13-1波函数的统计解释和薛定谔方程
- 格式:ppt
- 大小:753.50 KB
- 文档页数:36
波函数与薛定谔方程引言:在量子力学中,波函数与薛定谔方程是两个核心概念。
波函数描述了粒子的量子态,而薛定谔方程则给出了波函数的时间演化规律。
本文旨在解释波函数与薛定谔方程的概念,并探讨它们在量子力学中的重要性。
一、波函数的定义与性质:波函数用符号Ψ表示,是随时间和空间变化的数学函数。
对于一个单粒子的量子系统,波函数Ψ(x,t)是描述其位置和时间依赖的函数,其中x表示位置,t表示时间。
波函数的模的平方|Ψ(x,t)|²(也称为概率密度)给出了在某个位置找到粒子的概率。
波函数的归一化要求概率密度在整个空间积分为1,即∫|Ψ(x,t)|²dx = 1。
另外,波函数是复数形式的,通过它可以得到粒子的相位和幅度信息。
二、薛定谔方程及其意义:薛定谔方程是由奥地利物理学家薛定谔于1925年提出的,用于描述量子系统的演化。
薛定谔方程的一般形式为:ih∂Ψ/∂t = HΨ其中,i是虚数单位,h是普朗克常数,Ψ是波函数,H是哈密顿算符。
薛定谔方程可以看作是一个时间演化方程,它告诉我们波函数如何随时间变化。
三、薛定谔方程的解与量子态的演化:薛定谔方程的解Ψ(x,t)给出了波函数在时间和空间上的演化规律。
解薛定谔方程有多种方法,其中最常见的是分离变量法、微扰法和数值计算法。
通过求解薛定谔方程,我们可以得到粒子在不同时间、不同位置的波函数。
薛定谔方程解的平方Ψ(x,t)²表示了在经典条件下,在某个位置x找到粒子的概率密度分布。
波函数的演化规律是通过薛定谢方程来描述的,因此它反映了量子态的演化过程。
波函数的演化可以告诉我们粒子的位置、动量和能量等重要信息。
四、波函数的物理意义:波函数不仅仅是一个数学概念,它具有重要的物理意义。
首先,波函数的平方给出了在某个位置找到粒子的概率密度分布。
这一点与经典物理中的粒子位置概念是不同的,因为在量子力学中,粒子的位置是模糊的,只能通过概率来描述。
其次,波函数还包含了粒子的相位信息。
波函数和薛定谔方程一、波函数的统计解释、叠加原理和双缝干涉实验微观粒子具有波粒二象性<德布罗意假设);德布罗意关系<将描述粒子和波的物理量联系在一起)物质波<微观粒子—实物粒子)引入波函数<概率波幅)—描述微观粒子运动状态对于微观粒子来说,如果不考虑“自旋”一类的“内禀”态,单值波函数是其物理状态的最详尽描述。
至少在目前量子力学框架中,我们不能获得比波函数更多的物理信息。
b5E2RGbCAP微观粒子的状态用波函数完全描述——量子力学中的一条基本原理该原理包含三方面内容:粒子的状态用波函数表示、波函数的统计解释和对波函数性质的要求。
要明确“完全”的含义是什么。
按着波函数的统计解释,波函数统计性的描述体系的量子态,若已知单粒子<不考虑自旋)波函数,则不仅可以确定粒子的位置概率分布,而且如动量等粒子的其它力学量的概率分布也均可通过波函数而完全确定。
由此可见,只要已知体系的波函数,便可获得该体系的一切物理信息。
从这个意义上说,有关体系的全部信息已包含在波函数中,所以说微观粒子的状态用波函数完全描述。
p1EanqFDPw 必须强调指出,波函数给出的有关粒子的“信息”本质上是统计性质的。
例如,在适当条件下制备动量为p的粒子,然后测量其空间位置,我们根本无法预言测量的结果,我们只能知道获得各种可能结果的概率。
DXDiTa9E3d很自然,人们会提出这样的疑问:既然量子力学只能给出统计结果,那就只需引入一个概率分布函数<象经典统计力学那样),何必假定一个复值波函数呢?RTCrpUDGiT事实上,引入复值波函数的物理基础,乃是量子力学中的又一条基本原理——叠加原理。
这条原理告诉我们,两种状态的叠加,绝不是概率相加,而是带有相位的复值波函数的叠加<数学求和)。
正因如此,在双缝干涉实验中,我们才能看见屏上的干涉花纹。
5PCzVD7HxA实物粒子双缝干涉实验分析我们首先只打开一条狭缝,根据粒子的波动性,可以预言屏上将显示波长<为粒子动量)的单缝衍射花纹。