第6章单片机
- 格式:ppt
- 大小:2.32 MB
- 文档页数:59
单片机原理及应用第6章80C51单片机的串行口80C51单片机是一种基于哈佛架构的8位单片机,具有强大的串行口功能。
串行口是一种通信接口,可以通过单根线传输数据。
本章将介绍80C51单片机的串行口原理及其应用。
一、80C51单片机的串行口原理80C51单片机的串行口包含两个寄存器,分别是SBUF(串行缓冲器)和SCON(串行控制寄存器)。
SBUF寄存器用来存储待发送或接收到的数据,SCON寄存器用来配置和控制串行口的工作模式。
80C51单片机的串行口有两种工作模式:串行异步通信模式和串行同步通信模式。
1.串行异步通信模式串行异步通信是指通信双方的时钟频率不同步,通信的数据按照字符为单位进行传输,字符之间有起始位、数据位、校验位和停止位组成。
80C51单片机的串行口支持标准的RS-232通信协议和非标准通信协议。
在串行异步通信模式下,SCON寄存器需要配置为相应的工作模式。
首先,需要选择串行口的工作模式。
80C51单片机支持第9位,即扩展模式,可以用来检测通信错误。
其次,需要设置波特率。
波特率是指数据每秒传输的位数,用波特率发生器(Baud Rate Generator,BRGR)来控制。
然后,需要设置起始位、数据位和停止位的配置,包括数据长度(5位、6位、7位或8位)、停止位的个数(1位或2位)。
在发送数据时,将待发送的数据通过MOV指令传送到SBUF寄存器,单片机会自动将数据发送出去。
在接收数据时,需要检测RI(接收中断)标志位,如果RI为1,表示接收到数据,可以通过MOV指令将接收到的数据读取到用户定义的变量中。
2.串行同步通信模式串行同步通信是指通信双方的时钟频率同步,在数据传输时需要时钟信号同步。
80C51单片机的串行同步通信支持SPI(串行外设接口)和I2C(串行总线接口)两种协议。
在串行同步通信模式下,SCON寄存器需要配置为相应的工作模式。
首先,需要选择串行口的工作模式。
80C51单片机支持主从模式,可以作为主设备发送数据,也可以作为从设备接收数据。
第6章单片机串行通信系统习题解答一、填空题1.在串行通信中,把每秒中传送的二进制数的位数叫波特率。
2.当SCON中的M0M1=10时,表示串口工作于方式 2 ,波特率为 fosc/32或fosc/64 。
3.SCON中的REN=1表示允许接收。
4.PCON 中的SMOD=1表示波特率翻倍。
5.SCON中的TI=1表示串行口发送中断请求。
6.MCS-51单片机串行通信时,先发送低位,后发送高位。
7.MCS-51单片机方式2串行通信时,一帧信息位数为 11 位。
8.设T1工作于定时方式2,作波特率发生器,时钟频率为11.0592MHz,SMOD=0,波特率为2.4K时,T1的初值为 FAH 。
9.MCS-51单片机串行通信时,通常用指令 MOV SBUF,A 启动串行发送。
10.MCS-51单片机串行方式0通信时,数据从 P3.0 引脚发送/接收。
二、简答题1.串行口设有几个控制寄存器?它们的作用是什么?答:串行口设有2个控制寄存器,串行控制寄存器SCON和电源控制寄存器PCON。
其中PCON 中只有PCON.7的SMOD与串行口的波特率有关。
在SCON中各位的作用见下表:2.MCS-51单片机串行口有几种工作方式?各自的特点是什么?答:有4种工作方式。
各自的特点为:3.MCS-51单片机串行口各种工作方式的波特率如何设置,怎样计算定时器的初值? 答:串行口各种工作方式的波特率设置:工作方式O :波特率固定不变,它与系统的振荡频率fosc 的大小有关,其值为fosc/12。
工作方式1和方式3:波特率是可变的,波特率=(2SMOD/32)×定时器T1的溢出率 工作方式2:波特率有两种固定值。
当SM0D=1时,波特率=(2SM0D/64)×fosc=fosc/32当SM0D=0时,波特率=(2SM0D/64)×fosc=fosc/64计算定时器的初值计算:4.若fosc = 6MHz ,波特率为2400波特,设SMOD =1,则定时/计数器T1的计数初值为多少?并进行初始化编程。
第6章MSP430单片机及设计实例本章将介绍MSP430单片机及设计实例。
MSP430是德州仪器(TI)公司开发的一种低功耗、高性能的16位RISC微控制器。
它广泛应用于嵌入式系统和便携式设备中,具有较低的功耗和丰富的外设。
首先,我们将介绍MSP430的基本特性。
MSP430采用的是Harvard架构,具有16位数据总线和16位地址总线。
它具有多种工作模式,包括运行模式、空闲模式和休眠模式,可以根据实际需求选择合适的模式以实现最低功耗。
另外,MSP430具有丰富的外设。
它包括通用输入/输出引脚、定时器、串口通信接口、模数转换器等。
这些外设可以满足各种应用的需求,并且具有灵活的配置和控制能力。
接下来,我们将介绍几个MSP430的设计实例。
首先是LED闪烁实例。
我们可以利用MSP430的通用输入/输出引脚和计时器来实现LED的闪烁,实现简单的灯光效果。
其次是温度监测实例。
我们可以利用MSP430的模数转换器和温度传感器来实现温度的实时监测,根据温度变化来控制其他外设的工作状态。
最后是无线通信实例。
我们可以利用MSP430的串口通信接口和无线模块来实现与其他设备的无线通信,如蓝牙通信或Wi-Fi通信。
以上这些设计实例只是MSP430的一小部分应用案例,MSP430还可以应用于很多其他领域,如智能家居、工业自动化、医疗设备等。
它的低功耗和高性能使其成为许多嵌入式系统的理想选择。
总之,MSP430是一种功能强大、灵活性高的单片机,通过灵活配置和控制外设,可以实现各种应用需求。
在接下来的学习中,我们将更深入地了解MSP430的内部结构和编程实践,为设计更复杂的嵌入式系统奠定基础。
第六章习题与思考题
6.1 A T89S51中有几个定时器/计数器?是加1计数还是减1计数?
6.2 定时器/计数器有哪几种工作方式?各有什么特点?
6.3 定时器/计数器的定时频率和计数频率怎样确定?对外部计数频率有何限制?
6.4 控制寄存器TMOD和TCON各位的定义是什么?怎样确定各定时器/计数器的工作方式?
6.5 在工作方式3中,定时器/计数器T0和T1的应用有什么不同?
6.6 已知单片机时钟频率fosc=12MHz,当要求定时时间为50ms和25ms时,试为定时器/计数器编写初始化程序。
6.7 已知A T89S51时钟频率fosc=6MHZ,试利用定时器编写程序,使P1.0输出一个高低电位分别为40μs和120μs 的连续矩形脉冲波。
6.8 设外部脉冲由INT1端输入,试编写利用门控位GA TE和定时器T1测试脉冲宽度的程序。
6.9 一个定时器的定时时间有限,试设计几种能实现较长时间(超过一个定时器的定时时间)定时的方案。
6.10 已知A T89S51时钟频率为6MHz,试编写程序,利用T0工作在方式3,使P1.0和P1.1分别输出400μs和800μs 的方波。
6.11 试用中断方式设计秒发生器,即在A T89S51的P1.0口每秒产生一个机器周期的正脉冲,有P1.1口每分钟产生一个机器周期的正脉冲。
6.12 试用定时器中断技术设计一个秒闪电路,要求使发光二极管LED每秒闪亮400ms,设时钟频率为6MHz。