电磁学_稳恒磁场
- 格式:pdf
- 大小:4.74 MB
- 文档页数:60
第十一章稳恒磁场磁场由运动电荷产生。
磁场与电场性质有对称性,学习中应注意对比.§11-1 基本磁现象磁性,磁力,磁现象;磁极,磁极指向性,N极,S极,同极相斥,异极相吸。
磁极不可分与磁单极。
一、电流的磁效应1819年,丹麦科学家奥斯特发现电流的磁效应;1820年,法国科学家安培发现磁场对电流的作用。
二、物质磁性的电本质磁性来自于运动电荷,磁场是电流的场。
注:1932年,英国物理学家狄拉克预言存在“磁单极”,至今科学家一直在努力寻找其存在的证据。
§11-2 磁场磁感强度一、磁场磁力通过磁场传递,磁场是又一个以场的形式存在的物质。
二、磁感强度磁感强度B 的定义:(1)规定小磁针在磁场中N 极的指向为该点磁感强度B 的方向。
若正电荷沿此方向运动,其所受磁力为零。
(2)正运动电荷沿与磁感强度B 垂直的方向运动时,其所受最大磁力F max 与电荷电量q 和运动速度大小v 的乘积的比值,规定为磁场中某点磁感强度的大小。
即:qvF B max=磁感强度B 是描写磁场性质的基本物理量。
若空间各点B 的大小和方向均相等,则该磁场为均匀磁场....;若空间各点B 的大小和方向均不随时间改变,称该磁场为稳恒磁场....。
磁感强度B 的单位:特斯拉(T)。
§11-3 毕奥-萨伐尔定律 一、毕-萨定律电流元: l Id电流在空间的磁场可看成是组成电流的所有电流元l Id 在空间产生元磁感强度的矢量和。
式中μ0:真空磁导率, μ0=4π×10-7NA 2 dB 的大小: 20sin 4rIdl dB θπμ=d B 的方向: d B 总是垂直于Id l 与r 组成的平面,并服从右手定则.一段有限长电流的磁场: ⎰⎰⨯==l l r r l Id B d B 304πμ二、应用1。
一段载流直导线的磁场 )cos (cos 42100θθπμ-=r IB 说明:(1)导线“无限长":002r I B πμ=(2)半“无限长”: 00004221r I r IB πμπμ==2.圆电流轴线上的磁场 磁偶极矩232220)(2x R R IB +=μ讨论:(1)圆心处的磁场:x = 0 RIB 20μ=;(2)半圆圆心处的磁场: RIR I B 422100μμ==(3)远场:x >>R ,引进新概念 磁偶极矩0n IS m =则: m xB 3012πμ=3.载流螺线管轴线上的磁场)cos (cos 2120ββμ-=nIB讨论:(1)“无限长”螺线管:nI B 0μ=(2)半“无限长”螺线管:nI B 021μ=例:求圆心处的B .§11-4 磁通量 磁场的高斯定理 一、磁感线作法类似电场线。
Ⅱ 内容提要一.磁感强度B 的定义用试验线圈(P m )在磁场中受磁力矩定义:大小 B=M max /p m ,方向 试验线圈稳定平衡时p m 的方向.二.毕奥—沙伐尔定律1.电流元I d l 激发磁场的磁感强度d B =[μ0 /( 4π)]I d l ×r /r 3三.磁场的高斯定理1.磁感线(略);2.磁通量 Φm =S d ⋅⎰B S3.高斯定理 d 0⋅=⎰S B S 稳恒磁场是无源场.四.安培环路定理真空中0d i l I μ⋅=∑⎰ B l介质中 0d i l I ⋅=∑⎰ H l稳恒磁场是非保守场,是涡旋场或有旋场.五.磁矩 P m :1.定义 p m = I ⎰S d S3. 载流线圈在均匀磁场中受力矩M= p m ×B六.洛伦兹力1.表达式 F m = q v ×B (狭义)F = q (E +v ×B ) (广义)2.带电粒子在均匀磁场中运动:回旋半径R=mv sinα/(qB)回旋周期T=2πm /(qB)回旋频率ν= qB /(2πm)螺距d=2π mv cosα/(qB)七.安培力1. 表达式d F m= I d l ×B;八.介质的磁化3. 磁场强度矢量各向同性介质B=μ0μr H=μH九.几种特殊电流的磁场:1.长直电流激发磁场有限长B=μ0 I (cosθ1-cosθ2) / (4πr) 无限长B=μ0I / (2πr)方向都沿切向且与电流成右手螺旋;2.园电流在轴线上激发磁场B=μ0IR2/[2(x2+R2)3/2]中心B=μ0I/(2R )张角α的园弧电流中心的磁感强度B=[μ0I/(2R )]⋅[α/(2π)]方向都沿轴向且与电流成右手螺旋;3.无限长密饶载流螺线管激发的磁场管内B=μ0nI管外B=04.密绕载流螺饶环环内磁场B=μ0NI //(2πr)5.无限大均匀平面电流激发磁场B=μ0 j/26.无限长均匀圆柱面电流激发磁场:柱面内B=0,柱面外B=μ0I /(2πr)7.无限长均匀圆柱体电流激发磁场:柱内B=μ0Ir/(2πR2)柱外B=μ0I /(2πr)1.半径为R的薄圆盘均匀带电,总电量为Q . 令此盘绕通过盘心且垂直盘面的轴线作匀速转动,角速度为ω,求轴线上距盘心x处的磁感强度的大小和旋转圆盘的磁矩.在圆盘上取细圆环电荷元dQ=σ2πrdr,[σ=Q/(πR 2) ],等效电流元为dI=dQ/T=σ2πrdr/(2π/ω)=σωrdr(1)求磁场, 电流元在中心轴线上激发磁场的方向沿轴线,且与ω同向, 大小为dB=μ0dIr 2/[2(x 2+r 2)3/2]=μ0σωr 3dr/[2(x 2+r 2)3/2]()()()2223003/232222200d d 42R Rr r x r r B r x r x μσωμσω+==++⎰⎰ =()()()2222032220d 4R r x r x r x μσω+++⎰ =()()222032220d 4Rx r x r x μσω++⎰ =222022002R R x r x r x μσω⎛⎫ ⎪++ ⎪+⎝⎭=220222222Q R x x R R x μωπ⎛⎫+- ⎪+⎝⎭(2)求磁距. 电流元的磁矩dP m =dI S=σωrdr πr 2=πσωr 2dr30Rm P r dr πσω=⎰=π σ ωR 4/4=ω QR 2/41、无限长直圆柱体,半径为R ,沿轴向均匀流有电流. 设圆柱体内(r < R)的磁感强度感强度为B2,则有:(A 为B1,圆柱体外(r >R)的磁) B1、B2均与r 成正比.(B) B1、B2均与r 成反比.(C) B1与r 成正比, B2与r 成反比.(D) B1与r 成反比, B2与r 成正比.【C 】3. 在图12.1(a)和12.1(b)中各有一半径相同的圆形回路L1和L2,圆周内有电流I 2和I 2,其图12.1∙ ∙ ∙ P 1 I 1 I 2 L 1 (a ) I 3 L 2P 2 ∙ ∙ ∙ I 1 I 2 ∙(b )分布相同,且均在真空中,但在图12.1(b )中,L2回路外有电流I 3,P1、P2为两圆形回路上的对应点,则:(A) 1 d L ⋅⎰B l =2 d L ⋅⎰ B l , 12P P =B B . (B) 1 d L ⋅⎰B l ≠2 d L ⋅⎰ B l , 12P P =B B . (C) 1 d L ⋅⎰ B l =2 d L ⋅⎰ B l , 12P P ≠B B . (D) 1 d L ⋅⎰ B l ≠2d L ⋅⎰ B l , 12P P ≠B B . 【C 】.5. 如图12.3,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L,则由安培环路定理可知(A) d 0 L ⋅=⎰ B l , 且环路上任意点B ≠0.(B) d 0 L ⋅=⎰ B l , 且环路上任意点B=0.(C) d 0 L ⋅≠⎰ B l , 且环路上任意点B ≠0.(D) d 0 L ⋅≠⎰ B l , 且环路上任意点B=0. I LO 图12.2【A 】6. 三条无限长直导线等距地并排安放, 导线Ⅰ、Ⅱ、Ⅲ分别载有1A 、2A 、3A 同方向的电流,由于磁相互作用的结果,导线单位长度上分别受力F1、F2和F3,如图13.2所示,则F1与F2的比值是:(A) 7/8. (B)5/8.(C) 7/18. (D)5/4.【A 】二、填空题1. 如图13.3所示, 在真空中有一半径为R 的3/4圆弧形的导线, 其中通以稳恒电流I, 导线置于均匀外磁场中,且B 与导线所在平面平行.则该载流导 O O B I cb R a 图13.3R Ⅲ Ⅱ Ⅰ F3 F 2 F 1 3A 2A 1A 图13.2线所受的大小为 BIR .2. 磁场中某点磁感强度的大小为2.0Wb/m 2,在该点一圆形试验线圈所受的磁力矩为最大磁力矩 6.28×10-6m ⋅N,如果通过的电流为10mA,则可知线圈的半径为 10-2m, 这时线圈平面法线方向与该处磁场方向的夹角为 π/2 m M P B =⨯ .3. 一半圆形闭合线圈, 半径R = 0.2m , 通过电流I =5A , 放在均匀磁场中. 磁场方向与线圈平面平行, 如图13.4所示. 磁感应强度B = 0.5T. 则线圈所受到磁力矩为 0.157N·m .三、计算题1. 如图13.5所示,半径为R 的半圆线圈 ACD 通有电流I 2, 置于电流为I 1的无限长直线 电流的磁场中, 直线电流I 1 恰过半圆的直径, 两导线相互绝缘. 求半圆线圈受到长直线电流 I 1的磁力. RI B 图13.4 C D I 1 I 2A 图13.5解:在圆环上取微元I2dl= I2Rdθ该处磁场为B=μ0I1/(2πRcosθ)I2dl与B垂直,有dF= I2dl B sin(π/2) dF=μ0I1I2dθ/(2πcosθ)dFx=dFcosθ=μ0I1I2dθ /(2π)dFy=dFsinθ=μ0I1I2sinθdθ /(2πcosθ) 201222x I I dFππμθπ-=⎰=μ0I1I2/2因对称Fy=0.故F=μ0I1I2/2 方向向右.。