(一)试题数 学(理科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21M x x ==,{}2320N x x x =-+=,则M N ⋃=A .{1,2}B .{1,1,2}-C .{1,2}-D .{1}2.设复数1z ,2z 在复平面内的对应点关于实轴对称,11z i =+,则12z z = A. 2B. 2-C.1i +D. 1i -3.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是A .若//,//,m n αα则//m nB .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥4.设等比数列{}n a 的前n 项和为n S ,若243,15,S S ==则6S =A .31B .32C .63D .64 5. 下列函数在其定义域上既是奇函数又是减函数的是 A .3()f x x = B .()sin f x x = C .()1f x x=D .()||f x x x =- 6. 由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x 确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为A .81 B .41 C .43 D .87 7.已知抛物线24y x =与双曲线()222210,0x y a b a b-=>>有相同的焦点F ,点A 是两曲线的一个交点,且AF x ⊥轴,则双曲线的离心率为A2B1 C1D8.已知菱形ABCD 的边长为2,0120BAD ∠=,点,E F 分别在边,B C D C上, ,BE BC λ=DF DC μ=.若1AE AF ⋅=,23CE CF ⋅=-,则λμ+=A .12B .23C .56D .712二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.()8x a +的展开式中,5x 的系数为7,则a = .(用数字填写答案)10.已知某程序框图如图,若分别输入的x 的值为0,1,2,执行该程序后,输出的y 的值分别为,,a b c ,则a b c ++= .11.在ABC ∆中,角,,A B C 所对边分别为,,a b c ,且4524==B c ,,面 积2=S ,则b = . 12.图中阴影部分的面积等于 . 13.如图,对大于或等于2的正整数m 的n 次幂进行如下方式的“分裂” (其中,m n N *∈) 例如27的“分裂”中最小的数是1,最大的 数是13;若3m 的“分裂”中最小的数是241,则最大的数是 .(二)选做题(14、15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)在直角坐标平面内,以坐标原点O 为极点,x 轴的非负半轴为极轴第10题图第12题图123 5 3 3 5 321322 794233 1197 432927 257 9 2715 3 1311第13题图建立极坐标系,已知点M的极坐标为4π⎛⎫ ⎪⎝⎭,曲线C的参数方程为1,x y αα⎧=⎪⎨=⎪⎩(α为参数).则点M 到曲线C 上的点的距离的最小值为 . 15.(几何证明选讲选做题)如图,过⊙O 外一点P 分别作圆的切线和割线交圆于,A B ,且9PB =,C 是圆上一点使得4BC BAC APB =∠=∠,,则AB = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数()2cos 24x f x π⎛⎫=-⎪⎝⎭,x R ∈. (1)求()f x 的单调递减区间; (2)若3sin 5θ=,,2πθπ⎛⎫∈ ⎪⎝⎭,求()4f θπ+. 17.( 本小题满分12分)为增强市民的环保意思,某市面向全市增招环保知识义务宣传志愿者.从符合条件的500名志愿者中随机抽取100名志愿者,其年龄频率分布直方图如图所示,其中年龄(岁)分成五组:第1组[)20,25,第2组[)25,30,第3组[)30,35,第4组[)35,40,第5组[)40,45.得到的频率分布直方图(局部)如图所示.(1)求第4组的频率,并在图中补画直方图;(2)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加中心广场的宣传活动,再从这20名志愿者中采用简单随机抽样方法选取3名志愿者担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为X ,求X 的分布列和数学期望.18.(本小题满分14分)如图,四棱锥ABCD P -中,底面ABCD 为正方形,PD PA =,⊥PA 平面PDC ,E 为棱PD 的中点.(1)求证:PB // 平面EAC ;第17题图(2)求证:平面PAD ⊥平面ABCD ; (3)求二面角B AC E --的余弦值.19.(本小题满分14分)已知公差不为0的等差数列{}n a 的前n 项和为n S ,若525S =,且124,,S S S 成等比数列. (1)求数列{}n a 的通项公式; (2)()1n nb n N S *=∈,证明:对一切正整数n ,有1274n b b b +++<.20.(本小题满分14分)在平面直角坐标系xOy 中,动点P 到两点(0),0)的距离之和等于4,设点P 的轨迹为曲线C ,直线l 过点(1,0)E -且与曲线C 交于A ,B 两点. (1)求曲线C 的轨迹方程;(2)是否存在△AOB 面积的最大值,若存在,求出△AOB 的面积;若不存在,说明理由.21.(本小题满分14分)已知函数()ln f x ax x x =+的图象在点x e =(e 为自然对数的底数)处的切线斜率为3. (1)求实数a 的值;(2)若,k Z ∈不等式()()1k x f x -<在()1+x ∈∞,上恒成立,求k 的最大值; (3)当4n m >≥时,证明:()()mnn m mnnm >.。
广东省广州市海珠区2015届高三8月摸底考试数学文试题本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将答题卡一并交回。
参考公式:锥体体积公式Sh V 31=,其中S 为锥体的底面积,h 为锥体的高. 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21M x x ==,{}1,2N =,则M N ⋃=A .{1,2}B .{1,1,2}-C .{1,2}-D .{1} 2.设复数1z ,2z 在复平面内的对应点关于实轴对称,11z i =+,则12z z =A. 2B. 2-C. 1i +D. 1i -3.已知132a -=,21211log ,log 33b c ==,则 A .a b c >> B .a c b >> C .c a b >>D .c b a >>4.若a R ∈,则0a =是()10a a -=的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件 5.已知,m n 表示两条不同直线,α表示平面,下列说法正确的是A .若//,//,m n αα则//m nB .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥ 6.设等比数列{}n a 的前n 项和为n S ,若243,15,S S ==则6S = A .31 B .32 C .63D .647.下列函数在其定义域上既是奇函数又是减函数的是 A .3()f x x =B .()sin f x x =C .()1f x x=D .()||f x x x =-8.由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为1Ω,不等式⎩⎨⎧-≥+≤+21y x y x 确定的平面区域记为2Ω,在1Ω中随机取一点,则该点恰好在2Ω内的概率为A.81 B.41 C. 43 D.87 9.已知抛物线24y x =与双曲线()222210,0x y a b a b-=>>有相同的焦点F ,点A 是两曲线的一个交点,且AF x ⊥轴,则双曲线的离心率为A2B1 C1D10.已知菱形A B C D 的边长为2,0120BAD ∠=,点,E F 分别在边,BC DC 上,,BE BC DF DCλμ==.若1AE AF ⋅=,23CE CF ⋅=-,则λμ+= A .12 B .23 C .56 D .712二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.已知某程序框图如图,若分别输入的x 的值为0,1,2,执行该程序后,输出的y 的值分别为,,a b c ,则a b c ++= . 12.在ABC ∆中,角A ,B ,C 所对边分别为,,a b c 且 4524==B c ,,面积2=S ,则b = .13. 如图,对大于或等于2的正整数m 的n 次幂进行如下方式的“分裂”(其中,m n N *∈)例如27的“分裂”中最小的数是1,最大的数是13; 若3m 的“分裂”中最小的数是241,则最大的(二)选做题(14、15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)在直角坐标平面内,以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知点M 的极坐标为4π⎛⎫⎪⎝⎭,曲线C 的参数方程为第11题图第13题图第15题图1cos ,sin x y αα=+⎧⎨=⎩(α为参数).则点M 到曲线C 上的点 的距离的最小值为 .15.(几何证明选讲选做题)如图,过⊙O 外一点P 分别作圆 的切线和割线交圆于,A B ,且9PB =,C 是圆上一点 使得4BC BAC APB =∠=∠,,则AB = .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.( 本小题满分12分)已知函数()2cos 24x f x π⎛⎫=-⎪⎝⎭,x R ∈. (1)求()f x 的单调递减区间; (2)若3sin 5θ=,,2πθπ⎛⎫∈ ⎪⎝⎭,求()4f θπ+.17. (本小题满分12分)为增强市民的环保意识,某市面向全市增招环保知识义务宣传志愿者.从符合条件的志愿者中随机选取20名志愿者,其年龄频率分布直方图如图所示,其中年龄(岁)分成五组第1组[)20,25,第2组[)25,30,第3组[)30,35,第4组[)35,40,第5组[)40,45.得到的频率分布直方图(局部)如图所示.(1)求第4组的频率,并在图中补画直方图;(2)从20名志愿者中再选出年龄低于30岁的志愿者3名担任主要宣讲人,求这3名主要宣讲人的年龄在同一组的概率.18. (本小题满分14分)如图,四棱锥A BCDE -中,侧面ADE ∆为等边三角形,底面BCDE 是等腰梯形,且//CD BE ,2DE =,4CD =,060CDE ∠=,M 为DE 的中点, F 为AC 的中点,且4AC =.(1)求证:平面ADE ⊥平面BCD ; (2)求证://FB 平面ADE ; (3)求四棱锥A BCDE -的体积.第17题图19.(本小题满分14分)已知公差不为0的等差数列{}n a 的前n 项和为n S ,若525S =,且124,,S S S 成等比数列. (1)求数列{}n a 的通项公式;(2)求证 对一切正整数n ,有1223111112n n a a a a a a ++++< .20.(本小题满分14分)在平面直角坐标系xOy 中,动点P到两点(0),0)的距离之和等于4,设点P 的轨迹为曲线C ,直线l 过点(1,0)E -且与曲线C 交于A ,B 两点.(1)求曲线C 的轨迹方程;(2)是否存在△AOB 面积的最大值,若存在,求出△AOB 的面积;若不存在,说明理由. 21.(本小题满分14分)已知函数()1xaf x x e =-+(a R ∈,e 为自然对数的底数). (1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值; (2)求函数()f x 的极值;(3)当1a =时,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值.。
B广东省广州市海珠区2015届高三8月摸底考试理综 物理试题13.一汽车运动的v -t 图象如图所示,则汽车在0~2s 内和2s ~3s 内相比A .位移大小相等B .平均速度相等C .运动方向相反D .加速度相同14.如图所示,重物G 用轻绳OA 和OB 悬挂在水平天花板和竖直墙壁之间,处于静止状态.若AO 绳的拉力大小为T A ,OB 绳的拉力大小为T B . 下列判断正确的是 A .T A 等于T B B .T A 大于T B C .T B 小于GD .T A 与T B 的合力大小等于G15.一带电粒子(仅受电场力)在匀强电场中从A 运动到B ,运动轨迹如图中虚线所示,电场方向竖直向下. 下列判断正确的是 A .粒子带正电B .A 点电势高于B 点电势C .粒子做匀变速曲线运动D .粒子电势能增加16.如图为两分子系统的势能E p 与两分子间距离r 的关系曲线.下列说法正确的是 A .当r 大于r 1时,分子间的作用力表现为引力 B .当r 小于r 1时,分子间的作用力表现为斥力 C .当r 等于r 2时,分子间的作用力最大D .在r 由r 1变到r 2的过程中,分子间的作用力做负功二、双项选择题:本大题共9小题,每小题6分,共54分.在每小题给出四个选项中,有两个选项符合题目要求,全部选对的得6分,只选1个且正确的得3分,有选错或不答的得0分. 17.一交变电流的图象如图所示,由图可知A .用电流表测该电流其示数为10AB .该交流电流的频率为100HzC .该交流电电流方向每秒改变100次D .该交流电流有效值为102A 18.关于光电效应,下列说法正确的是A .发生光电效应时间越长,光电子的最大初动能就越大B .入射光的频率低于极限频率就不能发生光电效应C .光电子的最大初动能与入射光频率成正比D .光电子的最大初动能与入射光的强度无关 19.关于核反应的类型,下列表述正确的有A .238234492902U Th+He →是α衰变 B .1441717281N+He O+H →是β衰变 C .23411120H+H He+n →是聚变 D .828203436-1Se Kr+2e →是裂变20.如图所示,A 是静止在赤道上的物体,B 、C 是同一平面内两颗人造卫星.B 位于离地高度等于地球半径的圆形轨道上,C 是地球同步卫星. 关于以下判断正确的是 A .卫星B 的速度大小等于地球的第一宇宙速度 B .A 、B 的线速度大小关系为v A >v B C .周期大小关系为T A =T C >T BD .若卫星B 要靠近C 所在轨道,需要先加速 21.如图所示,在线圈上端放置一盛有冷水的金属杯,现接通交流电源,过了几分钟,杯内的水沸腾起来.下列措施仍可使杯内水沸腾的是A .改用直流电源B .提高交流电源的频率C .将金属杯换为瓷杯D .增加线圈匝数34.(共18分)- ABC(1)(8分)下图是某同学在做直线运动实验中获得的一条纸带.① 已知打点计时器电源频率为50Hz ,则纸带上打相邻两点的时间间隔为_________; ② ABCD 是纸带上四个计数点,每两个相邻计数点间有四个点没有画出.O 、B 两点间的A 点不小心被墨水弄脏了看不到.从图中读出B 、C 两点间距S BC =________;若A 点与B 点之间的距离满足S AB =________,根据匀变速直线运动的规律,可以判断A 点到D 点间的运动为匀变速直线运动,且根据数据可计算出该段位移的加速度a =____(保留两位有效数字).(2)(10分)为检测一个标称值为20Ω的滑动变阻器,现可供使用的器材如下: A .待测滑动变阻器R x ,总电阻约20 Ω B .电流表A 1,量程200mA ,内阻约2.0 Ω C .电流表A 2,量程3 A ,内阻约0.12 Ω D .电压表V 1,量程15 V ,内阻约15 kΩ E .电压表V 2,量程3 V ,内阻约3 kΩ F .滑动变阻器R ,总电阻约10 Ω G .直流电源E ,电动势3 V ,内阻不计 H .电键S 、导线若干①为了尽可能精确测定R x 的总电阻值,所选电流表为___________(填“A 1”或“A 2”),所选电压表为_________(填“V 1”或“V 2”);②请根据实验原理图甲,完成图乙未完成的实物连接,使其成为测量电路; ③闭合开关S 前,滑动变阻器R 的滑片应置于最_________(左或右)端;④如图丙所示是用螺旋测微器测量待测滑动变阻器所采用的电阻丝的直径,则该电阻丝的直径为 mm .35.(18分)如图所示,已知一带电量为q ,质量为m 的小球A 在光滑绝缘的水平面上从静止开始经电压U 加速后,与同质量的静止小球B 发生碰撞,并粘在一起,水平进入互相垂直的匀强电场和匀强磁场(磁感应强度为B )的复合场中,小球在此空间的竖直面内A+_V+_乙+R xRS左右甲丙S BC做匀速圆周运动,重力加速度为g ,试求: (1)小球A 、B 碰撞前后的速度各为多少? (2)电场强度E 为多少?(3)小球做匀速圆周运动过程中,从轨道的最低点到最高点机械能改变了多少?36.(18分)在水平长直的轨道上,有一长度L =2m 的平板车在外力控制下始终保持速度v 0=4m/s 向右做匀速直线运动.某时刻将一质量为m =1kg 的小滑块轻放到车面的中点,滑块与车面间的动摩擦因数为μ=0.2,取g =10m/s 2,求:(1)小滑块m 的加速度大小和方向; (2)通过计算判断滑块能否从车上掉下;(3)若当滑块放到车面中点的同时对该滑块施加一个与v 0同向的恒力F ,要保证滑块不能从车的左端掉下,恒力F 大小应满足什么条件?海珠区2015届高三综合测试(一)理科综合 物理参考答案一、单项选择题:本题包括16小题,每小题4分,共64分。
广东省广州市海珠区2015届高三8月摸底考试语文试题本试卷共8页,24小题,满分150分。
考试用时150分钟。
注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己姓名和考生号、考场号、座位号填写在答题卡上。
用2B铅笔在答题卡相应位置上填涂考生号。
2. 选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案信息号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上。
3. 非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4. 作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5. 考生必须保持答题卡的整洁。
考试结束后,将答题卡交回。
一、本大题4小题,每小题3分,共12分。
1. 下列词语中加点的字,每对读音都不相同...的一组是A.癖.好/避.暑徜.徉/偿.还中.肯/中.饱私囊B.揣.摩/惴.惴泥淖./旱涝.角.度/天涯海角.C.畸.形/绮.丽摇曳./游弋.间.距/挑拨离间.D.匮.乏/馈.赠澄.清/瞠.目安宁./息事宁.人2. 下面语段中画线的词语,使用不恰当...的一项是上了小岛,穿行于岛上古老的市集。
这里售卖当地的海产以及各式日用所需,摊位上的货物在阳光下泛着五光十色,无论是摆摊的大娘,还是购物的食客,每个人的脸上都是简单而丰盛的快乐。
岛上的居民仿佛是生活的哲学家,工作时神情认真,用餐时一脸喜悦,与世间万物和平相处,心无旁骛地度过每分每秒。
对于习惯了车水马龙的都市人而言,这一片土地有着难以名状的奇异之美。
A.五光十色B.心无旁骛C.车水马龙D.难以名状3. 下列句子,没有语病....的一项是A.近年,我省加快交通建设的步伐,已基本完善了航空、铁路、公路、水运和多种交通运输方式融为一体的综合立体运输体系。
广东省广州市海珠区 2015届高三8月摸底考试数学(理)试题本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将答题卡一并交回。
一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,{}2320N x x x =-+=,则 A . B .C .D .2.设复数,在复平面内的对应点关于实轴对称,,则 A. B. C. D.3.已知m ,n 表示两条不同直线,表示平面,下列说法正确的是 A .若则 B .若,,则 C .若,,则D .若,,则4.设等比数列的前n 项和为,若则A .31B .32C .63D .64 5. 下列函数在其定义域上既是奇函数又是减函数的是 A . B . C . D .6. 由不等式⎪⎩⎪⎨⎧≤--≥≤0200x y y x 确定的平面区域记为,不等式确定的平面区域记为,在中随机取一点,则该点恰好在内的概率为A .B .C .D .7.已知抛物线与双曲线()222210,0x y a b a b-=>>有相同的焦点,点是两曲线的一个交点,且轴,则双曲线的离心率为A .B .C .D .8.已知菱形的边长为,,点分别在边上,.若,,则A .B .C .D .二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.的展开式中,的系数为,则.(用数字填写答案) 10.已知某程序框图如图,若分别输入的的值为,执行该程序后,输出的的值分别为,则.11.在中,角所对边分别为,且,面积,则= .12.图中阴影部分的面积等于.13.如图,对大于或等于的正整数的次幂进行如下方式的“分裂” (其中)例如的“分裂”中最小的数是,最大的数是;若的“分裂”中最小的数是,则最大的数是.(二)选做题(14、15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在直角坐标平面内,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,已知点的极坐标为,曲线的参数方程为1,xyαα⎧=+⎪⎨=⎪⎩(为参数).则点到曲线上的点的距离的最小值为.15.(几何证明选讲选做题)如图,过⊙外一点分别作圆的切线和割线交圆于,且,是圆上一点使得4BC BAC APB=∠=∠,,则.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分分)已知函数()2cos24xf xπ⎛⎫=-⎪⎝⎭,.(1)求的单调递减区间;(2)若,,求.17.( 本小题满分12分)为增强市民的环保意思,某市面向全市增招环保知识义务宣传志愿者.从符合条件的名志愿者中123533532132279423311974329272579271531311第13题图随机抽取名志愿者,其年龄频率分布直方图如图所示,其中年龄(岁)分成五组:第组,第组,第组,第组,第组.得到的频率分布直方图(局部)如图所示.(1)求第组的频率,并在图中补画直方图;(2)在抽出的名志愿者中按年龄采用分层抽样的方法抽取名参加中心广场的宣传活动,再从这名志愿者中采用简单随机抽样方法选取名志愿者担任主要负责人.记这名志愿者中“年龄低于岁”的人数为,求的分布列和数学期望.第17题图18.(本小题满分14分)如图,四棱锥中,底面为正方形,,平面,为棱的中点.(1)求证:// 平面;(2)求证:平面平面;(3)求二面角的余弦值.第18题图19.(本小题满分14分)已知公差不为0的等差数列的前项和为,若,且成等比数列.(1)求数列的通项公式;(2),证明:对一切正整数,有.20.(本小题满分14分)在平面直角坐标系中,动点到两点,的距离之和等于,设点的轨迹为曲线,直线过点且与曲线交于,两点.(1)求曲线的轨迹方程;(2)是否存在△面积的最大值,若存在,求出△的面积;若不存在,说明理由.21.(本小题满分14分)已知函数的图象在点(为自然对数的底数)处的切线斜率为.(1)求实数的值;(2)若不等式在上恒成立,求的最大值;(3)当时,证明:.。
理科数学答题卡 第1面 / 共4面
1 2 3 4 7
8
5 6 海珠区2014学年高三综合测试(一) 答题卡——理科数学
以下为选择题答题区(必须用2B 铅笔将选中项涂满、涂黑,黑度以盖住框内字母为准) 以下为非选择题答题区(必须用黑色字迹的签字笔或钢笔在各题目的指定区域内作答,否则答案无效) 区 学校 姓名 考生号 试室号 座位号
第18题图
理科数学答题卡第2面/ 共4面
理科数学答题卡 第3面 / 共4面
20. (本小题满分14分)
19. (本小题满分14分)
区 学校 姓名 考生号 试室号 座位号
理科数学答题卡 第4面 / 共4面
21. (本小题满分14分
)。