专题复习3函数
- 格式:doc
- 大小:6.95 MB
- 文档页数:5
2023年中考数学第一轮复习模块三 函数题型梳理题型一、反比例函数概念及其解析式 1.(2022·海南)若反比例函数(0)ky k x=≠的图象经过点(2,3)-,则它的图象也一定经过的点是( )A .(2,3)--B .(3,2)--C .(1,6)-D .(6,1)2.(2022·贵州遵义)反比例函数()0ky k x=≠与一次函数1y x =-交于点()3,A n ,则k 的值为__________.3(2022·黑龙江哈尔滨)已知反比例函数6y x=-的图象经过点()4,a ,则a 的值为___________.题型二、反比例函数的图像与性质1.(2022·北京)在平面直角坐标系xOy 中,若点12(2,),(5,)A y B y 在反比例函数(0)ky k x=>的图象上,则1y ______2y (填“>”“=”或“<”)2.(2022·广东)点()11,y ,()22,y ,()33,y ,()44,y 在反比例函数4y x=图象上,则1y ,2y ,3y ,4y 中最小的是( ) A .1y B .2yC .3yD .4y3.(2022·广西贺州)己知一次函数y kx b =+的图象如图所示,则y kx b =-+与by x=的图象为( )A .B .C .D .4.(2022·湖南)在同一平面直角坐标系中,函数1(0)y kx k =+≠和(0)ky k x=≠的图像大致是( )A .B .C .D .题型三、反比例函数k 的几何意义1.(2022·湖南郴州)如图,在函数()20=>y x x 的图像上任取一点A ,过点A 作y 轴的垂线交函数()80y x x=-<的图像于点B ,连接OA ,OB ,则AOB 的面积是( )A .3B .5C .6D .102.(2022·黑龙江)如图,在平面直角坐标系中,点O为坐标原点,平行四边形OBAD的顶点B在反比例函数3yx=的图象上,顶点A在反比例函数kyx=的图象上,顶点D在x轴的负半轴上.若平行四边形OBAD的面积是5,则k的值是()A.2B.1C.1-D.2-3.(2022·四川内江)如图,在平面直角坐标系中,点M为x轴正半轴上一点,过点M的直线l∥y轴,且直线l分别与反比例函数8yx=和kyx=的图象交于P、Q两点.若S∥POQ=15,则k的值为()A.38B.22C.﹣7D.﹣224.(2022·广西桂林)如图,点A在反比例函数y=kx的图像上,且点A的横坐标为a(a<0),AB∥y轴于点B,若AOB的面积是3,则k的值是_____.5.(2022·辽宁)如图,在平面直角坐标系中,∥AOB 的边OB 在y 轴上,边AB 与x 轴交于点D ,且BD =AD ,反比例函数y =kx(x >0)的图像经过点A ,若S ∥OAB =1,则k 的值为___________.6.(2022·山东烟台)如图,A ,B 是双曲线y =kx(x >0)上的两点,连接OA ,O B .过点A 作AC ∥x 轴于点C ,交OB 于点D .若D 为AC 的中点,∥AOD 的面积为3,点B 的坐标为(m ,2),则m 的值为 _____.7.(2022·黑龙江齐齐哈尔)如图,点A 是反比例函数(0)ky x x=<图象上一点,过点A 作AB ∥y 轴于点D ,且点D 为线段AB 的中点.若点C 为x 轴上任意一点,且∥ABC 的面积为4,则k =______________.8.(2022·贵州铜仁)如图,点A 、B 在反比例函数ky x=的图象上,AC y ⊥轴,垂足为D ,BC AC ⊥.若四边形AOBC 间面积为6,12AD AC =,则k 的值为_______.题型四、反比例函数的不等式问题1.(2022·湖北荆州)如图是同一直角坐标系中函数12y x =和22y x =的图象.观察图象可得不等式22x x>的解集为( )A .11x -<<B .1x <-或1x >C .1x <-或01x <<D .10x -<<或1x >2.(2022·内蒙古呼和浩特)点()121,-a y 、()2,a y 在反比例函数(0)ky k x=>的图象上,若120y y <<,则a 的取值范围是______.3.(2022·广西梧州)如图,在平面直角坐标系中,一次函数1y kx b =+的图象与反比例函数2my x=的图象交于点()()2,2,,1A B n --.当12y y <时,x 的取值范围是_________.题型五、反比例函数的实际问题1.(2022·江苏常州)某城市市区人口x 万人,市区绿地面积50万平方米,平均每人拥有绿地y 平方米,则y 与x 之间的函数表达式为( ) A .50y x =+ B .50y x =C .50y x=D .50=x y2.(2022·河南)呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的1R ),1R 的阻值随呼气酒精浓度K 的变化而变化(如图2),血液酒精浓度M 与呼气酒精浓度K 的关系见图3.下列说法不正确...的是( )A .呼气酒精浓度K 越大,1R 的阻值越小B .当K =0时,1R 的阻值为100C .当K =10时,该驾驶员为非酒驾状态D .当120=R 时,该驾驶员为醉驾状态3.(2022·山西)根据物理学知识,在压力不变的情况下,某物体承受的压强()Pa p 是它的受力面积2()m S 的反比例函数,其函数图象如图所示,当20.25m S =时,该物体承受的压强p 的值为_________ Pa .4.(2022·吉林)密闭容器内有一定质量的气体,当容器的体积V (单位:3m )变化时,气体的密度ρ(单位:3kg/m )随之变化.已知密度ρ与体积V 是反比例函数关系,它的图像如图所示.(1)求密度ρ关于体积V 的函数解析式; (2)当3m 10V =时,求该气体的密度ρ.题型六、反比例函数的综合题1.(2022·内蒙古通辽)如图,点D 是OABC 内一点,AD 与x 轴平行,BD 与y 轴平行,BD =,120BDC ∠=︒,BCD S =△()0ky x x =<的图像经过C ,D 两点,则k 的值是( )A .-B .6-C .-D .12-2.(2022·湖北十堰)如图,正方形ABCD 的顶点分别在反比例函数()110k y k x =>和()220ky k x=>的图象上.若BD y ∥轴,点D 的横坐标为3,则12k k +=( )A .36B .18C .12D .93.(2022·贵州毕节)如图,在平面直角坐标系中,正方形ABCD 的顶点A ,B 分别在x 轴、y 轴上,对角线交于点E ,反比例函数(0,0)ky x k x=>>的图像经过点C ,E .若点(3,0)A ,则k 的值是_________.4.(2022·贵州黔东南)如图,在平面直角坐标系中,等腰直角三角形ABC 的斜边BC x ⊥轴于点B ,直角顶点A 在y 轴上,双曲线()0ky k x=≠经过AC 边的中点D ,若BC =k =______.5.(2022·山东威海)正方形ABCD 在平面直角坐标系中的位置如图所示,点A 的坐标为(2,0),点B 的坐标为(0,4).若反比例函数y =k x(k ≠0)的图象经过点C ,则k 的值为 _____.6.(2022·四川宜宾)如图,∥OMN 是边长为10的等边三角形,反比例函数y =kx(x >0)的图象与边MN 、OM分别交于点A 、B (点B 不与点M 重合).若AB ∥OM 于点B ,则k 的值为______.题型七、反比例函数与一次函数综合1.(2022·山东聊城)如图,直线()30y px p =+≠与反比例函数()0ky k x=>在第一象限内的图象交于点()2,A q ,与y 轴交于点B ,过双曲线上的一点C 作x 轴的垂线,垂足为点D ,交直线3y px =+于点E ,且:3:4AOB COD S S =△△.(1)求k ,p 的值;(2)若OE 将四边形BOCE 分成两个面积相等的三角形,求点C 的坐标.2.(2022·黑龙江大庆)已知反比例函数k y x =和一次函数1y x =-,其中一次函数图象过(3,)a b ,31,3k a b ⎛⎫++ ⎪⎝⎭两点.(1)求反比例函数的关系式;(2)如图,函数1,33y x y x ==的图象分别与函数(0)ky x x =>图象交于A ,B 两点,在y 轴上是否存在点P ,使得ABP △周长最小?若存在,求出周长的最小值;若不存在,请说明理由.3.(2022·黑龙江绥化)在平面直角坐标系中,已知一次函数11y k x b =+与坐标轴分别交于()5,0A ,50,2B ⎛⎫⎪⎝⎭两点,且与反比例函数22ky x =的图象在第一象限内交于P ,K 两点,连接OP ,OAP △的面积为54.(1)求一次函数与反比例函数的解析式; (2)当21y y >时,求x 的取值范围;(3)若C 为线段OA 上的一个动点,当PC KC +最小时,求PKC 的面积.4.(2022·湖南岳阳)如图,反比例函数()0ky k x=≠与正比例函数()0y mx m =≠的图象交于点()1,2A -和点B ,点C 是点A 关于y 轴的对称点,连接AC ,BC .(1)求该反比例函数的解析式; (2)求ABC 的面积;(3)请结合函数图象,直接写出不等式kmx x<的解集.5.(2022·四川宜宾)如图,一次函数y ax b =+的图象与x 轴交于点()40A ,,与y 轴交于点B ,与反比例函数()0ky x x=>的图象交于点C 、D .若tan 2BAO ∠=,3BC AC =.(1)求一次函数和反比例函数的表达式; (2)求OCD 的面积.6.(2022·湖北恩施)如图,在平面直角坐标系中,O 为坐标原点,已知∥ACB =90°,A (0,2),C (6,2).D 为等腰直角三角形ABC 的边BC 上一点,且S △ABC =3S △ADC .反比例函数y 1=kx(k ≠0)的图象经过点D .(1)求反比例函数的解析式;(2)若AB 所在直线解析式为()20y ax b a =+≠,当12y y >时,求x 的取值范围.7.(2022·山东青岛)如图,一次函数y kx b =+的图象与x 轴正半轴相交于点C ,与反比例函数2y x=-的图象在第二象限相交于点(1,)A m -,过点A 作AD x ⊥轴,垂足为D ,AD CD =.(1)求一次函数的表达式;(2)已知点(,0)E a 满足CE CA =,求a 的值.8.(2022·辽宁营口)如图,在平面直角坐标系中,OAC 的边OC 在y 轴上,反比例函数()0ky x x=>的图象经过点A 和点()2,6B ,且点B 为AC 的中点.(1)求k 的值和点C 的坐标; (2)求OAC 的周长.9.(2022·内蒙古呼和浩特)如图,在平面直角坐标系中,一次函数1y kx b =+的图象与反比例函数2my x=的图象交于A 、B 两点,且A 点的横坐标为1,过点B 作BE x ∥轴,AD BE ⊥于点D ,点71,22⎛⎫- ⎪⎝⎭C 是直线BE上一点,且AC =.(1)求一次函数与反比例函数的解析式; (2)根据图象,请直接写出不等式0mkx b x+-<的解集.10.(2022·四川达州)如图,一次函数1y x=+与反比例函数kyx=的图象相交于(,2)A m,B两点,分别连接OA,OB.(1)求这个反比例函数的表达式;(2)求AOB的面积;(3)在平面内是否存在一点P,使以点O,B,A,P为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.2023年中考数学第一轮复习模块三 函数题型梳理题型一、反比例函数概念及其解析式 1.(2022·海南)若反比例函数(0)ky k x=≠的图象经过点(2,3)-,则它的图象也一定经过的点是( )A .(2,3)--B .(3,2)--C .(1,6)-D .(6,1) 【答案】C【分析】先利用反比例函数(0)ky k x=≠的图象经过点(2,3)-,求出k 的值,再分别计算选项中各点的横纵坐标之积,然后根据反比例函数图象上点的坐标特征进行判断. 【详解】解:∥反比例函数(0)ky k x=≠的图象经过点(2,3)-,∥k =2×(﹣3)=﹣6,∥(﹣2)×(﹣3)=6≠﹣6, (﹣3)×(﹣2)=6≠﹣6, 1×(﹣6)=﹣6, ,6×1=6≠﹣6,则它一定还经过(1,﹣6),故选:C .2.(2022·贵州遵义)反比例函数()0ky k x=≠与一次函数1y x =-交于点()3,A n ,则k 的值为__________. 【答案】6【分析】将点()3,A n ,代入1y x =-,求得n ,进而即可求解. 【详解】解:将点()3,A n ,代入1y x =-, 即312n =-=, ()3,2A ∴,326k ∴=⨯=, 故答案为:6.【点睛】本题考查了一次函数与反比例函数综合,求得点A 的坐标是解题的关键.3(2022·黑龙江哈尔滨)已知反比例函数6y x =-的图象经过点()4,a ,则a 的值为___________.【答案】32-【分析】把点的坐标代入反比例函数解析式,求出a 的值即可. 【详解】解:把点()4,a 代入6y x =-得:6342a =-=-. 故答案为:32-.题型二、反比例函数的图像与性质1.(2022·北京)在平面直角坐标系xOy 中,若点12(2,),(5,)A y B y 在反比例函数(0)ky k x=>的图象上,则1y ______2y (填“>”“=”或“<”)【答案】>【分析】根据反比例函数的性质,k >0,在每个象限内,y 随x 的增大而减小,进行判断即可. 【详解】解:∥k >0,∥在每个象限内,y 随x 的增大而减小, 25<, ∥1y >2y . 故答案为:>.2.(2022·广东)点()11,y ,()22,y ,()33,y ,()44,y 在反比例函数4y x=图象上,则1y ,2y ,3y ,4y 中最小的是( ) A .1yB .2yC .3yD .4y【答案】D【分析】根据反比例函数的性质可直接进行求解. 【详解】解:由反比例函数解析式4y x=可知:40>,∥在每个象限内,y 随x 的增大而减小,∥点()11,y ,()22,y ,()33,y ,()44,y 在反比例函数4y x=图象上, ∥1234y y y y >>>,故选D .3.(2022·广西贺州)己知一次函数y kx b =+的图象如图所示,则y kx b =-+与by x=的图象为( )A .B .C .D .【答案】A【分析】根据题意可得0,0k b >>,从而得到一次函数y kx b =-+的图象经过第一、二、四象限,反比函数by x=的图象位于第一、三象限内,即可求解. 【详解】解:根据题意得:0,0k b >>, ∥0k -<,∥一次函数y kx b =-+的图象经过第一、二、四象限,反比函数by x=的图象位于第一、三象限内.故选:A 4.(2022·湖南)在同一平面直角坐标系中,函数1(0)y kx k =+≠和(0)ky k x=≠的图像大致是( )A .B .C .D .【答案】D【分析】分0k >或0k <,根据一次函数与反比例函数的性质即可得出答案. 【详解】解:当0k >时,一次函数1y kx =+经过第一、二、三象限,反比例函数ky x=位于第一、三象限;当0k <时,一次函数1y kx =+经过第一、二、四象限,反比例函数ky x=位于第二、四象限; 故选:D .题型三、反比例函数k 的几何意义1.(2022·湖南郴州)如图,在函数()20=>y x x 的图像上任取一点A ,过点A 作y 轴的垂线交函数()80y x x=-<的图像于点B ,连接OA ,OB ,则AOB 的面积是( )A .3B .5C .6D .10【答案】B【分析】作AD ∥x 轴,BC ∥x 轴,由1122OBE OCBE AOE ADOE S S S S ∆∆==,即可求解; 【详解】解:如图,作AD ∥x 轴,BC ∥x 轴,∥8OCBE S BC BE =⋅=,2ADOE S AD AE =⋅=∥10OCBE ADOE S S += ∥1122OBE OCBE AOE ADOE S S S S ∆∆==,∥()152AOB OBE AOE OCBE ADOE S S S S S ∆∆∆=+=+=故选:B . 2.(2022·黑龙江)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OBAD 的顶点B 在反比例函数3y x=的图象上,顶点A 在反比例函数ky x=的图象上,顶点D 在x 轴的负半轴上.若平行四边形OBAD 的面积是5,则k 的值是( )A .2B .1C .1-D .2-【答案】D【分析】连接OA ,设AB 交y 轴于点C ,根据平行四边形的性质可得1522AOBOBADS S ==,AB ∥OD ,再根据反比例函数比例系数的几何意义,即可求解.【详解】解:如图,连接OA ,设AB 交y 轴于点C ,∥四边形OBAD 是平行四边形,平行四边形OBAD 的面积是5, ∥1522AOBOBADSS ==,AB ∥OD ,∥AB ∥y 轴, ∥点B 在反比例函数3y x=的图象上,顶点A 在反比例函数ky x=的图象上, ∥3,22COBCOAkSS ==-,∥35222AOBCOBCOAk SSS=+=-=,解得:2k =-.故选:D .3.(2022·四川内江)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数8y x =和ky x=的图象交于P 、Q 两点.若S ∥POQ =15,则k 的值为( )A .38B .22C .﹣7D .﹣22【答案】D【分析】设点P (a ,b ),Q (a ,k a ),则OM =a ,PM =b ,MQ =k a-,则PQ =PM +MQ =kb a -,再根据ab =8,S △POQ =15,列出式子求解即可.【详解】解:设点P (a ,b ),Q (a ,k a ),则OM =a ,PM =b ,MQ =ka-,∥PQ =PM +MQ =kb a-. ∥点P 在反比例函数y =8x的图象上,∥ab =8.∥S △POQ =15,∥12PQ •OM =15,∥12a (b ﹣k a)=15.∥ab ﹣k =30. ∥8﹣k =30, 解得:k =﹣22. 故选:D .4.(2022·广西桂林)如图,点A 在反比例函数y =kx的图像上,且点A 的横坐标为a (a <0),AB ∥y 轴于点B ,若AOB 的面积是3,则k 的值是 _____.【答案】﹣6【分析】根据题意和反比例函数的性质,可以得到k 的值. 【详解】解:设点A 的坐标为(a ,ka),由图可知点A 在第二象限,∥a <0,0ka>, ∥k <0,∥∥AOB 的面积是3, ∥32k a a⋅=,解得k =-6, 故答案为:-6. 5.(2022·辽宁)如图,在平面直角坐标系中,∥AOB 的边OB 在y 轴上,边AB 与x 轴交于点D ,且BD =AD ,反比例函数y =kx(x >0)的图像经过点A ,若S ∥OAB =1,则k 的值为___________.【答案】2【分析】作A 过x 轴的垂线与x 轴交于C ,证明∥ADC ∥∥BDO ,推出S ∥OAC = S ∥OAB =1,由此即可求得答案.【详解】解:设A (a ,b ) ,如图,作A 过x 轴的垂线与x 轴交于C ,则:AC =b ,OC =a ,AC ∥OB ,∥∥ACD =∥BOD =90°,∥ADC =∥BDO ,∥∥ADC ∥∥BDO ,∥S ∥ADC =S ∥BDO ,∥S ∥OAC =S ∥AOD + S ∥ADC =S ∥AOD + S ∥BDO = S ∥OAB =1, ∥12×OC ×AC =12ab =1, ∥ab =2,∥A (a ,b ) 在y =k x上, ∥k =ab =2 .故答案为:2 .6.(2022·山东烟台)如图,A ,B 是双曲线y =k x(x >0)上的两点,连接OA ,O B .过点A 作AC ∥x 轴于点C ,交OB 于点D .若D 为AC 的中点,∥AOD 的面积为3,点B 的坐标为(m ,2),则m 的值为 _____.【答案】6【分析】应用k 的几何意义及中线的性质求解. 【详解】解:D 为AC 的中点,AOD ∆的面积为3,∴AOC ∆的面积为6,所以122k m ==,解得:m =6.故答案为:6.7.(2022·黑龙江齐齐哈尔)如图,点A 是反比例函数(0)k y x x=<图象上一点,过点A 作AB ∥y 轴于点D ,且点D 为线段AB 的中点.若点C 为x 轴上任意一点,且∥ABC 的面积为4,则k =______________.【答案】4- 【分析】设点,k A a a ⎛⎫ ⎪⎝⎭,利用()1242=⨯-⨯=ABC k S a a △即可求出k 的值. 【详解】解:设点,k A a a ⎛⎫ ⎪⎝⎭, ∥点D 为线段AB 的中点.AB ∥y 轴∥22AB AD a ==-,又∥()1242=⨯-⨯=ABC k S a a△, ∥4k =-.故答案为:4-8.(2022·贵州铜仁)如图,点A 、B 在反比例函数k y x =的图象上,AC y ⊥轴,垂足为D ,BC AC ⊥.若四边形AOBC 间面积为6,12AD AC =,则k 的值为_______.【答案】3 【分析】设点,k A a a ⎛⎫ ⎪⎝⎭,可得AD a =,k OD a =,从而得到CD =3a ,再由BC AC ⊥.可得点B 3,3⎛⎫ ⎪⎝⎭k a a ,从而得到23k BC a=,然后根据AOD AOBC OBCD S S S =+四边形梯形,即可求解. 【详解】解∥设点,k A a a ⎛⎫ ⎪⎝⎭, ∥AC y ⊥轴,∥AD a =,k OD a=,∥12AD AC =, ∥AC 2a =,∥CD =3a ,∥BC AC ⊥.AC y ⊥轴,∥BC ∥y 轴,∥点B 3,3⎛⎫ ⎪⎝⎭k a a , ∥233k k k BC a a a=-=, ∥AOD AOBC OBCD S S S =+四边形梯形,四边形AOBC 间面积为6, ∥12136232k k a k a a ⎛⎫+⨯=+ ⎪⎝⎭, 解得:3k =.故答案为:3.题型四、反比例函数的不等式问题1.(2022·湖北荆州)如图是同一直角坐标系中函数12y x =和22y x =的图象.观察图象可得不等式22x x>的解集为( )A .11x -<<B .1x <-或1x >C .1x <-或01x <<D .10x -<<或1x >【答案】D 【分析】根据图象进行分析即可得结果;【详解】解:∥22x x >∥12y y >由图象可知,函数12y x =和22y x=分别在一、三象限有一个交点,交点的横坐标分别为11x x ==-,, 由图象可以看出当10x -<<或1x >时,函数12y x =在22y x =上方,即12y y >,故选:D .2.(2022·内蒙古呼和浩特)点()121,-a y 、()2,a y 在反比例函数(0)k y k x=>的图象上,若120y y <<,则a 的取值范围是______.【答案】1a > 【分析】反比例函数中k >0,则同一象限内y 随x 的增大而减小,由于120y y <<,得到021a a <-<,从而得到a 的取值范围.【详解】解:∥在反比例函数y =k x中,k >0, ∥在同一象限内y 随x 的增大而减小,∥120y y <<,∥这两个点在同一象限,∥021a a <<-,解得:1a >,故答案为:1a >.3.(2022·广西梧州)如图,在平面直角坐标系中,一次函数1y kx b =+的图象与反比例函数2m y x=的图象交于点()()2,2,,1A B n --.当12y y <时,x 的取值范围是_________.【答案】-2<x <0或x >4【分析】先求出n 的值,再观察图象,写出一次函数的图象在反比例函数的图象下方时对应的自变量的取值范围即可.【详解】解:∥反比例函数2m y x=的图象经过A (-2,2), ∥m =-2×2=-4, ∥4y x=-, 又反比例函数4y x=-的图象经过B (n ,-1), ∥n =4,∥B (4,-1), 观察图象可知:当12y y <时,图中一次函数的函数值小于反比例函数的函数值,则x 的取值范围为:-2<x <0或x >4.故答案为:-2<x <0或x >4.题型五、反比例函数的实际问题1.(2022·江苏常州)某城市市区人口x 万人,市区绿地面积50万平方米,平均每人拥有绿地y 平方米,则y 与x 之间的函数表达式为( )A .50y x =+B .50y x =C .50y x =D .50=x y 【答案】C【分析】根据:平均每人拥有绿地y =总面积总人数,列式求解. 【详解】解:依题意,得:平均每人拥有绿地50y x=. 故选:C2.(2022·河南)呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的1R ),1R 的阻值随呼气酒精浓度K 的变化而变化(如图2),血液酒精浓度M 与呼气酒精浓度K 的关系见图3.下列说法不正确...的是( )A .呼气酒精浓度K 越大,1R 的阻值越小B .当K =0时,1R 的阻值为100C .当K =10时,该驾驶员为非酒驾状态D .当120=R 时,该驾驶员为醉驾状态【答案】C【分析】根据函数图象分析即可判断A ,B ,根据图3公式计算即可判定C ,D .【详解】解:根据函数图象可得,A.R 随K 的增大而减小,则呼气酒精浓度K 越大,1R 的阻值越小,故正确,不符合题意;B. 当K =0时,1R 的阻值为100,故正确,不符合题意;C. 当K =10时,则332200102200101022mg/100ml M K --=⨯⨯=⨯⨯=,该驾驶员为酒驾状态,故该选项不正确,符合题意;D. 当120=R 时,40K =,则332200102200401088mg/100ml M K --=⨯⨯=⨯⨯=,该驾驶员为醉驾状态,故该选项正确,不符合题意;故选:C.3.(2022·山西)根据物理学知识,在压力不变的情况下,某物体承受的压强()Pa p 是它的受力面积2()m S 的反比例函数,其函数图象如图所示,当20.25m S =时,该物体承受的压强p 的值为_________ Pa .【答案】400【分析】先根据待定系数法求出反比例函数解析式,再把S =0.25代入,问题得解. 【详解】解:设反比例函数的解析式为()0k p k S=≠, 由图象得反比例函数经过点(0.1,1000),∥0.11000100k =⨯=,∥反比例函数的解析式为100p S =, 当S =0.25时,1004000.25p ==.故答案为:400 4.(2022·吉林)密闭容器内有一定质量的气体,当容器的体积V (单位:3m )变化时,气体的密度ρ(单位:3kg/m )随之变化.已知密度ρ与体积V 是反比例函数关系,它的图像如图所示.(1)求密度ρ关于体积V 的函数解析式;(2)当3m 10V =时,求该气体的密度ρ.【答案】(1)()100V Vρ=> (2)13kg/m【分析】(1)用待定系数法即可完成;(2)把V =10值代入(1)所求得的解析式中,即可求得该气体的密度.(1)设密度ρ关于体积V 的函数解析式为()0,0k V k V ρ=>≠, 把点A 的坐标代入上式中得:2.54k =, 解得:k =10, ∥()100V V ρ=>. (2)当3m 10V =时,10110ρ==(3kg/m ). 即此时该气体的密度为13kg/m .题型六、反比例函数的综合题1.(2022·内蒙古通辽)如图,点D 是OABC 内一点,AD 与x 轴平行,BD 与y 轴平行,BD =,120BDC ∠=︒,BCD S =△()0k y x x =<的图像经过C ,D 两点,则k 的值是( )A .-B .6-C .-D .12-【答案】C【分析】过点C 作CE ∥y 轴于点E ,延长BD 交CE 于点F ,可证明∥COE ∥∥ABE (AAS ),则OE =BD由S ∥BDC =12•BD •CF CF =9,由∥BDC =120°,可知∥CDF =60°,所以DF D 的纵坐标为C (m ,D (m +9,,则k m +9),求出m 的值即可求出k 的值.【详解】解:过点C 作CE ∥y 轴于点E ,延长BD 交CE 于点F ,∥四边形OABC 为平行四边形,∥AB ∥OC ,AB =OC ,∥∥COE =∥ABD ,∥BD ∥y 轴,∥∥ADB =90°,∥∥COE ∥∥ABD (AAS ),∥OE =BD∥S ∥BDC =12•BD •CF ∥CF =9,∥∥BDC =120°,∥∥CDF =60°,∥DF∥点D 的纵坐标为设C (m,D (m +9,,∥反比例函数y =k x(x <0)的图像经过C 、D 两点, ∥km +9),∥m =-12,∥k =-故选:C .2.(2022·湖北十堰)如图,正方形ABCD 的顶点分别在反比例函数()110k y k x =>和()220k y k x=>的图象上.若BD y ∥轴,点D 的横坐标为3,则12k k +=( )A .36B .18C .12D .9【答案】B 【分析】设P A =PB =PC =PD =t (t ≠0),先确定出D (3,23k ),C (3-t ,23k +t ),由点C 在反比例函数y =2k x 的图象上,推出t =3-23k ,进而求出点B 的坐标(3,6-23k ),再点C 在反比例函数y =1k x的图象上,整理后,即可得出结论.【详解】解:连接AC ,与BD 相交于点P ,设P A =PB =PC =PD =t (t ≠0).∥点D 的坐标为(3,23k ), ∥点C 的坐标为(3-t ,23k +t ). ∥点C 在反比例函数y =2k x 的图象上, ∥(3-t )(23k +t )=k2,化简得:t =3-23k , ∥点B 的纵坐标为23k +2t =23k +2(3-23k )=6-23k , ∥点B 的坐标为(3,6-23k ),∥3×(6-23k )=1k ,整理,得:1k +2k =18. 故选:B .3.(2022·贵州毕节)如图,在平面直角坐标系中,正方形ABCD 的顶点A ,B 分别在x 轴、y 轴上,对角线交于点E ,反比例函数(0,0)k y x k x=>>的图像经过点C ,E .若点(3,0)A ,则k 的值是_________.【答案】4【分析】作CF 垂直y 轴, 设点B 的坐标为(0,a ),可证明AOB BFC ≌(AAS ),得到CF =OB =a ,BF =AO =3,可得C 点坐标,因为E 为正方形对称线交点,所以E 为AC 中点,可得E 点坐标,将点C 、E 的坐标代入反比例函数解析式中,即可求出k 的值.【详解】作CF 垂直y 轴于点F ,如图,设点B 的坐标为(0,a ),∥四边形ABCD 是正方形,∥AB =BC ,∥ABC =90°,∥∥OBA +∥OAB =∥OBA +∥FBC =90°∥∥OAB =∥FBC在∥BFC 和∥AOB 中90OAB FBC AOB BFC AB BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∥AOB BFC ≌∥BF =AO =3,CF =OB =a∥OF =OB +BF =3+a∥点C 的坐标为(a ,3+a )∥点E 是正方形对角线交点,∥点E 是AC 中点,∥点E 的坐标为33,22+a +a ⎛⎫ ⎪⎝⎭∥反比例函数(0,0)k y x k x=>>的图象经过点C ,E ∥()()133/223k a a k a a⎧==+⎪+⎪⎨⎪=+⎪⎩ 解得:k =4故答案为:44.(2022·贵州黔东南)如图,在平面直角坐标系中,等腰直角三角形ABC 的斜边BC x ⊥轴于点B ,直角顶点A 在y 轴上,双曲线()0k y k x=≠经过AC 边的中点D,若BC =k =______. 【答案】32- 【分析】根据ABC 是等腰直角三角形,BC x ⊥轴,得到AOB是等腰直角三角形,再根据BC = A 点,C 点坐标,根据中点公式求出D 点坐标,将D 点坐标代入反比例函数解析式即可求得k△【详解】∥ABC 是等腰直角三角形,BC x ⊥轴.∥90904545ABO ABC ∠=︒-∠=︒-︒=︒;2AB ==. ∥AOB 是等腰直角三角形.∥BO AO ===故:A,(C .(D . 将D 点坐标代入反比例函数解析式.32D D k x y =⋅==-. 故答案为:32-. 5.(2022·山东威海)正方形ABCD 在平面直角坐标系中的位置如图所示,点A 的坐标为(2,0),点B 的坐标为(0,4).若反比例函数y =k x(k ≠0)的图象经过点C ,则k 的值为 _____.【答案】24【分析】过点C作CE∥y轴,由正方形的性质得出∥CBA=90°,AB=BC,再利用各角之间的关系得出∥CBE=∥BAO,根据全等三角形的判定和性质得出OA=BE=2,OB=CE=4,确定点C的坐标,然后代入函数解析式求解即可.【详解】解:如图所示,过点C作CE∥y轴,∥点B(0,4),A(2,0),∥OB=4,OA=2,∥四边形ABCD为正方形,∥∥CBA=90°,AB=BC,∥∥CBE+∥ABO=90°,∥∥BAO+∥ABO=90°,∥∥CBE=∥BAO,∥∥CEB=∥BOA=90°,∥ABO BCE,∥OA=BE=2,OB=CE=4,∥OE=OB+BE=6,∥C(4,6),将点C代入反比例函数解析式可得:k=24,故答案为:24.6.(2022·四川宜宾)如图,∥OMN是边长为10的等边三角形,反比例函数y=kx(x>0)的图象与边MN、OM分别交于点A、B(点B不与点M重合).若AB∥OM于点B,则k的值为______.【答案】【分析】过点B 作BC ∥x 轴于点C ,过点A 作AD ∥x 轴于点D ,设OC =x ,利用含30度角的直角三角形的性质以及勾股定理求得点B (x ),点A (15-2x ,-,再利用反比例函数的性质列方程,解方程即可求解.【详解】解:过点B 作BC ∥x 轴于点C ,过点A 作AD ∥x 轴于点D ,如图:∥∥OMN 是边长为10的等边三角形,∥OM =MN =ON =10,∥MON =∥MNO =∥M =60°,∥∥OBC =∥MAB =∥NAD =30°,设OC =x ,则OB =2x ,BC ,MB =10-2x ,MA =2MB =20-4x ,∥NA =10-MA =4x -10,DN =12NA =2x -5,AD x -- ∥OD =ON -DN =15-2x ,∥点B (x ),点A (15-2x ,-,∥反比例函数y =k x(x >0)的图象与边MN 、OM 分别交于点A 、B ,∥x =(15-2x -,解得x =5(舍去)或x =3,∥点B (3,,∥k题型七、反比例函数与一次函数综合1.(2022·山东聊城)如图,直线()30y px p =+≠与反比例函数()0k y k x=>在第一象限内的图象交于点()2,A q ,与y 轴交于点B ,过双曲线上的一点C 作x 轴的垂线,垂足为点D ,交直线3y px =+于点E ,且:3:4AOB COD S S =△△.(1)求k ,p 的值;(2)若OE 将四边形BOCE 分成两个面积相等的三角形,求点C 的坐标.【答案】(1)8k ,12p = (2)点C 的坐标为(4,2)【分析】(1)先求出点B 的坐标,得到3OB =,结合点A 的横坐标为2,求出AOB 的面积,再利用:3:4AOB COD S S =△△求出4COD S =,设,k C m m ⎛⎫ ⎪⎝⎭,代入面积中求出k ,得到反比例函数解析式,再将点A 横坐标代入出点A 纵坐标,最后将点A 坐标代入直线()30y px p =+≠即可求解;(2)根据(1)中点C 的坐标得到点E 的坐标,结合OE 将四边形BOCE 分成两个面积相等的三角形,列出关于m 的方程,解方程即可求解.(1)解:∥直线3y px =+与y 轴交点为B ,∥()0,3B ,即3OB =.∥点A 的横坐标为2, ∥13232AOB S =⨯⨯=. ∥:3:4AOB COD S S =△△,∥4COD S =, 设,k C m m ⎛⎫ ⎪⎝⎭,∥142k m m⋅=, 解得8k .∥点()2,A q 在双曲线8y x=上, ∥4q =, 把点()2,4A 代入3y px =+,得12p =, ∥8k ,12p =; (2)解:由(1)得,k C m m ⎛⎫ ⎪⎝⎭, ∥1,32E m m ⎛⎫+ ⎪⎝⎭. ∥OE 将四边形BOCE 分成两个面积相等的三角形,∥BOE COE S S =△△, ∥32BOE S π=△,13422COE m S m ⎛⎫=+- ⎪⎝⎭△, ∥3134222m m π⎛⎫=+- ⎪⎝⎭, 解得4m =或4m =-(不符合题意,舍去),∥点C 的坐标为(4,2).2.(2022·黑龙江大庆)已知反比例函数k y x =和一次函数1y x =-,其中一次函数图象过(3,)a b ,31,3k a b ⎛⎫++ ⎪⎝⎭两点.(1)求反比例函数的关系式;(2)如图,函数1,33y x y x ==的图象分别与函数(0)k y x x =>图象交于A ,B 两点,在y 轴上是否存在点P ,使得ABP △周长最小?若存在,求出周长的最小值;若不存在,请说明理由.【答案】(1)3y x=(2)【分析】(1)用待定系数法求出函数解析式;(2)作点B 关于y 轴的对称点'B ,连接'AB ,交y 轴于点P ,进行计算即可;(1) 解:把(3,)(31,)3k a b a b ++,代入1y x =-,得 313113b a k b a =-⎧⎪⎨+=+-⎪⎩, 解得,3k =, 所以反比例函数解析式是3y x=;(2)存在点P 使∥ABP 周长最小,理由: 解133y x y x ⎧=⎪⎪⎨⎪=⎪⎩和33y x y x =⎧⎪⎨=⎪⎩得, 31x y =±⎧⎨=±⎩和13x y =±⎧⎨=±⎩, 0x ,∴31x y =⎧⎨=⎩和13x y , ∴()()3,1,1,3A B ,作点B 关于y 轴的对称点'B ,连接'AB ,交y 轴于点P ,当点A 、P 、'B 在一条直线上时,线段'AB 的长度最短,所以存在点P 使∥ABP 周长最小,∥ABP 的周长=AB BP AP ++'AP AB B A =++'AB B A =+ ,===3.(2022·黑龙江绥化)在平面直角坐标系中,已知一次函数11y k x b =+与坐标轴分别交于()5,0A ,50,2B ⎛⎫ ⎪⎝⎭两点,且与反比例函数22k y x =的图象在第一象限内交于P ,K 两点,连接OP ,OAP △的面积为54.(1)求一次函数与反比例函数的解析式;(2)当21y y >时,求x 的取值范围;(3)若C 为线段OA 上的一个动点,当PC KC +最小时,求PKC 的面积.【答案】(1)115,22y x =-+22.y x= (2)01x <<或4x >, (3)65【分析】(1)先运用待定系数法求出直线解析式,再根据OAP △的面积为54和直线解析式求出点P 坐标,从而可求出反比例函数解析式;(2)联立方程组并求解可得点K 的坐标,结合函数图象可得出x 的取值范围;(3)作点K 关于x 轴的对称点K ',连接KK ',PK '交x 轴于点C ,连接KC ,则PC +KC 的值最小,求出点C 的坐标,再根据PKC AKM KMC PAC S S S S ∆∆∆∆=--求解即可.(1)解:∥一次函数11y k x b =+与坐标轴分别交于()5,0A ,50,2B ⎛⎫ ⎪⎝⎭两点, ∥把()5,0A ,50,2B ⎛⎫ ⎪⎝⎭代入11y k x b =+得, 1505,2k b b +=⎧⎪⎨=⎪⎩,解得,11252k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∥一次函数解析式为115,22y x =-+ 过点P 作PH x ⊥轴于点H ,∥(5,0),A∥5,OA 又5,4PAO S ∆= ∥15524PH ⨯⨯= ∥1,2PH = ∥151222x -+=, ∥4,x = ∥1(4,)2P ∥1(4,)2P 在双曲线上, ∥2142,2k =⨯= ∥22.y x= (2) 解:联立方程组得,15222y x y x ⎧=-+⎪⎪⎨⎪=⎪⎩解得,1112x y =⎧⎨=⎩ ,22412x y =⎧⎪⎨=⎪⎩∥(1,2),k根据函数图象可得,反比例函数图象在直线上方时,有01x <<或4x >, ∥当21y y >时,求x 的取值范围为01x <<或4x >,(3)解:作点K 关于x 轴的对称点K ',连接KK '交x 轴于点M ,则K '(1,-2),OM =1,连接PK '交x 轴于点C ,连接KC ,则PC +KC 的值最小, 设直线PK '的解析式为,y mx n =+ 把1(4,),(1,2)2P K '-代入得,2142m n m n +=-⎧⎪⎨+=⎪⎩解得,56176m n ⎧=⎪⎪⎨⎪=-⎪⎩∥直线PK '的解析式为517,66y x =- 当0y =时,106657x -=,解得,751x =, ∥17(,0)5C ∥175OC = ∥17121,55MC OC OM =-=-= 178555AC OA OC =-=-= 514AM OA OM =-=-=,∥PKC AKM KMC PAC S S S S ∆∆∆∆=--1112181422225252=⨯⨯-⨯⨯-⨯⨯ 122455=-- 65= 4.(2022·湖南岳阳)如图,反比例函数()0k y k x =≠与正比例函数()0y mx m =≠的图象交于点()1,2A -和点B ,点C 是点A 关于y 轴的对称点,连接AC ,BC .(1)求该反比例函数的解析式;(2)求ABC 的面积;(3)请结合函数图象,直接写出不等式k mx x<的解集. 【答案】(1)2y x =- (2)4(3)1x <-或01x <<【分析】(1)把点()1,2A -代入()0k y k x=≠可得k 的值,求得反比例函数的解析式; (2)根据对称性求得B 、C 的坐标然后利用三角形面积公式可求解. (3)根据图象得出不等式k mx x <的解集即可. (1)解:把点()1,2A -代入()0k y k x =≠得:21k =-, ∥2k =-, ∥反比例函数的解析式为2y x=-; (2)∥反比例函数()0k y k x=≠与正比例函数()0y mx m =≠的图象交于点()1,2A -和点B , ∥()1,2B -,∥点C 是点A 关于y 轴的对称点, ∥()1,2C ,∥2CD =, ∥()122242ABC S =⨯⨯+=△. (3) 根据图象得:不等式k mx x<的解集为1x <-或01x <<. 5.(2022·四川宜宾)如图,一次函数y ax b =+的图象与x 轴交于点()40A ,,与y 轴交于点B ,与反比例函数()0ky x x =>的图象交于点C 、D .若tan 2BAO ∠=,3BC AC =.。
2022届高三高考数学复习各地试卷精选专项练习03:函数及其应用【含答案】一、单选题1.(2021·聊城市·山东聊城一中高三一模)果农采摘水果,采摘下来的水果会慢慢失去新鲜度.已知某种水果失去新鲜度h 与其采摘后时间t (天)满足的函数关系式为t h m a =⋅.若采摘后10天,这种水果失去的新鲜度为10%,采摘后20天,这种水果失去的新鲜度为20%.那么采摘下来的这种水果在多长时间后失去50%新鲜度(已知lg 20.3≈,结果取整数)( ) A .23天 B .33天 C .43天 D .50天【答案】B 【解析】根据题设条件先求出m 、a ,从而得到1101220t h =⋅,据此可求失去50%新鲜度对应的时间.【详解】1010202,10%120%20a m a m a m ⎧⎧==⋅⎪⎪⇒⎨⎨=⋅=⎪⎪⎩⎩,故1102a =,故1101220t h =⋅, 令12h =,∴10210,lg 2110tt=∴=,故10330.3t =≈, 故选:B.2.(2021·辽宁沈阳市·高三一模)5G 技术的数学原理之一是著名的香农公式:21S C Wlog N⎛⎫=+⎪⎝⎭.它表示:在受噪声干扰的信道中,最大信息传递速度C 取决于信道带宽W ,信道内信号的平均功率S ,信道内部的高斯噪声功率N 的大小,其中SN叫做信噪比.当信噪比较大时,公式中真数中的1可以忽略不计.假设目前信噪比为1600,若不改变带宽W ,而将最大信息传播速度C 提升50%,那么信噪比SN要扩大到原来的约( ) A .10倍 B .20倍 C .30倍 D .40倍【答案】D【解析】根据题意可得21600C Wlog =,()2316002C Wlog t =,两式联立,再利用对数函数的单调性求解. 【详解】由条件可知21600C Wlog =, 设将最大信息传播速度C 提升50%, 那么信噪比SN要扩大到原来的t 倍, 则()2316002C Wlog t =, 所以()223160016002log log t =,即()322216001600log log t =,所以3216001600t =, 解得40t =, 故答案为:D3.(2021·广东广州市·高三一模)2020年11月10日,我国“奋斗者”号载人深潜器在马里亚纳海沟成功坐底,下潜深度达到惊人的10909m ,创造了我国载人深潜的新记录.当“奋斗者”号下潜至某一深度时,处于其正上方海面处的科考船用声呐装置向“奋斗者”号发射声波.已知声波在海水中传播的平均速度约为1450m /s ,若从发出至回收到声波所用时间为6s ,则“奋斗者”号的实际下潜深度约为( ) A .2900m B .4350mC .5800mD .8700m【答案】B 【解析】可得声波从海面传到“奋斗者”号的时间为3s ,即可求出实际下潜深度. 【详解】可得声波从海面传到“奋斗者”号的时间为163s 2⨯=, 则“奋斗者”号的实际下潜深度约为145034350m ⨯=. 故选:B.4.(2021·全国高三专题练习(理))溶液酸碱度是通过pH 计算的,pH 的计算公式为pH lg H +⎡⎤=-⎣⎦,其中H +⎡⎤⎣⎦表示溶液中氢离子的浓度,单位是摩尔/升,人体血液的氢离子的浓度通常在7.457.35110~110--⨯⨯之间,如果发生波动,就是病理现象,那么,正常人体血液的pH 值的范围是( ) A .[7.25,7.55] B .[7.25,7.45] C .[7.25,7.35] D .[7.35,7.45]【答案】D 【解析】按题设所给公式求相应的pH 值即可. 【详解】依题意,7.457.3512pH lg 1107.45,pH lg 1107.35--⎡⎤⎡⎤=-⨯==-⨯=⎣⎦⎣⎦,因此,正常人体血液的pH 值的范围是[7.35,7.45]. 故选:D .5.(2021·江苏盐城市·高三二模)在流行病学中,基本传染数是指每名感染者平均可传染的人数.当基本传染数高于1时,每个感染者平均会感染一个以上的人,从而导致感染这种疾病的人数量指数级增长.当基本传染数持续低于1时,疫情才可能逐渐消散.广泛接种疫苗可以减少疾病的基本传染数.假设某种传染病的基本传染数为0R ,1个感染者在每个传染期会接触到N 个新人,这N 人中有V 个人接种过疫苗(VN称为接种率),那么1个感染者新的传染人数为()0R N V N-.已知新冠病毒在某地的基本传染数0 2.5,R =为了使1个感染者传染人数不超过1,该地疫苗的接种率至少为( ) A .40% B .50%C .60%D .70%【答案】C 【解析】 由题意列不等式2.5()1N V N-≤,即可求出结果.【详解】 由题意可得:2.5() 1.51 2.5 2.560%2.5N V V N V N N N -≤⇒-≤⇒≥=故选:C.6.(2021·全国高三专题练习)函数ln ()x xf x x=的大致图象为A .B .C .D .【答案】A 【解析】将函数表达式化为()(),0ln ,0lnx x x x f x ln x x x>⎧==⎨--<⎩,由函数奇偶性得到BC 不正确,再由特殊值得到最终结果. 【详解】 因为()(),0ln ,0lnx x x x f x ln x x x>⎧==⎨--<⎩是奇函数排除,B C ,且当1x >时,()0f x >. 故答案为A.7.(2021·山东烟台市·高三一模)已知()f x 是定义在R 上的奇函数,()()2f x f x -=,当[]0,1x ∈时,()3f x x =,则( )A .()20210f =B .2是()f x 的一个周期C .当()1,3x ∈时,()()31f x x =-D .()0f x >的解集为()()4,42k k k Z +∈【答案】D 【解析】由()f x 是定义在R 上的奇函数、()()2f x f x -=可得()f x 的最小正周期是4,即可判断A 、B 的正误,然后可得[]1,1x ∈-时,()3f x x =,然后结合条件可判断C 、D 的正误.【详解】因为()f x 是定义在R 上的奇函数,所以()()()2f x f x f x -==--所以()()2f x f x +=-,所以()()()42f x f x f x +=-+= 所以()f x 的最小正周期是4,故B 错误()()202111f f ==,故A 错误因为当[]0,1x ∈时,()3f x x =,()f x 是定义在R 上的奇函数所以当[]1,1x ∈-时,()3f x x =,当()1,3x ∈时,()21,1x -∈-,()()()322f x f x x =-=-,故C 错误因为当()0,2x ∈时,()0f x >,()f x 的最小正周期是4, 所以()0f x >的解集为()()4,42k k k Z +∈,故D 正确 故选:D8.(2021·江苏常州市·高三一模)若()316,00,0x x f x xx ⎧-≠⎪=⎨⎪=⎩则满足(10)xf x -≥的x 的取值范围是( ) A .[)1,1][3,-+∞ B .(,1][0,1][3,)-∞-⋃⋃+∞ C .[1,0][1,)-⋃+∞ D .(,3][1,0][1,)-∞-⋃-⋃+∞【答案】B 【解析】按1x =或0,0x <,1x >和01x <<四种情况,分别化简解出不等式,可得x 的取值范围. 【详解】①当1x =或0时,(1)0xf x -=成立;②当0x <时,()3(1601)11x x xf x x ⎡⎤=--⎢⎥-⎣⎦-≥,可有()31611x x -≤-,解得1x ≤-; ③当0x >且1x ≠时,()3(1601)11x x xf x x ⎡⎤=--⎢⎥-⎣⎦-≥ 若1x >,则()4116x -≥,解得3x ≥ 若01x <<,则()4116x -≤,解得01x <<所以(,1][0,1][3,)x ∈-∞-⋃⋃+∞则原不等式的解为(,1][0,1][3,)x ∈-∞-⋃⋃+∞, 故选:B9.(2021·山东滨州市·高三一模)定义在R 上的函数()f x 满足()()f x f x -=-,且[)12,0,x x ∀∈+∞,12x x ≠时,都有()()()12120x x f x f x -->⎡⎤⎣⎦,则( )A .()12431log 3log 24f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭B .()12341log log 324f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭C .()12341log 2log 34f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭D .()124312log 3log 4f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭【答案】B 【解析】由题意可知函数为奇函数,且函数在[)0,+∞上单调递增,比较自变量的大小,利用函数的单调性即可求解. 【详解】[)12,0,x x ∀∈+∞,12x x ≠时,都有()()()12120x x f x f x -->⎡⎤⎣⎦, 所以函数在[)0,+∞上单调递增, 又函数()f x 满足()()f x f x -=-, 所以函数为奇函数,且()00f =, 所以()f x 在(),0-∞上单调递增,331log log 414=-<-,又40log 31<<,1222=, 则341log log 324<<所以()12341log log 324f f f ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭.故选:B10.(2021·山东青岛市·高三一模)若()()3log 1,02,0xx x f x x ⎧+≥=⎨<⎩,不等式()12f x >的解集为( )A .()()1,031,-⋃+∞B .((),131,-∞⋃+∞C .()()1,031-⋃D .()),131,-∞-⋃+∞【答案】A 【解析】分0x ≥和0x <两种情况分别求解,再求并集即可. 【详解】 当0x ≥时,331log (1)log 313312x x x +>=⇒+>∴> 当0x <时,11221102x x x ->=⇒>-∴-<< 综上不等式()12f x >的解集为())1,031,-⋃+∞故选:A.11.(2021·山东济宁市·高三一模)已知sin 2a =,2log 0.2b =,0.22c =,则( ) A .a b c >> B .c a b >>C .b a c >>D .c b a >>【答案】B 【解析】根据正弦函数,指数函数与对数函数的单调性,分别判定,,a b c 的范围,即可得出结果. 【详解】由sin 2a =知:sin 0sin 2sin 0sin 212π<<⇒<<,则01a <<;由2log 0.2b =知:22log 0.2log 10<=, 则0b <;由0.22c =知:00.210.2222122<<⇒<<, 则12c <<, 所以c a b >>; 故选:B.12.(2021·全国高三专题练习)已知20202021,20212020,ln 2a bc ===,则( )A .log log a b c c >B .log log c c a b >C .c c a b <D .a b c c <【答案】D 【解析】由题意知01,01b a c <<<<<,根据各选项并结合对应函数的区间单调性,即可判断指对数式的大小关系. 【详解】由题意知:20202021log 20211log 20200a b =>>=>,而 0ln21c <=<, ∴log c y x =在定义域内单调减,故log 0log c c a b <<,则B 错误;11log 0log log log a b c c c c a b=<<=,故A 错误; c y x =在第一象限的单调递增知c c a b >,故C 错误; x y c =定义域内单调递减,即a b c c <,故D 正确;故选:D13.(2021·全国高三专题练习)在一次数学实验中,某同学运用图形计算器采集到如下一组数据:x2- 1- 12 3y0.24 0.512.023.988.02在以下四个函数模型(,a b 为待定系数)中,最能反映,x y 函数关系的是( ) A .y a bx =+ B .by a x=+C .log b y a x =+D .x y a b =+【答案】D 【解析】在坐标系中画出点,根据点的特征进行判断即可. 【详解】根据点在坐标系中的特征可以知道,当自变量每增加1时,y 的增加是不相同的,所以不是线性增加,排除A ; 由图象不具有反比例函数特征,排除B ; 因为自变量有负值,排除C ;当自变量增加到3时,y 增加的很多,所以符合指数的增加特征,D 正确, 故选:D.14.(2021·山东枣庄市·高三二模)已知函数()()ln 2e,0,3,0,x x f x f x x +⎧≤⎪=⎨->⎪⎩则()2021f =( )A .2eB .2eC .22e D .22e【答案】A 【解析】先分析出0x >时()f x 的周期性,然后根据周期性以及已知条件将问题转化为计算()1f -的值,由此求解出结果. 【详解】当0x >时,因为()()3f x f x =-,所以()()3f x f x =+,所以()f x 是周期为3的函数, 所以()()()2021367322f f f =⨯+=, 又因为()()ln 21ln 2221e f f e e e-+=-===,所以()22021f e =,故选:A.结论点睛:周期性常用的几个结论如下:(1)()y f x =对x R ∀∈时,若()()f x a f x a +=-或()()2f x a f x -=(0a ≠)恒成立,则2a 是()f x的一个周期;(2)()y f x =对x R ∀∈时,若()()f x f x a -=+或()()1f x a f x +=或()()1f x a f x +=-(0a ≠)恒成立,则2a 是()f x 的一个周期;(3)若()f x 为偶函数,其图象又关于()0x a a =≠对称,则()f x 是以2a 为一个周期的周期函数; (4)若()f x 为奇函数,其图象又关于()0x a a =≠对称,则()f x 是以4a 为一个周期的周期函数. 15.(2021·辽宁铁岭市·高三一模)若关于x 2230x x mx --=有两个不相等的实数根,则实数m 的取值范围是( ). A .4,3⎛⎫-∞-⎪⎝⎭B .34,,23⎛⎤⎛⎫-∞-⋃-+∞ ⎪⎥⎝⎦⎝⎭C .34,23⎛⎤-- ⎥⎝⎦D .34,23⎡⎫--⎪⎢⎣⎭【答案】D 【解析】2230x x mx --=223x x mx -=+,在同一坐标系中作出函数22y x x =-与3y mx =+的图象,利用数形结合法求解.【详解】2230x x mx --=223x x mx -=+, 2230x x mx --=有两个不相等的实数根, 所以函数22y x x =-与3y mx =+的图象有两不同的交点, 在同一坐标系中作出函数22y x x =-与3y mx =+的图象如图所示:由图象知:当直线3y mx =+过点()2,0时,33m =-,2311m m+=+,解得43m =-, 所以实数m 的取值范围是34,23⎡⎫--⎪⎢⎣⎭, 故选:D .16.(2021·山东烟台市·高三一模)某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量P (单位:mg/L )与时间t (单位:h )间的关系式为0kt P P e -=,其中0,P k 为正常数.如果一定量的废气在前10h 的过滤过程中污染物被消除了20%,那么污染物减少到最初含量的50%还需要经过多长时间?(结果四舍五入取整数,参考数据:20.693,5 1.609ln ln ≈≈)( ) A .11h B .21hC .31hD .41h【答案】B 【解析】先由已知条件建立方程求得k ,再代入模型中求得时间得选项. 【详解】 由已知得10115k e --=,方程两边取自然对数得4ln 105k =-,所以2ln 2ln 50.022310k -==-,设污染物减少到最初含量的50%需要经过t 小时,则0.022312t e -=,两边取自然对数得1ln 0.02232t =-,解得31t =,所以还需要经过311021-=个小时的时间使污染物减少到最初含量的50%, 故选:B.17.(2021·山东滨州市·高三一模)定义在R 上的偶函数()f x 满足()()22f x f x +=-,当[]2,0x ∈-时,()2f x x =+,设函数()()2e 26x h x x --=-<<(e 为自然对数的底数),则()f x 与()h x 的图象所有交点的横坐标之和为( ) A .5 B .6C .7D .8【答案】D 【解析】根据已知条件求出()f x 的周期,利用周期性和偶函数作出()f x 在区间()2,6-的图象,以及()()2e26x h x x --=-<<的图象,数形结合即可求解.【详解】因为()f x 满足()()22f x f x +=-, 所以()f x 图象关于直线2x =对称,因为()f x 是R 上的偶函数,所以()f x 图象关于直线0x =对称, 所以()f x 的周期为4,()()2e26x h x x --=-<<的图象关于直线2x =对称,由[]2,0x ∈-时,()2f x x =+,作出()f x 图象如图和()()2e26x h x x --=-<<的图象由图知()f x 与()h x 的图象在区间()2,6-有四个交点,设交点横坐标分别为1234,,,x x x x , 且1422x x +=,2322x x +=, 所以12348x x x x +++=,所以()f x 与()h x 的图象所有交点的横坐标之和为8, 故选:D18.(2021·山东德州市·高三一模)设函数()()1xf x xe a x =--,其中1a <,若存在唯一整数0x ,使得()0f x a <,则a 的取值范围是( ).A .21,1e ⎡⎫-⎪⎢⎣⎭B .211,e e ⎡⎫-⎪⎢⎣⎭C .211,e e ⎡⎫⎪⎢⎣⎭ D .21,1e ⎡⎫⎪⎢⎣⎭【答案】C 【解析】由原不等式可得()0xx e a -<,分0,01a a ≤<<两种情况讨论,求出不等式的解,根据解集在唯一整数0x 即可求解. 【详解】由()f x a <可得x xe ax a a -+<, 化简得()0xx e a -<, 当0a ≤时,0x x e a e -≥>,故当0x <时,()0xx e a -<恒成立, 故不存在唯一整数0x ,使得()0f x a <成立,当01a <<时,令0x e a ->,解得ln x a >且ln 0a <, 所以()0xx e a -<的解为ln 0a x <<,若存在唯一整数0(ln ,0)x a ∈,则ln 1ln 2a a <-⎧⎨≥-⎩,解得211[,)a e e∈, 故选:C19.(2021·山东日照市·高三一模)如图所示,单位圆上一定点A 与坐标原点重合.若单位圆从原点出发沿x 轴正向滚动一周,则A 点形成的轨迹为( )A .B .C .D .【答案】A 【解析】分析当单位圆向x 轴正向滚动π个单位长度时A 的纵坐标,由此判断出A 点形成的轨迹. 【详解】如图所示,记,,B C D 为圆上的三个四等分圆周的点,由题意可知:圆是逆时针滚动的,因为圆的周长为2π,所以2AB BC CD AD π====,且圆上点的纵坐标最大值为2,当圆逆时针滚动π单位长度时,此时,A C 的相对位置互换,所以A 的纵坐标为2,排除BCD , 故选:A.20.(2021·山东青岛市·高三一模)已知()y f x =为奇函数,()1y f x =+为偶函数,若当[]0,1x ∈时,()()2log a f x x =+,则()2021f =( )A .1-B .0C .1D .2【答案】C 【解析】由()00f =得1a =,()1y f x =+为偶函数得()f x 关于1x =对称,故周期为4,则问题可解. 【详解】()f x 为奇函数,()00f =且()f x 关于原点对称①∵[]0,1x ∈时()()2log a f x x =+,∴()2log 00a +=,∴1a = ∴[]0,1x ∈时()()2log 1f x x =+, ∵()1y f x =+为偶函数关于y 轴对称. 则()f x 关于1x =对称②由①②可知()()()()2f x f x f x f x ⎧-=-⎪⎨=-⎪⎩∴()()()22f x f x f x =-=--,∴()()2f x f x +=-. ∴()()()()()42f x f x f f x f x +=-+=--=, ∴()f x 周期为4,()()220211log 21f f ===, 故选:C .21.(2021·江苏省天一中学高三二模)定义在R 上的函数()y f x =满足()12x f x -≤,且()1y f x =+为奇函数,则()y f x =的图象可能是( )A .B .C .D .【答案】D 【解析】根据()1y f x =+为奇函数,得到函数关于()1,0中心对称,排除AB ,计算()21.5f ≤排除C,得到答案. 【详解】()1y f x =+为奇函数,即()()11f x f x +=--+,函数关于()1,0中心对称,排除AB .() 1.5112.52f -≤=C .故选:D .22.(2021·辽宁沈阳市·高三一模)已知函数()(),g x h x 分别是定义在R 上的偶函数和奇函数,且()()x g x h x e x +=+,若函数()()12216x f x g x λλ-=+--有唯一零点,则正实数λ的值为( )A .12B .13C .2D .3【答案】A 【解析】首先利用方程组的方法分别求函数()g x 和()h x 的解析式,令()()226xx g x ψλλ=+-,利用导数分析函数的单调性,以及极值点,利用函数有唯一的零点,可知极小值()00f =,利用平移可知()10f =,求正实数λ的值. 【详解】由已知条件可知()()()()()()x xg x h x e x g x h x e x g x h x -⎧+=+⎪⎨-+-=-=-⎪⎩ 由函数奇偶性易知()2x xe e g x -+=令()()226xx g x ψλλ=+-,()x ψ为偶函数.当0x ≥时,()'2202x xxe e x ln ψλ--=+>,()x ψ单调递增,当0x <时,()x ψ单调递减,()x ψ仅有一个极小值点()0,f x ()x ψ图象右移一个单位,所以仅在1处有极小值,则函数只有1一个零点,即()10f =, 解得12λ=, 故选:A23.(2021·全国高三专题练习)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,用其名字命名的“高斯函数”:设,x R =用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也称取整函数,例如:[][]3.74,2.32-=-=.已知()1112x x e f x e -=-+,则函数()y f x ⎡⎤=⎣⎦的值域为( )A .{}0B .{}1,0-C .{}2,1,0--D .{}1,0,1-【答案】C 【解析】利用常数分离法将原函数解析式化为()2112xf x e =-++,然后分析函数()f x 的值域,再根据高斯函数的含义确定()y f x ⎡⎤=⎣⎦的值域. 【详解】()1112121121212x x x x x e e f x e e e -+-=-=-=-++++,当0x ≥时,1x e ≥,则2101xe -≤-<+,故()2111,1222x f x e ⎡⎫=-+∈-⎪⎢+⎣⎭,故(){}1,0f x ∈-⎡⎤⎣⎦; 但0x <时,01x e <<,则2211xe -<-<-+,故()2131,1222x f x e ⎡⎫=-+∈--⎪⎢+⎣⎭,(){}2,1f x ∈--⎡⎤⎣⎦; 综上所述,函数()y f x ⎡⎤=⎣⎦的值域为{}2,1,0--. 故选:C. 【点睛】本题考查新定义函数及函数值域求解问题,解答本题的关键在于根据指数函数的性质分析清楚()1112x x e f x e -=-+的值域,然后确定()y f x ⎡⎤=⎣⎦的值域.24.(2021·全国高三专题练习)设()f x 是R 上的奇函数,且()f x 在(),0-∞上是减函数,又()40f -=,则不等式()()440f x f x x+--->的解集是( )A .()0,4B .()8,4--C .()()4,00,4- D .()()8,40,4--⋃【答案】B 【解析】分析出函数()f x 在(),0-∞、()0,∞+上的单调性,以及()()440f f =-=,化简得出()40f x x+>,结合图象可得出关于实数x 的不等式组,由此得出原不等式的解集. 【详解】因为()f x 是R 上的奇函数,则()00f =,由于函数()f x 在(),0-∞上是减函数,则该函数在()0,∞+上也为减函数,()40f -=,则()()440f f =--=,作出函数()f x 的大致图象如下图所示:由()()440f x f x x +--->,可得()240f x x+>,由()400f x x ⎧+>⎨>⎩,可得440x x +<-⎧⎨>⎩或0440x x <+<⎧⎨>⎩,此时x ∈∅;由()400f x x ⎧+<⎨<⎩,可得4400x x -<+<⎧⎨<⎩或440x x +>⎧⎨<⎩,解得84x -<<-.因此,不等式()()440f x f x x+--->的解集是()8,4--.故选:B. 【点睛】方法点睛:利用函数的奇偶性与单调性求解抽象函数不等式,要设法将隐性划归为显性的不等式来求解,方法是:(1)把不等式转化为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦;(2)判断函数()f x 的单调性,再根据函数的单调性把不等式的函数符号“f ”脱掉,得到具体的不等式(组),但要注意函数奇偶性的区别. 二、多选题25.(2021·广东深圳市·高三一模)已知函数3()3x f x x =+,若01m n <<<,则下列不等式一定成立的有( )A .(1)(1)f m f n -<-B .()f mn f m n <+C .()()log log m n f n f m <D .()()nmf mf n <【答案】BD 【解析】确定函数是增函数,然后比较自变量的大小后可得正确选项. 【详解】易知3()3xf x x =+是R 上的增函数,01m n <<<时,2m n mn +>1n m m n <<成立,BD 一定成立; 1m -与1n -的大小关系不确定,A 不一定成立;同样log m n 与log m n 的大小关系也不确定,如1m n=时,log log 1m n n m ==-,C 也不一定成立. 故选:BD .26.(2021·全国高三专题练习)已知函数()22xxf x -=+,则下列结论正确的是( )A .()f x 是偶函数B .()f x 是增函数C .()f x 最小值是2D .()f x 最大值是4【答案】AC 【解析】根据函数的奇偶性,均值不等式及特值法求解即可. 【详解】()22x x f x -=+的定义域为x ∈R ,关于原点对称,又()22()xx f x f x --=+=,所以函数为偶函数,所以函数在R 上不是增函数,故A 正确B 错误;又()222222x x x x f x --=+≥⋅=,当且仅当22-=x x ,即0x =时等号成立,故C 正确; 当2x =时,(2)4f >,故D 错误. 故选:AC27.(2021·广东汕头市·高三一模)已知定义在R 上的奇函数,满足(2)()0f x f x -+=,当(0,1]x ∈时,2()log f x x =-,若函数()()tan()F x f x x π=-,在区间[1,]m -上有10个零点,则m 的取值可以是( )A .3.8B .3.9C .4D .4.1【答案】AB 【解析】由对称性和奇偶性得出函数()f x 是周期函数,作出函数()y f x =和tan()y x π=的图象,由图象观察得两个函数图象有10个交点时,m 的范围. 【详解】()f x 是奇函数,则()()f x f x -=-,又(2)()0f x f x -+=,(2)()()f x f x f x -=-=-,令t x =-得()(2)f t f t =+,即()(2)f x f x =+,所以()f x 是周期函数,周期为2, 又()f x 是R 上的奇函数,所以(0)(2)(4)0f f f ====,(1)0f =,所以()0f n =,n Z ∈,作出()y f x =和tan()y x π=的图象,其中tan()y x π=的周期是1T ππ==, 如图,由图可知1x ≥-时,从点(1,0)A -,10个交点依次为,,,,,,,,,A B O C D E F G H I ,点J 是第11个交点,(4,0)J ,设C 点横坐标为0x ,显然01(0,)2x ∈,211()log 244f =-=,1tan 14π⎛⎫= ⎪⎝⎭,因此014x >,所以01142x <<,于是1124B x -<<-,114424I x -<<-,即3.5 3.75I x <<,所以m 可取3.8,3.9,4m ≥时至少有11个零点,故选:AB .28.(2021·山东日照市·高三一模)已知113log 0x x +=,222log 0xx +=,则( ) A .2101x x <<< B .1201x xC .2112lg lg 0x x x x -<D .2112lg lg 0x x x x ->【答案】BC 【解析】根据对数函数的性质可判断AB 正误,由不等式的基本性质可判断CD 正误. 【详解】由131log 0x x =->可得101x <<,同理可得201x <<, 因为(0,1)x ∈时,恒有23log log x x <所以122231log log 0x x x x -=-<,即12x x <,故A 错误B 正确; 因为1201x x ,所以12lg lg 0x x <<,即210lg lg x x <-<-,由不等式性质可得1221lg lg x x x x -<-,即2112lg lg 0x x x x -<,故C 正确D 错误. 故选:BC 三、填空题29.(2021·山东济宁市·高三一模)已知函数()()e ,02,0xx f x f x x ⎧>⎪=⎨+≤⎪⎩,则()5f -=______.【答案】e 【解析】根据分段函数解析式,代入即可求解. 【详解】由()()e ,02,0x x f x f x x ⎧>⎪=⎨+≤⎪⎩,得()()()()()()()5523321121f f f f f f f e -=-+=-=-+=-=-+==; 故答案为:e .30.(2021·山东枣庄市·高三二模)写出一个图象关于直线2x =对称且在[]0,2上单调递增的偶函数()f x =______.【答案】πcos 2x - 【解析】 取()πcos 2x f x -=,再验证其奇偶性、对称性、单调性即可. 【详解】 如()πcos2x f x -=,()ππcos cos ()22x x x f f x ⎛⎫--=-= ⎪⎝⎭-=,即()f x 为偶函数由π,2,2x k x k k Z π==∈,当1k =时,()πcos 2x f x -=关于直线2x =对称 由[]0,2得[]0,2x ππ∈,则由余弦函数的性质可知,函数()πcos 2x f x -=在[]0,2上单调递增故答案为:()πcos 2x f x -=31.(2021·山东日照市·高三一模)若函数()()log 1a f x x a =>在区间[],2a a 上的最大值是最小值的3倍,则a =______. 2【解析】分析函数()f x 在区间[],2a a 上的单调性,可得出关于实数a 的等式,由此可解得实数a 的值. 【详解】1a >,所以,函数()f x 在区间[],2a a 上为增函数,由已知条件可得()3log 23log log a a a a a a ==,32a a ∴=,1a >,解得2a =2.32.(2021·辽宁铁岭市·高三一模)赵先生准备通过某银行贷款5000元,然后通过分期付款的方式还款.银行与赵先生约定:每个月还款一次,分12次还清所有欠款,且每个月还款的钱数都相等,贷款的月利率为0.5%,则赵先生每个月所要还款的钱数为______元.(精确到0.01元,参考数据()()121210.517.21310.51+≈+-%%) 【答案】430.33 【解析】本题首先可设每一期所还款数为x 元,然后结合题意列出每期所还款本金,并根据贷款5000元列出方程,最后借助等比数列前n 项和公式进行计算即可得出结果. 【详解】设每一期所还款数为x 元, 因为贷款的月利率为0.5%,所以每期所还款本金依次为10.5x+%、()210.5x +%、()310.5x +%、、()1210.5x+%,则()()()2312500010.510.510.510.5x x xx++++=++++%%%,即()()()23121111500010.510.510.510.5x %%%⎡⎤++++=⎢⎥++++⎢⎥⎣⎦, ()()()()11101210.510.510.51500010.5x %%%%⎡⎤+++++++=⎢⎥+⎢⎥⎣⎦, ()()121210.5150000.510.5x %%%⎡⎤+-=⎢⎥+⎢⎥⎣⎦, ()()121210.50000.5430.33105.51x ⨯=≈-++⨯%%%,小明每个月所要还款约430.33元,故答案为:430.33.33.(2021·浙江高二期末)已知y =f (x )的图象关于坐标原点对称,且对任意的x ∈R ,f (x +2)=f (-x )恒成立,当10x -≤<时,f (x )=2x ,则f (2021)=_____________.【答案】12- 【解析】由已知条件推出函数()f x 的周期,利用函数的周期和奇偶性求值即可. 【详解】y =f (x )的图象关于坐标原点对称,则()()f x f x =--又()()2f x f x +=-,可得()()()22f x f x f x +=-=-,即()f x 的周期为4()()()()1202145051112f f f f =⨯+==--=-故答案为:12-34.(2021·山东高三专题练习)设函数()2,12,1x x a x f x x -<⎧=⎨≥⎩,若144f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则a =___________. 【答案】32- 【解析】 先求出1142f a ⎛⎫=- ⎪⎝⎭,再分112a -<和112a -≥两种情况,把12a -代入函数中列方程可求出a 的值 【详解】 ∵114<, ∴1112442f a a ⎛⎫=⨯-=-⎪⎝⎭. 当112a -<时,即12a >-时,1112134422f f f a a a a ⎛⎫⎛⎫⎛⎫⎛⎫=-=⨯--=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则1a =-,与12a >-相矛盾,应舍去.当112a -≥,即12a ≤-时,12112442a f f f a -⎛⎫⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则122a -=,即32a =-,满足12a ≤-时.故答案为:32-. 35.(2021·广东深圳市·高三一模)已知函数的图象关于y 轴对称,且与直线y x =相切,则满足上述条件的二次函数可以为()f x =_______. 【答案】214x +(答案不唯一). 【解析】关于y 轴对称,函数为偶函数,可以设2()f x ax c =+,然后由它与直线y x =相切可求得,a c 的关系,取特殊可得结论. 【详解】因为二次函数()f x 的图象关于y 轴对称,所以可设2()f x ax c =+,由2y ax c y x⎧=+⎨=⎩得20ax x c -+=,所以140ac ∆=-=,即14ac =.取1a =,14c =,则21()4f x x =+,(答案不唯一). 故答案为:214x +(答案不唯一).36.(2021·全国高三专题练习)若函数()f x 满足:(1)对于任意实数12,x x ,当120x x <<时,都有()()12f x f x <;(2)()()1122x f f x f x x ⎛⎫=- ⎪⎝⎭,则()f x =___________.(答案不唯一,写出满足这些条件的一个函数即可)【答案】()log 1a x a >型的都对 【解析】本题属于开放性题,只需填写符合题意的答案即可,依题意可以判断函数在(0,)+∞上单调递增,又1122log log log a a a x x x x ⎛⎫=- ⎪⎝⎭,(0a >且1a ≠,12,0x x >)即可得解;【详解】解:对于任意实数1x ,2x ,当120x x <<时,都有()()12f x f x <,说明该函数在(0,)+∞上单调递增,又对数函数满足运算性质:()()1122x f f x f x x ⎛⎫=- ⎪⎝⎭, 故可选一个递增的对数函数:()log 1a y x a =>. 故答案为:()log 1a y x a =>.37.(2021·山东高三专题练习)已知函数()32xf x x a =++在[]1,2上的最大值是6,则实数a 的值是___________.【答案】9a =-或6a =- 【解析】对a 进行分类讨论,结合函数的单调性和最值,求得a 的值. 【详解】不妨设()f x 的定义域为[]1,2,当0a ≥时,()()3212xf x x a x =++≤≤,()322221212f a a =++=+≥,不符合题意.当0a <时,设()()3212xg x x x =+≤≤,()g x 在区间[]1,2上递增,值域为()()1,2g g ⎡⎤⎣⎦,即[]3,12.即33212x x ≤+≤.33212x a x a a +≤++≤+,而33a +<,312a a +<+,32x a y x =++在[]1,2上为增函数,故要使函数()32xf x x a =++在[]1,2上的最大值是6,则36126a a +=-⎧⎨+≤⎩或12636a a +=⎧⎨+≥-⎩,所以9a =-或6a =-.故答案为:9a =-或6a =-38.(2021·山东枣庄市·高三二模)2020年11月23日国务院扶贫办确定的全国832个贫困县全部脱贫摘帽,脱贫攻坚取得重大突破、为了使扶贫工作继续推向深入,2021年某原贫困县对家庭状况较困难的农民实行购买农资优惠政策.(1)若购买农资不超过2000元,则不给予优惠;(2)若购买农资超过2000元但不超过5000元,则按原价给予9折优惠;(3)若购买农资超过5000元,不超过5000元的部分按原价给予9折优惠,超过5000元的部分按原价给予7折优惠.该县家境较困难的一户农民预购买一批农资,有如下两种方案: 方案一:分两次付款购买,实际付款分别为3150元和4850元; 方案二:一次性付款购买.若采取方案二购买这批农资,则比方案一节省______元. 【答案】700 【解析】根据方案一先判断出两次实际付款3150元与4850元对应的原价,然后根据两次的原价可计算出方案二的实际付款,由此可计算出所节省的钱. 【详解】 因为3150=350050000.9<且31502000>,所以实际付款3150元对应的原价为3500元, 又因为485050000.9>⨯,所以实际付款4850元对应的原价大于5000元, 设实际付款4850元对应的原价为()5000x +元, 所以50000.90.74850x ⨯+⨯=,解得500x =, 所以两次付款的原价之和为:350055009000+=元,若按方案二付款,则实际付款为:50000.940000.77300⨯+⨯=元, 所以节省的钱为:()315048507300700+-=元, 故答案为:700.39.(2021·河北唐山市·高三二模)有以下三个条件:①定义域不是R ;②值域为R ;③奇函数;写出一个同时满足以上条件的函数()f x =__________.【答案】tan y x =,或1y x x =-或1,01,0x x y x x +<⎧=⎨->⎩等【解析】列举出满足三个已知条件的函数即可. 【详解】满足已知的函数为tan y x =,或1y x x =-或1,01,0x x y x x +<⎧=⎨->⎩等.(答案不唯一) 故答案为:tan y x =,或1y x x =-或1,01,0x x y x x +<⎧=⎨->⎩等.(答案不唯一)40.(2021·山东日照市·高三一模)已知函数()1331x x f x a++=+(3a ≥),若对任意1x ,2x ,3x R ∈,总有()1f x ,()2f x ,()3f x 为某一个三角形的边长,则实数a 的取值范围是______.【答案】[]3,6 【解析】由题意可得,对1x ∀,2x ,3x R ∈,总有()()()123f x f x f x +>恒成立,转化为()()min max 2f x f x >,根据单调性求函数最值即可. 【详解】由题意可得:对1x ∀,2x ,3x R ∈,总有()()()123f x f x f x +>恒成立, 只需()()min max 2f x f x >()13333131x x x a a f x ++-==+++,①当3a =时,()3f x =,满足题意;②当3a >时,()f x 在R 上单调递减,()3f x a <<,故需23a ⨯≥,即36a <≤; 综上所述,a 的取值范围是[]3,6. 故答案为:[]3,641.(2021·广东深圳市·高三一模)冈珀茨模型()tby k a =⋅是由冈珀茨(Gompertz )提出,可作为动物种群数量变化的模型,并用于描述种群的消亡规律.已知某珍稀物种t 年后的种群数量y 近似满足冈珀茨模型:0.1251.40tey k e -=⋅(当0t =时,表示2020年初的种群数量),若()*m m ∈N年后,该物种的种群数量将不足2020年初种群数量的一半,则m 的最小值为_________.(ln20.7)≈ 【答案】6 【解析】 依题意得0.1251.4 1.40012me k e k e -⋅⋅<通过计算化简得 5.6m >,则问题可解. 【详解】令t m =由题意知,0.12501.4 1.4 1.40001122me e k ek e k e -⋅⋅⋅<=,所以0.1251.4 1.42me e --< 得()0.1251.41ln 20.7me-->≈, 则0.125112m e -->所以0.12512me-<,解得ln 20.75.60.1250.125m >≈=,所以m 的最小值为6 故答案为:6 四、双空题42.(2021·山东菏泽市·高三一模)已知()f x 是定义在R 上的偶函数且()01f =,()()1g x f x =-是奇函数,则()2021f =________.()411n i f i -==∑_____________.【答案】0 -1 【解析】根据函数()f x 是定义在R 上的偶函数,()g x 是定义在R 上的奇函数,运用函数奇偶性的定义得到()()f x f x =-,()()g x g x =--,然后结合()(1)g x f x =-,灵活变形后求出函数()f x 的周期,再根据()g x 是定义在R 上的奇函数,得(0)0g =,从而得到()1f ,()2f ,()3f ,根据函数的周期性计算可得;. 【详解】解:因为()f x 是定义在R 上的偶函数,所以()()f x f x =-,()g x 是定义在R 上的奇函数,所以()()g x g x =--, (1)(1)f x f x -=---,所以()((1)1)((1)1)(2)(2)f x f x f x f x f x =+-=--+-=---=-+, 则(2)()f x f x +=-,所以(4)()f x f x +=, 所以函数()f x 是以4为周期的周期函数.因为()g x 是定义在R 上的奇函数,所以(0)0g =,由()(1)g x f x =-,取0x =,得:()()()1100f f g =-==, 又(0)1f =,所以(2)(0)1f f =-=-,()()310f f =-= 所以()()()()()123401010f f f f +++=+-++=所以()()()()()414243401010f n f n f n f n ++++++=+-++=,()n Z ∈所以()()202110f f ==所以()411n i f i -=∑()()()()()()()()()()()12345678434241f f f f f f f f f n f n f n =+++++++++-+-+-⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦()000101=++++-+=-⎡⎤⎣⎦.故答案为:0;1-.。
【多选题与双空题满分训练】专题3 函数及其性质多选题 2022年高考冲刺和2023届高考复习满分训练新高考地区专用1.(2022·海南海口·模拟预测)已知函数()1x f x x+=,则( ) A .()f x 的定义域为R B . ()f x 是奇函数 C .()f x 在()0,+∞上单调递减D . ()f x 有两个零点2.(2022·湖南永州·三模)已知函数()21ln 12f x x x x =--+,则( ) A .()f x 的图象关于直线1x =对称 B .()f x 在[)2,+∞上为减函数 C .()f x 有4个零点 D .00x ∃>,使()00f x >()221111222y x x x =-+=--+ 3.(2022·湖北十堰·三模)已知函数()lg f x x =,则( )A .()2f ,f,()5f 成等差数列B .()2f ,()4f ,()8f 成等差数列C .()2f ,()12f ,()72f 成等比数列D .()2f ,()4f ,()16f 成等比数列4.(2022·山东枣庄·三模)已知a 、()0,1∈,且1a b +=,则( ) A .2212a b +≥B .ln ln 2ln 2a b +≤-C .2ln ln ln 2≥a bD .ln 0+<a b5.(2022·重庆·模拟预测)已知1e a b <<<(e 为自然对数的底数),则( ) A .b a a b <B .e e aba b >C .e e ba a a >D .e e bb a a <6.(2022·江苏·南京市宁海中学模拟预测)已知()f x 是定义在R 上的偶函数,且对任意x ∈R ,有()()11f x f x -=-+,当[]0,1x ∈时,()22f x x x =+-,则( )A .()f x 是以2为周期的周期函数B .点()3,0-是函数()f x 的一个对称中心C .()()202120222f f +=-D .函数()()2log 1y f x x =-+有3个零点7.(2022·江苏盐城·三模)已知函数()f x 为R 上的奇函数,()()1g x f x =+为偶函数,下列说法正确的有( )A .()f x 图象关于直线1x =-对称B .()20230g =C .()g x 的最小正周期为4D .对任意R x ∈都有()()2f x f x -=8.(2023·福建漳州·三模)若函数()πsin 03f x x ωω⎛⎫=+> ⎪⎝⎭()的图象与()()cos 2g x x θ=+的图象关于y 轴对称,则( ) A .2ω=B .θ的值可以是π3C .函数f (x )在ππ[,]122单调递减D .将()y f x =的图象向右平移6π个单位长度可以得到g (x )的图象9.(2022·辽宁沈阳·二模)已知奇函数()f x 在R 上可导,其导函数为()f x ',且()()1120f x f x x --++=恒成立,若()f x 在[]0,1单调递增,则( ) A .()f x 在[]1,2上单调递减 B .()00f = C .()20222022f =D .()20231f '=10.(2022·辽宁锦州·一模)设函数()f x 的定义域为R ,()1f x -为奇函数,()1f x +为偶函数,当(]1,1x ∈-时,()21f x x =-+ )A .7839f ⎛⎫=- ⎪⎝⎭B .()f x 在()6,8上为减函数C .点()3,0是函数()f x 的一个对称中心D .方程()lg 0f x x +=仅有6个实数解11.(2022·河北·模拟预测)若函数()21f x +(x ∈R )是周期为2的奇函数.则下列选项一定正确的是( )A .函数()f x 的图象关于点()1,0对称B .2是函数()f x 的一个周期C .()20210f =D .()20220f =12.(2022·河北沧州·模拟预测)已知三次函数32()1f x ax bx cx =++-,若函数()()1g x f x =-+的图象关于点(1,0)对称,且(2)0g -<,则( )A .0a <B .()g x 有3个零点C .()f x 的对称中心是(1,0)-D .1240a b c -+<13.(2021·四川省泸县第二中学一模(理))已知定义在R 上的函数()f x 满足:()1f x -关于(1,0)中心对称,()1f x +是偶函数,且312f ⎛⎫-= ⎪⎝⎭.则下列选项中说法不正确的有( )A .()f x 为奇函数B .()f x 周期为2C .912f ⎛⎫= ⎪⎝⎭D .()2f x -是奇函数14.(2022·河北石家庄·二模)已知函数()sin(sin )cos(cos )f x x x =+,则下列结论正确的是( ) A .函数()f x 的一个周期为2π B .函数()f x 在0,2π⎛⎫⎪⎝⎭上单调递增C.函数()f xD .函数()f x 图象关于直线2x π=对称15.(2022·重庆八中模拟预测)已知()f x 是定义在R 上的偶函数,且对任意R x ∈,有()()11f x f x +=--,当[]0,1x ∈时,()22f x x x =+-,则( ) A .()f x 是以4为周期的周期函数 B .()()202120222f f +=-C .函数()()2log 1y f x x =-+有3个零点D .当[]3,4x ∈时,()2918f x x x =-+16.(2022·湖北·一模)已知函数12)||+||cos f x x x =-,则下列说法正确的是( ) A .()f x 是偶函数 B .()f x 在(0,+∞)上单调递减 C .()f x 是周期函数D .()f x ≥-1恒成立17.(2022·辽宁·模拟预测)已知定义在R 上的偶函数()f x 的图像是连续的,()()()63f x f x f ++=,()f x 在区间[]6,0-上是增函数,则下列结论正确的是( ) A .()f x 的一个周期为6B .()f x 在区间[]12,18上单调递减C .()f x 的图像关于直线12x =对称D .()f x 在区间[]2022,2022-上共有100个零点18.(2022·广东·三模)已知,R a b ∈,e 是自然对数的底,若e ln b b a a +=+,则a b的取值可以是( ) A .1B .2C .3D .419.(2022·山东·肥城市教学研究中心模拟预测)对于偶函数sin ()xf x x a=+,下列结论中正确的是( )A .函数()f x 在3π2x =处的切线斜率为249πB .函数()1f x <恒成立C .若120π,x x <<< 则12()()f x f x <D .若()m f x <对于π0,2x ⎛⎫∀∈ ⎪⎝⎭恒成立,则m 的最大值为2π20.(2022·福建厦门·模拟预测)已知函数()2441x x xf x x =+--,则( )A .()f x 是奇函数B .()f x 的图象关于点()1,1对称C .()f x 有唯一一个零点D .不等式()()223f x f x +>的解集为()()1,13,-+∞21.(2022·江苏南通·模拟预测)已知定义在R 上的函数()f x 的图象连续不间断,当0x ≥时,()()121f x f x +=-,且当0x >时,()()110f x f x '++'-<,则下列说法正确的是( ) A .()10f =B .()f x 在(]–,1∞上单调递减C .若()()1212,x x f x f x <<,则122x x +<D .若12,x x 是()()cos g x f x x π=-的两个零点,且12x x <,则()()2112f x f x << 22.(2022·广东·普宁市华侨中学二模)对于函数sin ,02()1(2),22x x f x f x x π≤≤⎧⎪=⎨->⎪⎩,下列结论中正确的是( )A .任取12,[1,)x x ∈+∞,都有123()()2f x f x -≤ B .11511222222k f f f k +⎛⎫⎛⎫⎛⎫++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其中k ∈N ;C .()2(2)()k f x f x k k N *=+∈对一切[0,)x ∈+∞恒成立;D .函数()ln(1)y f x x =--有3个零点; 23.(2022·湖北·黄冈中学模拟预测)函数ln ()(0)sin ax x f x a x+=≤在[]2,2ππ-上的大致图像可能为( )A .B .C .D .24.(2022·广东茂名·模拟预测)所谓整数划分,指的是一个正整数n 划分为一系列的正整数之和,如n 可以划分为{}123,,,,k m m m m ,1k n ≤≤.如果{}123,,,,k m m m m 中的最大值不超过m ,即{}123max ,,,,k m m m m m ≤,则称它属于n 的一个m 划分,记n 的m 划分的个数为(),f n m .下列说法正确的是( )A .当1n =时,m 无论为何值,(),1f n m =B .当1m =时,n 无论为何值,(),1f n m =C .当m n =时,()(),1,1f n m f n m =+-D .()6,46f =25.(2022·江苏泰州·模拟预测)已知定义在R 上的单调递增的函数()f x 满足:任意x ∈R ,有()()112f x f x -++=,()()224f x f x ++-=,则( )A .当x ∈Z 时,()f x x =B .任意x ∈R ,()()f x f x -=-C .存在非零实数T ,使得任意x ∈R ,f x Tf xD .存在非零实数c ,使得任意x ∈R ,()1f x cx -≤26.(2022·江苏·沭阳如东中学模拟预测)华人数学家李天岩和美国数学家约克给出了“混沌”的数学定义,由此发展的混沌理论在生物学、经济学和社会学领域都有重要作用.在混沌理论中,函数的周期点是一个关键概念,定义如下:设()f x 是定义在R 上的函数,对于x ∈R ,令1()(123)n n x f x n -==,,,,若存在正整数k 使得0k x x =,且当0<j <k 时,0j x x ≠,则称0x 是()f x 的一个周期为k 的周期点.若122()12(1)2x x f x x x⎧<⎪⎪=⎨⎪-⎪⎩,,,下列各值是()f x 周期为2的周期点的有( )A .0B .13C .23D .1。
初中数学函数三大专题复习
一、函数的定义与性质
1. 函数的定义:函数是一个将一个集合的每一个元素映射到另
一个集合的规则。
2. 函数的性质:
- 定义域:函数定义中的所有可能输入的集合称为定义域。
- 值域:函数所有可能的输出值的集合称为值域。
- 单调性:函数是递增的或递减的,称为函数的单调性。
- 奇偶性:函数在定义域内的奇偶性可以根据函数的对称性来
确定。
二、函数的图像与性质
1. 函数的图像:函数的图像是表示函数值和自变量之间对应关
系的图形。
2. 基本函数的图像:
- 幂函数、指数函数、对数函数、三角函数等函数的图像特点。
- 图像的对称性特点,如奇函数关于原点对称,偶函数关于y
轴对称。
3. 函数的性质与图像:
- 函数的最大值和最小值可以通过图像上的关键点来确定。
- 函数的奇偶性可以通过图像的对称性来判断。
三、函数的运算与应用
1. 函数之间的运算:
- 函数的加法、减法、乘法和除法的定义与性质。
- 复合函数的概念和计算方法。
2. 函数的应用:
- 实际问题中常用的函数模型,如线性函数、二次函数、指数函数等。
- 函数的图像在实际问题中的应用,如求函数的最小值、最大值等。
总结:
初中数学函数的三大专题复习包括函数的定义与性质、函数的图像与性质以及函数的运算与应用。
掌握这些知识可以帮助我们理解函数的基本概念和特点,提高数学问题的解题能力。
专题三 函数的概念、图像和性质一、单选题1.(2021·全国高三专题练习)已知函数()f x 的定义域为,(4)R f x +是偶函数,(6)3f =,()f x 在(,4]-∞上单调递减,则不等式(24)3f x -<的解集为( )A .(4,6)B .(,4)(6,)-∞⋃+∞C .(,3)(5,)-∞⋃+∞D .(3,5)2.(2021·北京石景山区·高三一模)已知22,0()32,0x x f x x x ⎧-=⎨->⎩,若()f x ax 在[1,1]x ∈-上恒成立,则实数a 的取值范围是( )A .(,1][0,)-∞-+∞B .[0,1]C .[1,0]-D .(1,0)-3.(2021·天津南开区·高三一模)函数()f x 的部分图象如图所示,则()f x 的解析式可能是( )A .()21xf x x=-B .()221xf x x =+C .()221xf x x =-D .()2211x f x x +=-4.(2020·江苏常州市·常州高级中学高一期中)已知函数()()2313,11,1a x a x f x x x ⎧-+<=⎨-+≥⎩在R 上单调递减,则实数a 的取值范围是( )A .11,63⎛⎫⎪⎝⎭B .11,63⎡⎫⎪⎢⎣⎭C .1,3⎛⎫-∞ ⎪⎝⎭D .11,,63⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭5.(2020·上海高一专题练习)下列命题中正确的是( ) A .当m =0时,函数m y x =的图象是一条直线 B .幂函数的图象都经过(0,0),(1,1)两点 C .幂函数m y x =图象不可能在第四象限内D .若幂函数m y x =为奇函数,则m y x =是定义域内的增函数6.(2021·浙江省宁海中学高三月考)已知函数()f x ,()g x 满足()()()()xx f x g x ef xg x e -⎧+=⎪⎨-=⎪⎩,则()()()sin 2x h x f x g x π⎛⎫+ ⎪⎝⎭=⋅的图像大致是( ) A . B .C .D .7.(2021·天津高三月考)函数241x y x -=+的图象大致为( )A .B .C .D .8.(2020·上海高一专题练习)单调增函数()f x 对任意,x y R ∈满足()()()f x y f x f y +=+,若()()33920x x x f k f ⋅+--<恒成立,则k 的取值范围是( )A .()1-B .(),1-∞C .(0,1⎤⎦D .)1,⎡+∞⎣9.(2021·全国高三专题练习(理))已知定义在R 上的函数()f x 的导函数为'()f x ,且满足'()()0f x f x ->,()20212021f e =,则不等式1ln 3f x ⎛⎫<⎪⎝⎭( )A .()6063,e+∞B .()20210,eC .()2021,e+∞ D .()60630,e10.(2021·浙江高三其他模拟)已知函数()22cos sin e ex xx x f x --=+,则函数()f x 的大致图象是( )A .B .C .D .11.(2021·内蒙古包头市·高三一模(文))设函数()ln 31ln 31f x x x =++-,则()f x ( )A .是偶函数,且在1,3⎛⎫-∞- ⎪⎝⎭单调递增B .是奇函数,且在11,33⎛⎫- ⎪⎝⎭单调递减C .是偶函数,且在1,3⎛+∞⎫ ⎪⎝⎭单调递增D .是奇函数,且在1,3⎛⎫-∞- ⎪⎝⎭单调递减12.(2021·全国高三月考(理))已知函数()12cos 122x xf xx -=⋅+,则()f x 的图象可能是( )A .B .C .D .13.(2021·全国高三月考(文))已知奇函数()f x 的定义域为{},0x x R x ∈≠,且有()()33f x f x =,()11f =,当120x x >>时,()()()121233120f x f x x x x x ⎛⎫--< ⎪⎝⎭,则不等式()29f x x x≥的解集为( ) A .(][),33,-∞-+∞ B .[)(]3,00,3- C .(][),11,-∞-+∞D .[)(]1,00,1-14.(2021·全国高三其他模拟)已知函数()f x 的定义域为(),-∞+∞,()11f =.若1x ∀,()2,x ∀∈-∞+∞,当12x x <时,()()122144f x x f x x ->-,则不等式()()4ln 455ln 45f x x ->--⎡⎤⎣⎦的解集为( )A .5e ,4+⎛⎤-∞ ⎥⎝⎦ B .5,4⎛⎫+∞⎪⎝⎭C .55e ,44+⎛⎫ ⎪⎝⎭D .55e ,44+⎡⎤⎢⎥⎣⎦15.(2021·全国高三月考(文))若函数2()f x x =在区间[,]a b 上的值域为[,1]()t t t +∈R ,则b a -( )A .有最大值,但无最小值B .既有最大值,也有最小值C .无最大值,但有最小值D .既无最大值,也无最小值16.(2021·全国高三其他模拟)已知函数()1y f x =+是定义在R 上的偶函数,且()f x 在(),1-∞上单调递减,()20f =,则()()10+<f x f x 的解集为( ) A .()()2,10,1--⋃ B .()()1,01,2- C .()1,2- D .()2,1-17.(2021·全国)已知函数()f x 的定义域为R ,且满足:①对任意的1x ,()212[5,1]x x x ∈--≠,都有()()21210f x f x x x ->-;②(1)y f x =+是奇函数;③(1)=-y f x 为偶函数.则( )A .(2021)(22)(3)f f f >>B .(22)(3)(2021)f f f >>C .(3)(22)(2021)f f f >>D .(22)(2021)(3)f f f >>18.(2021·全国高三专题练习(文))已知函数()f x 定义域为R ,满足()()2f x f x =-,且对任意121x x ≤<均有()()()12120x x f x f x -⋅-<⎡⎤⎣⎦成立,则满足()()2130f x f x ---≥的x 的取值范围是( )A .(]2,2,3⎡⎫-∞-+∞⎪⎢⎣⎭B .(]4,0,3⎡⎫-∞+∞⎪⎢⎣⎭C .22,3⎡⎤-⎢⎥⎣⎦D .40,3⎡⎤⎢⎥⎣⎦19.(2021·全国高三专题练习(理))函数1010y =的图象可能是下图中的( )A .B .C .D .20.(2021·山东青岛市·高三一模)已知()y f x =为奇函数,()1y f x =+为偶函数,若当[]0,1x ∈时,()()2log a f x x =+,则()2021f =( ) A .1-B .0C .1D .221.(2021·全国高三专题练习(文))设()f x 是R 上的奇函数,且()f x 在(),0-∞上是减函数,又()40f -=,则不等式()()440f x f x x+--->的解集是( )A .()0,4B .()8,4--C .()()4,00,4-D .()()8,40,4--⋃22.(2021·全国高三专题练习(文))函数ln ||()||x f x x =的图象大致为( ) A . B .C .D .23.(2021·全国高三专题练习(理))已知定义域为R 的函数()f x 满足:①图象关于原点对称;②3()2f x f x ⎛⎫=-⎪⎝⎭;③当30,4x ⎛⎫∈ ⎪⎝⎭时,2()log (1)f x x m =++.若2(2020)log 3f =,则m =( )A .1-B .1C .2-D .2二、多选题24.(2021·湖南长沙市·长郡中学高三月考)意大利画家列奥纳多·达·芬奇(1452.4—1519.5)的画作《抱银貂的女人》中,女士脖颈上黑色珍珠项链与主人相互映衬呈现出不一样的美与光泽,达·芬奇提出:固定项链的两端,使其在重力的作用下自然下垂,项链所形成的曲线是什么?这就是著名的“悬链线问题”,后人给出了悬链线的函数解析式:()coshxf x a a=,其中a 为悬链线系数,cosh x 称为双曲余弦函数,其函数表达式为cosh x =e e 2x x -+,相应地双曲正弦函数的表达式为sinh x =e e 2x x--.若直线x =m 与双曲余弦函数C 1与双曲正弦函数C 2的图象分别相交于点A ,B ,曲线C 1在点A 处的切线l 1与曲线C 2在点B 处的切线l 2相交于点P ,则下列结论正确的为( )A .cosh(x ﹣y )=cosh x cosh y ﹣sinh x sinh yB .y =sinh x cosh x 是偶函数C .(cosh x )′=sinh xD .若△P AB 是以A 为直角顶点的直角三角形,则实数m =025.(2021·全国高三专题练习)已知函数232(1)()1x x f x x ++=+,下列说法正确的是( )A .函数()f x 的图象的对称中心是(0,1)B .函数()f x 在R 上是增函数C .函数()f x 是奇函数D .方程(21)(2)2f x f x -+=的解为14x =26.(2021·全国高三专题练习)历史上第一个给出函数一般定义的是19世纪德国数学家狄利克雷(Dirichlet ),当时数学家们处理的大部分数学对象都没有完全的严格的定义,数学家们习惯借助于直觉和想象来描述数学对象,狄利克雷在1829年给出了著名函数:1,()0,c x Q f x x Q ∈⎧=⎨∈⎩(其中Q 为有理数集,c Q 为无理数集),狄利克雷函数的出现表示数学家们对数学的理解发生了深刻的变化,数学的一些“人造”特征开始展现出来,这种思想也标志着数学从研究“算”转变到了研究“概念、性质、结构”.一般地,广义的狄利克雷函数可定义为,(),c a x QD x b x Q ∈⎧=⎨∈⎩(其中a ,b R ∈且a b ),以下对()D x 说法正确的是( )A .当a b >时,()D x 的值域为[],b a ;当a b <时,()D x 的值域为[],a bB .任意非零有理数均是()D x 的周期,但任何无理数均不是()D x 的周期C .()D x 为偶函数D .()D x 在实数集的任何区间上都不具有单调性27.(2021·浙江高一开学考试)已知()f x 、()g x 都是定义在R 上的函数,且()f x 为奇函数,()g x 的图像关于直线1x =对称,则下列说法中正确的有( ) A .1yg f x 为偶函数B .()y g f x =⎡⎤⎣⎦为奇函数C .()y f g x ⎡⎤=⎣⎦的图像关于直线1x =对称D .1yf g x 为偶函数28.(2021·浙江高一期末)在下列四组函数中,()f x 与g()x 不表示同一函数.......的是( ) A .()1f x x ,21()1x g x x -=+B .()|1|f x x =+,1,1()1,1x x g x x x +≥-⎧=⎨--<-⎩C .()1f x =,0()(1)g x x =+D .()f x x =,2()g x =29.(2021·苏州市第五中学校高一月考)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号.设x ∈R ,用[]x 表示不超过x 的最大整数,[]y x =也被称为“高斯函数”,例如:[ 3.5]4-=-,[2.1]2=.已知函数()[1]f x x x =+-,下列说法中正确的是( ) A .()f x 是周期函数 B .()f x 的值域是[0,1]C .()f x 在(0,1)上是减函数D .x ∀∈R ,[()]0f x =第II 卷(非选择题)请点击修改第II 卷的文字说明 三、填空题30.(2021·浙江高一期末)设,a b ∈R,已知函数3,1(),1x f x bx x x ≤=⎨+>⎪⎩,若()f x 是在R 上的增函数,则b 的取值范围是_________.31.(2021·陕西西安市·高三月考(理))已知可导函数()f x 的定义域为(0,)+∞,满足()2()0xf x f x '-<,且(2)4f =,则不等式()24x x f >的解集是________.32.(2021·安徽省泗县第一中学高二月考(文))已知()f x 是定义在R 上的函数,且()()12()12f x f x f x +-=--,若(1)2f =+,则(2025)f =______.33.(2021·全国高三专题练习)设f (x )是定义在R 上周期为2的函数,当x ∈(-1,1]时,22,10()1x x m x f x x ⎧++-<<⎪=≤≤,其中m ∈R .若f (116)=f (32),则m 的值是___________.34.(2021·全国高三专题练习)已知奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(2020)(2021)f f +=__________. 35.(2020·上海高一专题练习)设R a ∈,若0x >时,均有()()21110a x x ax ----≥⎡⎤⎣⎦成立,则实数a 的取值集合..为_________. 36.(2021·上海高一)设函数()f x 对于所有的正实数x ,均有(3)3()f x f x =,且()12(13)f x x x =--≤≤,则使得()(2014)f x f =的最小的正实数x 的值为____.四、解答题37.(2021·湖南高一月考)已知幂函数()()2144m f x m m x+=+-在区间0,上单调递增.(1)求()f x 的解析式;(2)用定义法证明函数()()()43m g x f x x+=+在区间()0,2上单调递减.38.(2020·江苏省通州高级中学高一月考)设函数e ()e x x af x a+=-(e 为常数,e =2.718 28…,a ∈R ).(1)若函数()f x 为奇函数,求实数a 的值; (2)若1a =-.①判断并证明函数f (x )的单调性;②若存在[]22x ∈-,,使得f (x 2+2mx )+f (2-m )=0成立,求实数m 的取值范围. 39.(2020·江苏常州市·常州高级中学高一期中)已知函数()2af x x x=+. (1)判断()f x 的奇偶性,并给出理由; (2)当16a =时,①用定义证明函数()f x 在区间[)2,+∞上是单调增函数;②若存在()0,x ∈+∞,使得不等式()42f x m m <-成立,求实数m 的取值范围.40.(2020·上海高一专题练习)幂函数273235()(1)t t f x t t x+-=-+是偶函数,且在(0,)+∞上为增函数,求函数解析式.41.(2021·湖北高二月考)已知函数ln ()xf x x=. (1)判断()f x 的单调性,并比较20222021与20212022的大小; (2)若函数2()(1)(()1)2ag x x x f x =-+-,其中1a e ≤<,判断()g x 的零点的个数,并说明理由.42.(2021·浙江高一期末)设函数()()()212,xxk f x k x R k Z -=+-⋅∈∈(1)若()k f x 是偶函数,求k 的值(2)若存在]2[1x ∈,,使得()()014f x mf x +<成立,求实数m 的取值范围; (3)设函数()()()0224g x f x f x λ=-+若()g x 在[)1,x ∈+∞有零点,求实数λ的取值范围.43.(2021·安徽高一开学考试)已知函数()21,0,0x ax x f x e x -⎧+<=⎨≥⎩且()()013f f +-=.(1)求实数a 的值;(2)若对任意的[]1,1x ∈-,不等式()()()()2121bf b x b f x +-+≥恒成立,求正数b的取值范围.44.(2020·上海高一专题练习)求下列函数的值域(1)34x y x +=-; (2)25243y x x =-+;(3)y x =;(4)22436x x y x x ++=+-;(5)4y =;(6)y x =+(7)y =;(8)y =(9)312x y x +=-; (10)2211()212x x y x x -+=>-. 45.(2020·上海高一专题练习)根据下列条件,求函数()f x 的解析式;(1)已知()f x 是一次函数,且满足()()3121217f x f x x +--=+;(2)已知3311f x x x x ⎛⎫+=+ ⎪⎝⎭; (3)已知等式()()()21f x y f x y x y -=--+对一切实数x 、y 都成立,且()01f =;(4)知函数()f x 满足条件()123f x f x x ⎛⎫+= ⎪⎝⎭对任意不为零的实数x 恒成立46.(2020·上海高一专题练习)()f x =为奇函数,则a 的取值范围 47.(2020·上海高一专题练习)已知()f x 是定义在[1,1]-上的奇函数,且(1)1f =,若,1,1a b ,0a b +≠,有()()0f a f b a b+>+成立; (1)判断()f x 在[]1,1-上的单调性,并证明你的结论;(2)解不等式11()21f x f x ⎛⎫+< ⎪-⎝⎭; 48.(2020·上海高一专题练习)已知二次函数2()(1)f x ax a x a =+-+.(1)函数()f x 在(,1)-∞-上单调递增,求实数a 的取值范围;(2)关于x 的不等式()2f x x≥在[]1,2x ∈上恒成立,求实数a 的取值范围; (3)函数21(1)()()a x g x f x x--=+在(2,3)上是增函数,求实数a 的取值范围. 49.(2021·上海高一)设函数2()(3)3f x mx m x =+--(1)若对任意[]1,3x ∈,不等式()0f x >恒成立,求实数m 的取值范围 (2)若存在[]1,3x ∈,不等式()0f x >成立,求实数m 的取值范围50.(2021·山东德州市·高一期末)已知函数()y f x =的图象与()()log 0,1a g x x a a =>≠的图象关于x 轴对称,且()g x 的图象过点()4,2. (1)若()()315f x f x ->-+成立,求x 的取值范围;(2)若对于任意[]1,4x ∈,不等式()204x f x g m ⎛⎫-< ⎪⎝⎭恒成立,求实数m 的取值范围. 51.(2021·四川高一开学考试)设函数()223,f x x ax a =-+∈R .(1)当[]1,1x ∈-时,求函数()f x 的最小值()g a 的表达式;(2)求函数()g a 的最大值.五、双空题52.(2021·山东菏泽市·高三一模)已知()f x 是定义在R 上的偶函数且()01f =,()()1g x f x =-是奇函数,则()2021f =________.()411n i f i -==∑_____________.。
三角函数的专题复习-最经典最全
1. 三角函数的基本概念
- 正弦、余弦、正切、余切、正割、余割的定义及其关系- 弧度和角度的转换及其应用
- 三角函数在直角三角形中的应用
2. 三角函数的性质
- 周期性和奇偶性
- 正负变化规律
- 三角函数的大小关系及其应用
3. 三角函数的图像和性质
- 正弦函数的图像和性质
- 余弦函数的图像和性质
- 正切函数的图像和性质
- 三角函数图像的平移、伸缩等变换
4. 三角函数的求值和计算
- 特殊角的三角函数值
- 三角函数的和差化积公式
- 三角函数的倍角和半角公式
- 三角函数的三角恒等式
5. 三角函数的应用
- 三角函数在几何中的应用
- 三角函数在物理中的应用
- 三角函数在工程中的应用
- 三角函数在生活中的应用
6. 典型例题和题解析
- 理解和掌握三角函数的概念和性质
- 运用不同的定理和公式解决相关问题
- 练解题技巧和应用能力
以上是三角函数的专题复习内容,包括基本概念、性质、图像和性质、求值和计算、应用以及典型例题和习题解析。
希望这份文档对您的复习有所帮助,祝您复习顺利!。
专题3.1 平面直角坐标系与一次函数、反比例函数(知识讲解)【基本考点要求】⒈结合实例,了解常量、变量和函数的概念,体会“变化与对应”的思想; ⒉会确定函数自变量的取值范围,即能用三种方法表示函数,又能恰当地选择图象去描述两个变量之间的关系;⒊理解正比例函数、反比例函数和一次函数的概念,会画他们的图象,能结合图象讨论这些函数的基本性质,能利用这些函数分析和解决有关的实际问题. 【知识点梳理】考点一、平面直角坐标系 1.平面直角坐标系平面内两条有公共原点且互相垂直的数轴构成了平面直角坐标系,坐标平面内一点对应的有序实数对叫做这点的坐标.在平面内建立了直角坐标系,就可以把“形”(平面内的点)和“数”(有序实数对)紧密结合起来.2.各象限内点的坐标的特点、坐标轴上点的坐标的特点 点P(x,y)在第一象限0,0>>⇔y x ; 点P(x,y)在第二象限0,0><⇔y x ; 点P(x,y)在第三象限0,0<<⇔y x ; 点P(x,y)在第四象限0,0<>⇔y x ;点P(x,y)在x 轴上0=⇔y ,x 为任意实数;点P(x,y)在y 轴上0=⇔x ,y 为任意实数;点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0). 3.两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等;点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数. 4.和坐标轴平行的直线上点的坐标的特征位于平行于x 轴的直线上的各点的纵坐标相同; 位于平行于y 轴的直线上的各点的横坐标相同. 5.关于x 轴、y 轴或原点对称的点的坐标的特征点P 与点p ′关于x 轴对称⇔横坐标相等,纵坐标互为相反数; 点P 与点p ′关于y 轴对称⇔纵坐标相等,横坐标互为相反数; 点P 与点p ′关于原点对称⇔横、纵坐标均互为相反数. 6.点P(x,y)到坐标轴及原点的距离 (1)点P(x,y)到x 轴的距离等于y ; (2)点P(x,y)到y 轴的距离等于x ; (3)点P(x,y)到原点的距离等于22y x +.特别说明:(1)注意:x 轴和y 轴上的点,不属于任何象限; (2)平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标.考点二、函数 1.函数的概念设在某个变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y 都有唯一确定的值与它相对应,那么就说y是x的函数,x叫做自变量.2.自变量的取值范围对于实际问题,自变量取值必须使实际问题有意义.对于纯数学问题,自变量取值应保证数学式子有意义.3.表示方法⑴解析法;⑵列表法;⑶图象法.4.画函数图象(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.特别说明:(1)在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量;(2)确定自变量取值范围的原则:①使代数式有意义;②使实际问题有意义.考点三、几种基本函数(定义→图象→性质)1.正比例函数及其图象性质(1)正比例函数:如果y=kx(k是常数,k≠0),那么y叫做x的正比例函数.(2)正比例函数y=kx( k≠0)的图象:过(0,0),(1,K)两点的一条直线.(3)正比例函数y=kx(k≠0)的性质①当k>0时,图象经过第一、三象限,y随x的增大而增大;②当k<0时,图象经过第二、四象限,y随x的增大而减小 .2.一次函数及其图象性质(1)一次函数:如果y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.(2)一次函数y=kx+b(k≠0)的图象(3)一次函数y=kx+b (k ≠0)的图象的性质一次函数y =kx +b 的图象是经过(0,b )点和)0,(kb-点的一条直线.①当k>0时,y 随x 的增大而增大;②当k<0时,y 随x 的增大而减小.特别说明:(1)当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例;(2)确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k. 确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b. 解这类问题的一般方法是待定系数法. 3.反比例函数及其图象性质 (1)定义:一般地,形如xky =(k 为常数,o k ≠)的函数称为反比例函数. 三种形式:k y x=(k ≠0)或kx y =1-(k ≠0)或xy=k(k ≠0). (2)反比例函数解析式的特征:①等号左边是函数y ,等号右边是一个分式.分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1; ②比例系数0≠k ;③自变量x 的取值为一切非零实数; ④函数y 的取值是一切非零实数.(3)反比例函数的图象 ①图象的画法:描点法列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数); 描点(由小到大的顺序);连线(从左到右光滑的曲线).②反比例函数的图象是双曲线,xky =(k 为常数,0≠k )中自变量0≠x ,函数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交.③反比例函数的图象是轴对称图形(对称轴是x y =和x y -=)和中心对称图形(对称中心是坐标原点).④反比例函数x k y =(0≠k )中比例系数k 的几何意义是:过双曲线xk y = (0≠k )上任意点引x 轴、y 轴的垂线,所得矩形面积为k . (4)反比例函数性质:反比例函数 )0(≠=k xky k 的符号k>0k<0图像性质①x 的取值范围是x ≠0, y 的取值范围是y ≠0; ②当k>0时,函数图像的两个分支分别在第一、三象限.在每个象限内,y 随x 的增大而减小.①x 的取值范围是x ≠0,y 的取值范围是y ≠0;②当k<0时,函数图像的两个分支分别在第二、四象限.在每个象限内,y 随x 的增大而增大.(5)反比例函数解析式的确定:利用待定系数法(只需一对对应值或图象上一个点的坐标即可求出k ) (6)“反比例关系”与“反比例函数”: 成反比例的关系式不一定是反比例函数,但是反比例函数xky =中的两个变量必成反比例关系.特别说明:(1)用待定系数法求解析式(列方程[组]求解);(2)利用一次(正比例)函数、反比例函数的图象求不等式的解集.【典型例题】类型一、坐标平面有关的计算1. 已知点P (3a ﹣15,2﹣a ).(1)若点P 到x 轴的距离是1,试求出a 的值;(2)在(1)题的条件下,点Q 如果是点P 向上平移3个单位长度得到的,试求出点Q 的坐标;(3)若点P 位于第三象限且横、纵坐标都是整数,试求点P 的坐标.【答案】(1)1a =或3a =;(2)(12,4)Q -或(6,2)Q -;(3)(6,1)P --或(3,2)P --. 【分析】(1)根据“点P 到x 轴的距离是1”可得21a -=,由此即可求出a 的值;(2)先根据(1)的结论求出点P 的坐标,再根据点坐标的平移变换规律即可得; (3)先根据“点P 位于第三象限”可求出a 的取值范围,再根据“点P 的横、纵坐标都是整数”可求出a 的值,由此即可得出答案.解:(1)点P 到x 轴的距离是1,且(315,2)P a a --,21a ∴-=,即21a -=或21a -=-,解得1a =或3a =;(2)当1a =时,点P 的坐标为(12,1)P -, 则点Q 的坐标为(12,13)Q -+,即(12,4)Q -, 当3a =时,点P 的坐标为(6,1)P --, 则点Q 的坐标为(6,13)Q --+,即(6,2)Q -, 综上,点Q 的坐标为(12,4)Q -或(6,2)Q -; (3)点(315,2)P a a --位于第三象限,315020a a -<⎧∴⎨-<⎩,解得25a <<, 点P 的横、纵坐标都是整数,3a ∴=或4a =,当3a =时,3156,21a a -=--=-,则点P 的坐标为(6,1)P --, 当4a =时,3153,22a a -=--=-,则点P 的坐标为(3,2)P --, 综上,点P 的坐标为(6,1)P --或(3,2)P --.【点拨】本题考查了点到坐标轴的距离、象限内点的坐标特点、点的坐标平移规律和一元一次不等式组的解法等知识,属于基础题,熟练掌握平面直角坐标系的基本知识是解题关键.举一反三:【变式】已知点()22,5P a a -+,解答下列各题. (1)点P 在x 轴上,求出点P 的坐标;(2)点Q 的坐标为=()4,5,直线PQ y ∥轴;求出点P 的坐标;(3)若点P 在第二象限,且它到x 轴、y 轴的距离相等,求22012021a +的值. 【答案】(1)()12,0P -; (2)()4,8P ; (3)220120212020a += 【分析】(1)利用x 轴上P 点的纵坐标为0求解即可得;(2)利用平行于y 轴的直线上的点的横坐标相等列方程求解即可;(3)在第二象限,且到x 轴、y 轴的距离相等的点的横纵坐标互为相反数,再利用相反数的性质列方程求解可得1a =-,将其代入代数式求解即可.(1)解:∵点P 在x 轴上,∵P 点的纵坐标为0, ∵50a +=, 解得:5a =-, ∵2212a -=-, ∵()12,0P -.(2)解:∵直线PQ y ∥轴,∵224a -=, 解得:3a =, ∵58a +=, ∵()4,8P . (3)解:∵点P 在第二象限,且它到x 轴、y 轴的距离相等, ∵2250a a -++=. 解得:1a =-. ∵22012021a + ()220112021=-+2020=,∵22012021a +的值为2020.【点拨】本题主要考查平面直角坐标系内点的坐标特点.分别考查了坐标轴上点的坐标特点、平行于坐标轴的直线上点坐标的特点、到坐标轴距离相等的点的坐标特点,理解题意,熟练掌握坐标系中不同条件下的坐标特点是解题关键.2.在平面直角坐标系中,将点(),1A a a -先向左平移3个单位得点1A ,再将1A 向上平移1个单位得点2A ,若点2A 落在第三象限,则a 的取值范围是( )A .23a <<B .3a <C .2a >D .2a <或3a >【答案】A【分析】根据点的平移规律可得()2311A a a --+,,再根据第三象限内点的坐标符号可得.解:点()1A a a -,先向左平移3个单位得点1A ,再将1A 向上平移1个单位得点()2311A a a --+,,点'A 位于第三象限,30110a a -<⎧∴⎨-+<⎩, 解得:23a <<, 故选:A .【点拨】此题主要考查了坐标与图形变化-平移,关键是横坐标,右移加,左移减;纵坐标,上移加,下移减.举一反三:【变式1】平面直角坐标系中,将点A (2m ,1)沿着x 的正方向向右平移(23m +)个单位后得到B 点,则下列结论:①B 点的坐标为(223+m ,1);①线段AB 的长为3个单位长度;①线段AB 所在的直线与x 轴平行;①点M (2m ,23m +)可能在线段AB 上;①点N (22m +,1)一定在线段AB 上.其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】B【分析】根据平移的方式确定平移的坐标即可求得B 点的坐标,进而判断∵,根据平移的性质即可求得AB 的长,进而判断∵,根据平移的性质可得线段AB 所在的直线与x 轴平行,即可判断∵,根据纵坐标的特点即可判断∵∵解:∵点A (2m ,1)沿着x 的正方向向右平移(23m +)个单位后得到B 点, ∵B 点的坐标为(223+m ,1); 故∵正确;则线段AB 的长为23m +; 故∵不正确;∵A (2m ,1),B (223+m ,1);纵坐标相等,即点A ,B 到x 轴的距离相等 ∵线段AB 所在的直线与x 轴平行; 故∵正确若点M (2m ,23m +)在线段AB 上; 则231m +=,即21m =-,不存在实数21m =- 故点M (2m ,23m +)不在线段AB 上; 故∵不正确同理点N (22m +,1)在线段AB 上; 故∵正确综上所述,正确的有∵∵∵,共3个 故选B【点拨】本题考查了平移的性质,平面直角坐标系中点到坐标轴的距离,掌握平移的性质是解题的关键.类型二、一次函数3.在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象由函数12y x =的图象向下平移1个单位长度得到.(1)求这个一次函数的解析式;(2)当2x >-时,对于x 的每一个值,函数(0)y mx m =≠的值大于一次函数y kx b =+的值,直接写出m 的取值范围.【答案】(1)112y x =-;(2)112m ≤≤ 【分析】(1)由图象的平移及题意可直接求得一次函数的解析式;(2)由题意可先假设函数()0y mx m =≠与一次函数y kx b =+的交点横坐标为2-,则由(1)可得:1m =,然后结合函数图象可进行求解.解:(1)由一次函数()0y kx b k =+≠的图象由函数12y x =的图象向下平移1个单位长度得到可得:一次函数的解析式为112y x =-; (2)由题意可先假设函数()0y mx m =≠与一次函数y kx b =+的交点横坐标为2-,则由(1)可得:()12212m -=⨯--,解得:1m =,函数图象如图所示:∵当2x >-时,对于x 的每一个值,函数()0y mx m =≠的值大于一次函数y kx b =+的值时,根据一次函数的k 表示直线的倾斜程度可得当12m =时,符合题意,当12m <时,则函数()0y mx m =≠与一次函数y kx b =+的交点在第一象限,此时就不符合题意,综上所述:112m ≤≤. 【点拨】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.举一反三:【变式】在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象由函数y x =的图象平移得到,且经过点(0,1)-.(1)求这个一次函数的表达式;(2)当1x >时,对于x 的每一个值,函数y x m =-+的值小于一次函数y kx b =+的值,直接写出m 的取值范围.【答案】(1)1y x =-;(2)1m ≤ 【分析】(1)根据一次函数(0)y kx b k =+≠由y x =平移得到可得出k 值,然后将点(0,-1)代入y x b =+可得b 值即可求出解析式;(2)由题意可得临界值为当1x =时,两条直线都过点(1,0),即可得出当1x >时,y x m =-+都小于1y x =-,根据1x >,可得m 可取值1,可得出m 的取值范围.解:(1)∵一次函数(0)y kx b k =+≠的图象由函数y x =的图象平移得到, ∵1k =.∵一次函数y x b =+的图象过点(01)-,, ∵1b =-.∵这个一次函数的表达式为1y x =-. (2)由(1)得y=x -1, 解不等式-x+m <x -1得12m x +>由题意得11,2m +≤ 故m 的取值范围1m ≤【点拨】本题考查了求一次函数解析式,函数图像的平移,一次函数的图像,找出临界点是解题关键.4.为落实省体育中考的要求,增强学生的身体素质.某校计划今年购买一批篮球和实心球共100粒,已知去年篮球的单价为80元,实心球的单价为36元.由于物价上涨,预计今年篮球的价格比去年上涨20%,实心球的价格不变,若购买蓝球的总费用不低于购买实心球的总费用,为了完成这项采购计划,该校今年至少应投入多少元?【答案】为了完成这项采购计划,该校今年至少应投入5280元.【分析】设完成计划需购买x 个篮球,需要投入的费用为w 元,根据总价=单价×数量,即可得出w 关于x 的函数关系式,由购买篮球的总费用不低于购买实心球的总费用,即可得出关于x 的一元一次不等式,解之即可得出x 的取值范围,再利用一次函数的性质即可解决最值问题.解:设完成计划需购买x 粒篮球,需要投入的费用为w 元.依题意,得w=80(1+20%)x +36(100-x).化简得:w=60x+3600.因为购买篮球的总费用不低于购买实心球的总费用,所以:80(1+20%)x ≥36(100-x),解得x≥3 2711.又x是整数,所以x的最小值为28.因为k=60>0,所以,w随x的增大而增大,所以,当x=28时,w的最小值为60×28+3600=5280.答:为了完成这项采购计划,该校今年至少应投入5280元.【点拨】本题考查了一元一次不等式的应用以及一次函数的应用,根据各量之间的关系,找出题目中得函数关系式是解题的关键.【变式】2021年春,河南某高校为做好新型冠状病毒感染的防治工作,计划为教职工购买一批洗手液(每人2瓶).学校派王老师去商场购买,他在商场了解到,某个牌子的洗手液有两种优惠活动:活动一:一律打9折;活动二:当购买量不超过100瓶时,按原价销售;当购买量超过100瓶时,超过的部分打8折.已知所需费用y(元)与购买洗手液的数量x(瓶)之间的函数图象如图所示.(1)根据图象可知,洗手液的单价为元/瓶,请直接写出y与x之间的函数关系式;(2)请求出a的值;(3)如果该高校共有m名教职工,请你帮王老师设计最省钱的购买方案.【答案】(1)4,1 3.6y x =,()24(100)3.280100x x y x x ≤⎧=⎨+>⎩.(2)720a =元;(3)当100m <时选活动一:一律打9折合算;当100m =时选活动一:活动二均可,当100m >时选活动二合算.【分析】(1)利用购买100瓶费用400元,洗手液的单价为400÷100=4元/瓶,根据单价×件数=费用均可列出函数均可;(2)利用两函数值相等联立方程组 3.63.280a x a x =⎧⎨=+⎩,解方程组均可; (3)该高校共有m 名教职工,教职工购买一批洗手液(每人2瓶).一共买2m 瓶分类三种情况两函数作差比较均可.解:(1)400元购买100瓶,洗手液的单价为400÷100=4元/瓶,19410y x =⨯⋅, 1 3.6y x =,()24(100)3.280100x x y x x ≤⎧=⎨+>⎩, 故答案为4,1 3.6y x =,()24(100)3.280100x x y x x ≤⎧=⎨+>⎩. (2)联立 3.63.280a x a x =⎧⎨=+⎩, 解得720{200a x ==, ∵720a =;(3)该高校共有m 名教职工,教职工购买一批洗手液(每人2瓶).一共买2m 瓶, 当2200m 时,即100m <时选活动一:一律打9折合算;∵12 3.6242 1.6050y y m m m m -=⨯-⨯=-<≤,;()12 3.62 3.22800.880050100y y m m m m -=⨯-⨯-=-<<≤;当100m =时选活动一:活动二均可,()12 3.62 3.22800.8800100y y m m m m -=⨯-⨯-=-==;当100m >时选活动二合算,()12 3.62 3.22800.8800100y y m m m m -=⨯-⨯-=->>.【点拨】本题考查列一次函数关系,利用一次函数值相等联立方程组,解方程组,根据函数自变量的取值范围进项方案设计,掌握列一次函数关系的方法,利用函数值相等联立方程组,解方程组,根据函数自变量的取值范围进项方案设计.类型三、反比例函数5.如图,一次函数11y k x b =+的图象与反比例函数22k y x=的图象相交于A 、B 两点,其中点A 的坐标为()1,2,点B 的纵坐标为1-.(1)求这两个函数的表达式;(2)点C 为反比例函数图象上的一点,且点C 在点A 的上方,当CAB AOB S S =△△时,求点C 的坐标.【答案】(1)一次函数的解析式为y 1=x +1,反比例函数的解析式为y 2=2x;(2)C 点的坐标为(-.【分析】(1)把A 点坐标代入反比例函数解析式可求得k 2的值,把点B 的纵坐标代入求得横坐标,然后利用待定系数法即可求得一次函数的解析式;(2)根据题意点C 就是直线y =x +1向上平移1个单位后与反比例函数的交点,求得平移后的直线解析式,与反比例函数解析式联立,解方程组即可求得C 的坐标.解:(1)把点A (1,2)代入反比例函数y 2=2k x得,k 2=1×2=2, ∵反比例函数的解析式为y 2=2x , 将y =-1代入y 2=2x 得,-1=2x,交点x =-2, ∵B (-2,-1),将A 、B 的坐标代入y 1=k 1x +b 得221k b k b +=⎧⎨-+=-⎩, 解得11k b =⎧⎨=⎩, ∵一次函数的解析式为y 1=x +1;(2)∵y 1=x +1,∵直线与y 轴的交点为(0,1),∵点C 为反比例函数图象上的一点,且点C 在点A 的上方,S ∵CAB =S ∵AOB ,∵点C 就是直线y =x +1向上平移1个单位后与反比例函数的交点,将直线y =x +1向上平移1个单位后得到y =x +2,解22y x y x =+⎧⎪⎨=⎪⎩得11x y ⎧=-⎪⎨=+⎪⎩11x y ⎧=-⎪⎨=⎪⎩(舍) , ∵C 点的坐标为(-.【点拨】本题考查了一次函数和反比例函数的交点,待定系数法求一次函数和反比例函数的解析式,熟练掌握待定系数法是解题的关键.举一反三:【变式】如图,反比例函数(k 0,x 0)k y x=≠>的图象与矩形OABC 的边AB ,BC 分别交于点F ,点E ,点D 为x 轴负半轴上的点,4CDE S =△.(1)求反比例函数的表达式;(2)求证:BE BF CE AF=.【答案】(1)8y x=;(2)见解析 【分析】 (1)连接OE ,根据矩形的性质得到//BC AD ,得到4COE DCE S S ==△△,由点E 在反比例函数(k 0,x 0)k y x=≠>的图象上,于是得到结论; (2)设8,E m m ⎛⎫ ⎪⎝⎭,8,F n n ⎛⎫ ⎪⎝⎭,于是得到8,B n m ⎛⎫ ⎪⎝⎭,(),0A n ,求得CE m =,BE n m =-,()888n m BF m n mn-=-=,8AF n =,即可得到结论. 解:(1)如图,连接OE .∵四边形OABC 是矩形,∵//BC AD .∵4COE DCE S S ==△△.∵点E 在反比例函数(k 0,x 0)k y x =≠>的图象上, ∵8k .∵反比例函数的表达式为8y x=; (2)点F ,点E 在反比例函数(k 0,x 0)k y x =≠>的图象上, ∵设8,E m m ⎛⎫ ⎪⎝⎭,8,F n n ⎛⎫ ⎪⎝⎭. ∵8,B n m ⎛⎫ ⎪⎝⎭,(,0)A n . ∵CE m =,BE n m =-,888()n m BF m n mn -=-=,8AF n=. ∵BE n m CE m-=,8()8n m BF n m mn AF m n--==. ∵BE BF CE AF=.【点拨】本题考查了反比例函数图象上点的坐标特征,待定系数法求函数的解析式,反比例函数k 的几何意义,矩形的性质,正确理解题意是解题的关键.类型四、函数综合应用6、已知:如图,双曲线y=k x(k ≠0)与直线y =mx (m ≠0)交于A (2,4)、B 两点,点D 是x 轴上一点,C 在双曲线上且是AD 的中点.(1)求双曲线和直线AB 的函数表达式;(2)连结BC ,求△ABC 的面积.【答案】(1)8y x=;y =2x ;(2)12 【分析】 (1)把A 点坐标代入双曲线和直线AB 的解析式中求解即可;(2)分别求出B ,C 的坐标,然后求出三角形ABC 的三边长,利用勾股定理的逆定理判定三角形ABC 为直角三角形,然后求解面积即可.解:(1)∵双曲线y=k x(k ≠0)与直线y =mx (m ≠0)交于A (2,4), ∵4242k m⎧=⎪⎨⎪=⎩,解得28m k =⎧⎨=⎩, ∵双曲线的解析式为8y x=,直线AB 的解析式为2y x =; (2)设8,C m m ⎛⎫ ⎪⎝⎭,(),0D n , ∵C 是AD 的中点, ∵240,22n C ++⎛⎫ ⎪⎝⎭即2,22n C +⎛⎫ ⎪⎝⎭ ∵82m=, ∵4m =,∵C (4,2), 联立82y x y x⎧=⎪⎨⎪=⎩,解得24x y =-⎧⎨=-⎩或24x y =⎧⎨=⎩(舍去), ∵B (-2,-4),∵()()22242248AC =-+-=,()()222244272BC =--+--=,()()222224480AB =--+--=,∵222AC BC AB +=,∵∵ABC 是直角三角形,∵111222ABC S =AC BC=⨯△.【点拨】本题主要考查了一次函数与反比例函数的综合,待定系数法求函数解析式,勾股定理的逆定理,两点距离公式,解题的关键在于能够熟练掌握相关知识进行求解.举一反三:【变式】如图所示,在平面直角坐标系中,点A 的坐标为()0m ,,0m <,点B 与点A 关于原点对称,直线y =与双曲线k y x=交于C ,()1,D t 两点. (1)求双曲线的解析式;(2)当四边形ACBD 为矩形时,求m 的值.【答案】(1)y =(2)-2 【分析】 (1)由点D 的坐标结合反比例函数图象上点的坐标特征即可求出t 值,进而得出点D 的坐标,代入双曲线即可求出解析式;(2)根据勾股定理得出OD 长度,再根据矩形的性质可得出OB =OA=OC=OD =2,根据点 A 的坐标即可求出m 值.解:(1)将()1,D t 代入y =,得:t =∵(D ,∵1k =∵双曲线的解析式是y =.(2)由(D 得:2OD =. ∵四边形ACBD 为矩形,∵12AO BO AB ==,12CO DO CD ==,AB CD =, ∵2AO BO CO DO ====,又∵0m <,∵2m =-.【点拨】本题考查了正比例函数的性质与反比例函数的性质,矩形的性质,解题的关键是根据矩形性质找出OA=OD ,本题属于中档题,难度不大,熟知各函数和各图形的性质是解题关键.7.如图,在平面直角坐标系中,点B 坐标是(3,4),BA ①x 轴于点A ,点B 在反比例函数y =k x(k >0,x >0)的图象上,将①OAB 向右平移,得到①O 'A 'B ',O 'B '交双曲线于点C (3a ,a ).(1)求k ,a 的值;(2)求出①OAB 向右平移到O A B '''△的距离;(3)连接OB ,BC ,OC ,求①OBC 的面积.【答案】(1)12k =,2a =;(2)∵OAB 向右平移4.5个单位长度得到O A B '''△;(3)9OBC S =【分析】(1)根据题意可直接进行求解k 的值,然后再把点C 代入进行求解即可;(2)过点C 作CD ∵x 轴于点D ,由(1)可得CD =2,进而可得点D 为O A ''的中点,然后问题可求解;(3)由(1)及题意易得OBC ADCB S S =梯形,然后根据梯形的面积公式进行求解即可. 解:(1)∵点B 坐标是(3,4),BA ∵x 轴于点A ,点B 在反比例函数y =k x的图象上, ∵3412k =⨯=,∵O 'B '交双曲线于点C (3a ,a ),∵312a a ⋅=,解得:2a =±,∵x >0,∵2a =;(2)过点C 作CD ∵x 轴于点D ,如图所示:由(1)可得:点()6,2C ,∵OD =6,CD =2,由平移的性质可得:4,3AB A B OA O A ''''====,90OAB O A B '''∠=∠=︒, ∵CD//A B '',∵O DC O A B ''''∽, ∵12CD O D A B O A '=='''', ∵ 1.5O D '=,∵ 4.5OO OD O D ''=-=,∵∵OAB 向右平移4.5个单位长度得到O A B '''△;(3)如(2)图,∵,OBC ODC OAB ODCB ADCB ODCB SS S S S S =-=-四边形梯形四边形,由反比例函数k 的几何意义可得2OAB ODC k S S ==, ∵OBC ADCB S S =梯形,由(2)可得:3,4,2,6OA AB CD OD ====,∵3AD OD OA =-=,∵()()11243922OBC ADCB S S CD AB AD ==⨯+⨯=⨯+⨯=梯形.【点拨】本题主要考查反比例函数k 的几何意义及与几何的综合,熟练掌握反比例函数k 的几何意义及函数的性质是解题的关键.。
三角函数一.选择题(共12小题)1.(2022•鼓楼区校级三模)若,且,则=()A.B.C.2D.−22.(2022•鼓楼区校级模拟)已知角θ的大小如图所示,则=()A.﹣5B.5C.D.3.(2022•福州模拟)某智能主动降噪耳机工作的原理是利用芯片生成与噪音的相位相反的声波,通过两者叠加完全抵消掉噪音(如图).已知噪音的声波曲线y=A sin(ax+p)(其中A>0,a>0,0≤φ<2π)的振幅为1,周期为π,初相为,则用来降噪的声波曲线的解析式为()A.y=sin2x B.y=cos2x C.y=﹣sin2x D.y=﹣cos2x4.(2022春•福州期中)已知α为锐角,且sin(α﹣)=,则cos(﹣α)=()A.B.﹣C.D.﹣5.(2022•鼓楼区校级三模)已知函数的图象过点,现将y=f(x)的图象向左平移个单位长度得到的函数图象也过点P,则()A.ω的最小值为2B.ω的最小值为6C.ω的最大值为2D.ω的最大值为66.(2021秋•鼓楼区校级期末)已知角α的终边在射线y=﹣2x(x≥0)上,则2sinα+cosα的值为()A.B.C.﹣D.﹣7.(2021秋•鼓楼区校级期末)函数f(x)的部分图象如图所示,则f(x)可能是()A.B.C.D.8.(2021秋•福州期末)已知函数f(x)=sin(ωx﹣φ)的部分图象如图所示,则f(x)的单调递增区间为()A.B.C.D.9.(2021秋•仓山区校级期末)与﹣2022°终边相同的最小正角是()A.138°B.132°C.58°D.42°10.(2022春•马尾区校级月考)已知弧长为的弧所对的圆心角为,则该弧所在的扇形面积为()A.B.C.D.11.(2021秋•鼓楼区校级期末)已知,tanα=3,,则tan(α﹣β)=()A.B.C.2D.12.(2021秋•鼓楼区校级期末)下列函数中,周期为π的是()A.y=B.y=tan2xC.y=sin x cos x D.y=sin|x|二.填空题(共4小题)13.(2022•福州模拟)已知2sin(α﹣)=cosα,则tanα=.14.(2022春•福州期中)如图,半圆O的半径为1,A为直径所在直线上的一点,且OA=,B为半圆弧上的动点.将线段AB绕点A顺时针旋转得到线段AC,则线段OC长度的最大值是.15.(2022春•仓山区校级期中)在平面直角坐标系中,O(0,0),P(8,6),将向量OP按顺时针方向旋转后,得向量,则点Q的坐标是.16.(2021秋•福州期末)函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分图像如图所示,BC∥x轴,则ω=,φ=.三.解答题(共5小题)17.(2021秋•福州期末)已知角α的顶点与坐标原点重合,始边与x轴的非负半轴重合,终边过点P(,).(1)求cos(α+π)的值;(2)若tanβ=﹣2,求tan(α﹣β)的值.18.(2021秋•鼓楼区校级期末)已知角α的顶点为坐标原点,始边为x轴的非负半轴,终边经过点P(1,﹣m﹣1),且cos.(1)求实数m的值;(2)若m>0,求的值.19.(2021秋•鼓楼区校级期末)设函数.(1)求f(x)的单调增区间;(2)求f(x)在[0,π]上的最大值与最小值.20.(2021秋•福州期末)已知函数f(x)=.(1)求f(x)的最小正周期;(2)将y=f(x)的图象上的各点______得到y=g(x)的图象,当x∈时,方程g(x)=m有解,求实数m的取值范围.在以下①、②中选择一个,补在(2)中的横线上,并加以解答,如果①、②都做,则按①给分.①向左平移个单位,再保持纵坐标不变,横坐标缩短到原来的一半.②纵坐标保持不变,横坐标伸长到原来的2倍,再向右平移个单位.21.(2021秋•仓山区校级期末)在①f(x)是偶函数;②(,0)是f(x)的图象在y轴右侧的第一个对称中心;③f(x)相邻两条对称轴之间距离为.这三个条件中任选两个,补充在下面问题的横线上,并解答.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π),满足_____.(1)求函数f(x)的解析式;(2)将函数y=f(x)的图象向右平移个单位,再将所得的图象上每一点的纵坐标不变,横坐标变为原来的2倍后所得到的图象对应的函数记作y=g(x);若函数F(x)=f(x)+k•g(x)在(0,nπ)内恰有2021个零点,求实数k与正整数n的值.2022年新高二数学人教新版(2019)专题复习《三角函数》参考答案与试题解析一.选择题(共12小题)1.(2022•鼓楼区校级三模)若,且,则=()A.B.C.2D.−2【考点】两角和与差的三角函数.【专题】计算题;方程思想;综合法;三角函数的求值;数学运算.【分析】由已知可得=﹣,可求tan=﹣3,进而可求值.【解答】解:,可得=﹣,所以=﹣,解得tan=﹣3或tan=﹣,又,∴∈(,),∴tan=﹣3,故==﹣2.故选:D.【点评】本题考查二倍角的正弦公式,属中档题.2.(2022•鼓楼区校级模拟)已知角θ的大小如图所示,则=()A.﹣5B.5C.D.【考点】二倍角的三角函数.【专题】函数思想;定义法;三角函数的求值;数学运算.【分析】由已知求得tan()=﹣5,得到,再由倍角公式及同角三角函数基本关系式化弦为切求解.【解答】解:∵θ+的终边过P(﹣1,5),∴tan()=﹣5,即,∴,∴====.故选:A.【点评】本题考查任意角的三角函数的定义,考查倍角公式及同角三角函数基本关系式的应用,是基础题.3.(2022•福州模拟)某智能主动降噪耳机工作的原理是利用芯片生成与噪音的相位相反的声波,通过两者叠加完全抵消掉噪音(如图).已知噪音的声波曲线y=A sin(ax+p)(其中A>0,a>0,0≤φ<2π)的振幅为1,周期为π,初相为,则用来降噪的声波曲线的解析式为()A.y=sin2x B.y=cos2x C.y=﹣sin2x D.y=﹣cos2x【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】数形结合;综合法;三角函数的图象与性质;数学运算.【分析】由已知可得A=1,T=π,p=,由此即可求出a的值,由此即可求解.【解答】解:由已知可得A=1,T=π,p=,则a=2,所以y=﹣sin(2x+)=﹣cos2x,故选:D.【点评】本题考查了三角函数的图象及其求解解析式问题,考查了学生的运算能力,属于基础题.4.(2022春•福州期中)已知α为锐角,且sin(α﹣)=,则cos(﹣α)=()A.B.﹣C.D.﹣【考点】两角和与差的三角函数.【专题】转化思想;综合法;三角函数的图象与性质;数学运算.【分析】由题意,利用同角三角函数的基本关系、诱导公式,求得cos(﹣α)的值.【解答】解:∵α为锐角,且sin(α﹣)=,∴α﹣为锐角,cos(α﹣)==,则cos(﹣α)=cos(α﹣)=,故选:C.【点评】本题主要考查同角三角函数的基本关系、诱导公式的应用,属于基础题.5.(2022•鼓楼区校级三模)已知函数的图象过点,现将y=f(x)的图象向左平移个单位长度得到的函数图象也过点P,则()A.ω的最小值为2B.ω的最小值为6C.ω的最大值为2D.ω的最大值为6【考点】函数y=Asin(ωx+φ)的图象变换.【专题】计算题;转化思想;综合法;三角函数的求值;三角函数的图象与性质;逻辑推理;数学运算.【分析】直接利用函数的图象的平移变换的应用求出结果.【解答】解:函数的图象过点,所以f(0)=sinφ=,故φ=;当函数f(x)的图象向左平移个单位,得到,由于函数的图象经过点(0,);所以,故ω的最小值为2.故选:A.【点评】本题考查的知识要点:三角函数关系式的变换,函数的图象的平移变换,主要考查学生的运算能力和数学思维能力,属于基础题.6.(2021秋•鼓楼区校级期末)已知角α的终边在射线y=﹣2x(x≥0)上,则2sinα+cosα的值为()A.B.C.﹣D.﹣【考点】任意角的三角函数的定义.【专题】函数思想;定义法;三角函数的求值;数学运算.【分析】由已知可得α为第四象限角,且,结合平方关系求解sinα与cosα的值,则答案可求.【解答】解:∵角α的终边在射线y=﹣2x(x≥0)上,∴α为第四象限角,由,解得sinα=,cosα=,∴2sinα+cosα=,故选:D.【点评】本题考查三角函数的化简求值,考查任意角的三角函数的定义,是基础题.7.(2021秋•鼓楼区校级期末)函数f(x)的部分图象如图所示,则f(x)可能是()A.B.C.D.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】数形结合;数形结合法;三角函数的图象与性质;数学抽象.【分析】根据函数f(x)=A sin(ωx+φ)的部分图象,求出A、T和ω、φ的值.【解答】解:设函数f(x)=A sin(ωx+φ),由f(x)的部分图象知,A=2,=﹣=,解得T=π,所以ω==2,又函数的图象过点(,2),即2×+φ=+2kπ,k∈Z,解得φ=﹣+2kπ,k∈Z,令k=0,得φ=﹣,所以f(x)=2sin(2x﹣).故选:A.【点评】本题考查了函数f(x)=A sin(ωx+φ)的图象与性质的应用问题,是基础题.8.(2021秋•福州期末)已知函数f(x)=sin(ωx﹣φ)的部分图象如图所示,则f(x)的单调递增区间为()A.B.C.D.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的单调性.【专题】计算题;方程思想;综合法;三角函数的图象与性质;数学运算.【分析】由图可得T=2,可求ω,又函数过点(,1),可求φ,从而可求函数解析式,可求单调递增区间.【解答】解:由图形可知=﹣=1,所以T=2,所以=2,所以ω=π,所以f(x)=sin(πx﹣φ),又函数f(x)过点(,1),所以sin(﹣φ)=1,所以﹣φ=+2kπ,k∈Z,所以φ=﹣2kπ,所以f(x)=sin(πx﹣),由2kπ﹣≤πx﹣≤2kπ+,可得2k﹣≤x≤2k+,k∈Z,所以f(x)的单调递增区间为[2k﹣,2k+],k∈Z,故选:D.【点评】本题考查由函数图象求解析式,求单调递增区间,属基础题.9.(2021秋•仓山区校级期末)与﹣2022°终边相同的最小正角是()A.138°B.132°C.58°D.42°【考点】终边相同的角.【专题】计算题;转化思想;综合法;三角函数的求值;数学运算.【分析】利用终边相同的角的定义得到α=﹣2022°+k•360°,k∈Z,然后令﹣2022°+k•360°>0,求出k的值,代入求出此时的α即可.【解答】解:与﹣2022°终边相同的角为α=﹣2022°+k•360°,k∈Z,由题意﹣2022°+k•360°>0,解得k>5.61,k∈Z,所以k的最小值为6,此时α=﹣2022°+6×360°=138°,故与﹣2020°终边相同的最小正角是138°.故选:A.【点评】本题考查了终边相同的角的应用,解题的关键是掌握终边相同角的表示,属于基础题.10.(2022春•马尾区校级月考)已知弧长为的弧所对的圆心角为,则该弧所在的扇形面积为()A.B.C.D.【考点】扇形面积公式.【专题】计算题;对应思想;综合法;三角函数的求值;数学运算.【分析】由已知利用弧长公式先求出圆半径,由此能求出这条弧所在的扇形面积.【解答】解:∵弧长为的弧所对的圆心角为,∴圆半径r==2,∴这条弧所在的扇形面积为S=lr=×2=.故选:B.【点评】本题考查扇形面积的求法,考查弧长公式、扇形面积等基础知识,考查运算求解能力,是基础题.11.(2021秋•鼓楼区校级期末)已知,tanα=3,,则tan(α﹣β)=()A.B.C.2D.【考点】两角和与差的三角函数.【专题】函数思想;分析法;三角函数的求值;数学运算.【分析】运用三角函数的同角公式,可得sin(α+β)的值,结合正切函数的两角差公式,分别求得tanβ、tan(α﹣β)的值,即可求解.【解答】解:∵tanα>0,,∴,,∵,∴,由三角函数的同角公式可得,=,∴tan(α+β)=,∵=,∴=,故选:B.【点评】本题考查两角和与差的三角函数,考查计算能力,需要学生熟练掌握公式,属于基础题.12.(2021秋•鼓楼区校级期末)下列函数中,周期为π的是()A.y=B.y=tan2xC.y=sin x cos x D.y=sin|x|【考点】三角函数的周期性.【专题】函数思想;分析法;三角函数的图象与性质;数学运算.【分析】根据三角函数的周期公式,即可得到结论.【解答】解:函数的周期,选项A,ω=1,,故A选项错误,选项B,ω=2,,故B选项错误,选项C,y=sin x cos x=,即ω=2,,故C选项正确,选项D,当x>0时,y=sin x,当x<0时,y=sin(﹣x)=﹣sin x,函数不是周期函数,故D选项错误,故选:C.【点评】本题主要考查三角函数的图象和性质,比较基础,属于基础题.二.填空题(共4小题)13.(2022•福州模拟)已知2sin(α﹣)=cosα,则tanα=1+.【考点】两角和与差的三角函数;同角三角函数间的基本关系.【专题】计算题;转化思想;转化法;三角函数的求值;数学运算.【分析】由已知利用两角差的正弦公式,同角三角函数基本关系式即可求解.【解答】解:因为2sin(α﹣)=cosα,所以2(sinα﹣cosα)=sinα﹣cosα=cosα,可得sinα=(1+)cosα,则tanα==1+.故答案为:1+.【点评】本题主要考查了两角差的正弦公式,同角三角函数基本关系式在三角函数化简求值中的应用,属于基础题.14.(2022春•福州期中)如图,半圆O的半径为1,A为直径所在直线上的一点,且OA=,B为半圆弧上的动点.将线段AB绕点A顺时针旋转得到线段AC,则线段OC长度的最大值是3.【考点】三角函数的恒等变换及化简求值.【专题】计算题;函数思想;综合法;三角函数的图象与性质;数学运算.【分析】以O点为坐标原点,建立如图所示平面直角坐标系,设∠AOB=θ,则B(cosθ,sinθ),即可表示出C点坐标,从而得到,再根据向量模的坐标计算、三角恒等变换公式及正弦函数的性质计算可得.【解答】解:如图以O点为坐标原点,建立平面直角坐标系,设∠AOB=θ,则,则,过点C、B分别作CD⊥x轴、BE⊥x轴,交x轴于点D、E,显然△CAD与△ABE全等,所以CD=AE,AD=BE,从而得到,即,所以=,所以当,即时,,故答案为:3.【点评】本题考查了三角函数的性质,属于中档题.15.(2022春•仓山区校级期中)在平面直角坐标系中,O(0,0),P(8,6),将向量OP按顺时针方向旋转后,得向量,则点Q的坐标是(−,﹣7).【考点】弧长公式.【专题】计算题;对应思想;向量法;平面向量及应用;数学运算.【分析】由题意可设=(10cosθ,10sinθ),其中cosθ=,sinθ=,将向量按逆时针旋转后,得向量,由三角函数的公式即可求得点Q坐标.【解答】解:∵点O(0,0),P(8,6),∴=(8,6),故可设=(10cosθ,10sinθ),其中cosθ=,sinθ=,∵将向量按逆时针旋转后,得向量,设Q(x,y),则x=10cos(θ﹣)=10(cosθcos+sinθsin)=﹣,y=10sin(θ﹣)=10(sinθcos﹣cosθsin)=﹣7,∴点Q坐标是(−,﹣7)故答案为:(−,﹣7).【点评】本题考查平面向量的坐标运算,涉及三角函数公式的应用,属中档题.16.(2021秋•福州期末)函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分图像如图所示,BC∥x轴,则ω=2,φ=.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】计算题;数形结合;数形结合法;三角函数的图象与性质;数学运算.【分析】由周期求出ω,由五点法作图求出φ的值,即可得解.【解答】解:因为BC∥x轴,所以f(x)的图象的一条对称轴方程为x=(+)=,﹣==×,所以ω=2.由2×+φ=π+kπ,k∈Z,且0<φ<π,得φ=.故答案为2,.【点评】本题考查了由y=A sin(ωx+φ)的部分图象确定其解析式,考查了数形结合思想,属于基础题.三.解答题(共5小题)17.(2021秋•福州期末)已知角α的顶点与坐标原点重合,始边与x轴的非负半轴重合,终边过点P(,).(1)求cos(α+π)的值;(2)若tanβ=﹣2,求tan(α﹣β)的值.【考点】两角和与差的三角函数.【专题】计算题;转化思想;综合法;三角函数的求值;数学运算.【分析】角α的终边过点P(,),可求cosα,tanα,可求(1)(2)的值.【解答】解:角α的终边过点P(,).∴cosα=,tanα==,(1)cos(α+π)=﹣cosα=﹣;(2)tan(α﹣β)===﹣2.【点评】本题考查三角函数的定义,以及三角恒等变换,属基础题.18.(2021秋•鼓楼区校级期末)已知角α的顶点为坐标原点,始边为x轴的非负半轴,终边经过点P(1,﹣m﹣1),且cos.(1)求实数m的值;(2)若m>0,求的值.【考点】任意角的三角函数的定义.【专题】函数思想;定义法;三角函数的求值;数学运算.【分析】(1)由已知借助于余弦函数的定义列式求解m值;(2)由(1)可得sinα,cosα的值,结合三角函数的诱导公式可得的值.【解答】解:(1)由题意可得,∴,整理得(m+1)2=4,解得m=1或m=﹣3;(2)∵m>0,∴由(1)可得m=1,则,∴.【点评】本题考查任意角的三角函数的定义,考查诱导公式的应用,是基础题.19.(2021秋•鼓楼区校级期末)设函数.(1)求f(x)的单调增区间;(2)求f(x)在[0,π]上的最大值与最小值.【考点】三角函数的最值.【专题】整体思想;转化法;三角函数的求值;数学运算.【分析】(1)利用三角函数的恒等变换化简函数的解析式,再利用正弦函数的单调性求出函数的递增区间即可;(2)根据x的范围,求出x+的范围,求出函数的最大值和最小值即可.【解答】解:(1)==,令,得,所以f(x)的单调增区间为;(2)由x∈[0,π],得,所以当,即时,f(x)取最大值2;当,即x=π时,f(x)取最小值.【点评】本题主要考查三角函数的恒等变换,正弦函数的单调性,最值问题,是基础题.20.(2021秋•福州期末)已知函数f(x)=.(1)求f(x)的最小正周期;(2)将y=f(x)的图象上的各点______得到y=g(x)的图象,当x∈时,方程g(x)=m有解,求实数m的取值范围.在以下①、②中选择一个,补在(2)中的横线上,并加以解答,如果①、②都做,则按①给分.①向左平移个单位,再保持纵坐标不变,横坐标缩短到原来的一半.②纵坐标保持不变,横坐标伸长到原来的2倍,再向右平移个单位.【考点】函数y=Asin(ωx+φ)的图象变换;三角函数中的恒等变换应用;三角函数的周期性.【专题】转化思想;综合法;三角函数的图象与性质;数学运算.【分析】(1)由题意利用三角恒等变换化简f(x)的解析式,再利用正弦函数的周期性,得出结论.(2)由题意利用函数y=A sin(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用余弦函数的定义域和值域,求得g(x)的范围,可得m的范围.【解答】解:(1)∵函数f(x)=sin2x+2cos2x+2=sin2x+2•+2=sin2x+cos2x+3=2sin(2x+)+3,故函数的周期为=π.(2)将f(x)=2sin(2x+)+3的图象按照变换①:向左平移个单位,再保持纵坐标不变,可得y=2sin(2x++)+3=2cos2x+3的图象,再横坐标缩小为原来的一半可得g(x)=2cos4x+3的图象,当x∈[,]时,4x∈[﹣,π],cos4x∈[﹣1,1],g(x)∈[1,5],若方程g(x)=m有解,则m∈[1,5].将f(x)=2sin(2x+)+3的图象按照变换②:纵坐标保持不变,横坐标伸长到原来的2倍,可得y=2sin(x+)+3的图象,再向右平移个单位,可得g(x)=2sin x+3的图象.当x∈[,]时,sin x∈[﹣,],g(x)∈[2,+3].若方程g(x)=m有解,则m∈[2,+3].【点评】本题主要考查三角恒等变换,函数y=A sin(ωx+φ)的图象变换规律,正弦函数的周期性,余弦函数的定义域和值域,属于中档题.21.(2021秋•仓山区校级期末)在①f(x)是偶函数;②(,0)是f(x)的图象在y轴右侧的第一个对称中心;③f(x)相邻两条对称轴之间距离为.这三个条件中任选两个,补充在下面问题的横线上,并解答.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π),满足_____.(1)求函数f(x)的解析式;(2)将函数y=f(x)的图象向右平移个单位,再将所得的图象上每一点的纵坐标不变,横坐标变为原来的2倍后所得到的图象对应的函数记作y=g(x);若函数F(x)=f(x)+k•g(x)在(0,nπ)内恰有2021个零点,求实数k与正整数n的值.【考点】函数y=Asin(ωx+φ)的图象变换;由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】分类讨论;转化法;三角函数的图象与性质;数学运算.【分析】(1)根据三角函数的图象和性质,求出ω和φ的值即可,(2)根据函数图象变换关系,求出g(x)以及F(x)的解析式,根据函数零点性质建立方程进行讨论求解即可.【解答】解:(1)①f(x)是偶函数;②(,0)是f(x)的图象在y轴右侧的第一个对称中心;③f(x)相邻两条对称轴之间距离为.若选择①②,由①f(x)=sin(ωx+φ)是偶函数,∴φ=.即f(x)=sin(ωx+)=cosωx,由②(,0)是f(x)的图象在y轴右侧的第一个对称中心;则ω=,得ω=2,即f(x)=cos2x.选择①③:由①f(x)=sin(ωx+φ)是偶函数,∴φ=.即f(x)=sin(ωx+)=cosωx,由③知:f(x)相邻两条对称轴之间距离为.∴,即T=π,则=π,则ω=2,则f(x)=cos2x.若选②③:③知:f(x)相邻两条对称轴之间距离为.∴,即T=π,则=π,则ω=2,则f(x)=sin(2x+φ),由②(,0)是f(x)的图象在y轴右侧的第一个对称中心;∴2×+φ=π,得φ=,则f(x)=sin(2x+)=cos2x,综上f(x)=cos2x.(2)依题意,将函数y=f(x)的图象向右平移个单位,得y=cos2(x﹣)=cos(2x﹣)=sin2x,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍得到y=sin x,可得g(x)=sin x,所以F(x)=cos2x+k sin x=﹣2sin2x+k sin x+1,当k=0时,F(x)=cos2x,则F(x)在(0,nπ)内的零点个数为偶数个,F(x)在(0,nπ)内恰有2021个零点,为奇数个零点,故k≠0,令F(x)=0,可得2sin2x﹣k sin x﹣1=0,令t=sin x∈[﹣1,1],则2t2﹣kt﹣1=0,Δ=k2+8>0,则关于t的二次方程2t2﹣kt﹣1=0必有两个不等的实根,t1,t2,且t1t2=﹣,则t1,t2异号,(i)当0<|t1|<1,且0<|t2|<1时,则方程sin x=t1和sin x=t2在区间(0,nπ)(n∈N*)均有偶数个根,从而2sin2x﹣k sin x﹣1=0在区间(0,nπ)(n∈N*)有偶数个根,不符合题意;(ii)当0<|t1|<1,且|t2|>1时,则方程sin x=t1在区间(0,nπ)有偶数个根,sin x=t2无解,从而方程2sin2x ﹣k sin x﹣1=0在(0,nπ)有偶数个根,不合题意.同理,当0<|t2|<1且|t1|>1时,从而方程2sin2x﹣k sin x﹣1=0在(0,nπ)有偶数个根,不合题意.(iii)当t1=1,t2=﹣<0,当x∈(0,2π)时,sin x=t1只有一根,sin x=t2有两根,所以关于x的方程2sin2x﹣k sin x﹣1=0在(0,2π)有三个根,由于2021=3×673+2,则方程2sin2x﹣k sin x﹣1=0在(1346π,1347π)只有一个根,在区间(1347π,1348π)上无实解,方程sin x=t2在区间(1346π,1347π)上无实解,在区间(1347π,1348π)上有两个根.所以关于x的方程2sin2x﹣k sin x﹣1=0在区间(0,1347π)上有2020个根.在区间(0,1348π)上有2022个根.不合题意.(iⅤ)当t1=﹣1时,则t2=,当x∈(0,2π)时,sin x=t1只有一根,sin x=t2有两根,所以关于x的方程2sin2x ﹣k sin x﹣1=0在(0,2π)上有三个根,由于2021=3×673+2,则方程2sin2x﹣k sin x﹣1=0在(0,1347π)上有3×673=2019个根.由于方程sin x=t1在区间(1346π,1347π)上无实数根,在区间(1347π,1348π)上只有一个实数根.由于方程sin x=t2在区间(1346π,1347π)上有两个实数根,在区间(1347π,1348π)上只有一个实数根.因此关于x的方程2sin2x﹣k sin x﹣1=0在(0,1347π)上有2021个根,在区间(0,1348π)上有2022个根,因此2×(﹣1)2﹣k(﹣1)﹣1=1+k=0.所以解得k=﹣1.n=1347.【点评】本题主要考查三角函数关系式的变换,三角函数图象和性质的应用,函数的零点和函数的图象的关系,主要考查学生的运算能力和转换能力及思维能力,综合性较强,运算量较大,属于难题.考点卡片1.终边相同的角【知识点的认识】终边相同的角:k•360°+α(k∈Z)它是与α角的终边相同的角,(k=0时,就是α本身),凡是终边相同的两个角,则它们之差一定是360°的整数倍,应该注意的是:两个相等的角终边一定相同,而有相同的终边的两个角则不一定相等,也就是说,终边相同是两个角相等的必要条件,而不是充分条件.还应该注意到:A={x|x=k•360°+30°,k∈Z}与集合B={x|x=k•360°﹣330°,k∈Z}是相等的集合.相应的与x轴正方向终边相同的角的集合是{x|x=k•360°,k∈Z};与x轴负方向终边相同的角的集合是{x|x=k•360°+180°,k∈Z};与y轴正方向终边相同的角的集合是{x|x=k•360°+90°,k∈Z};与y轴负方向终边相同的角的集合是{x|x=k•360°+270°,k∈Z}【命题方向】下列角中终边与330°相同的角是()A.30°B.﹣30°C.630°D.﹣630°【分析】直接利用终边相同的角判断即可.解:因为330°的终边与﹣30°的终边相同,所以B满足题意.故选B.【点评】本题考查终边相同的角的表示方法,考查基本知识的熟练程度.【解题方法点拨】终边相同的角的应用(1)利用终边相同的角的集合S={β|β=2kπ+α,k∈Z}判断一个角β所在的象限时,只需把这个角写成[0,2π)范围内的一个角α与2π的整数倍的和,然后判断角α的象限.(2)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k赋值来求得所需角.2.弧长公式【知识点的认识】弧长、扇形面积的公式设扇形的弧长为l,圆心角大小为α(rad),半径为r,则l=rα,扇形的面积为S=lr=r2α.【命题方向】已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A.2 B.C.2sin1 D.sin2【分析】解直角三角形AOC,求出半径AO,代入弧长公式求出弧长的值.解:如图:∠AOB=2,过点0作OC⊥AB,C为垂足,并延长OC交于D,∠AOD=∠BOD=1,AC=AB=1,Rt△AOC中,AO==,从而弧长为α•r=,故选B.【点评】本题考查弧长公式的应用,解直角三角形求出扇形的半径AO的值,是解决问题的关键.【解题方法点拨】弧长和扇形面积的计算方法(1)在弧度制下,计算扇形的面积和弧长比在角度制下更方便、简捷.(2)从扇形面积出发,在弧度制下使问题转化为关于α的不等式或利用二次函数求最值的方法确定相应最值.(3)记住下列公式:①l=αR;②S=lR;③S=αR2.其中R是扇形的半径,l是弧长,α(0<α<2π)为圆心角,S是扇形面积.3.扇形面积公式【知识点的认识】弧长、扇形面积的公式设扇形的弧长为l,圆心角大小为α(rad),半径为r,则l=rα,扇形的面积为S=lr=r2α.【命题方向】扇形的周长为6cm,面积是2cm2,则扇形的圆心角的弧度数是()A.1 B.4 C.1或4 D.2或4【分析】设出扇形的圆心角为αrad,半径为Rcm,根据扇形的周长为6 cm,面积是2 cm2,列出方程组,求出扇形的圆心角的弧度数.解:设扇形的圆心角为αrad,半径为Rcm,则,解得α=1或α=4.选C.【点评】本题考查扇形面积公式,考查方程思想,考查计算能力,是基础题.【解题方法点拨】弧长和扇形面积的计算方法(1)在弧度制下,计算扇形的面积和弧长比在角度制下更方便、简捷.(2)从扇形面积出发,在弧度制下使问题转化为关于α的不等式或利用二次函数求最值的方法确定相应最值.(3)记住下列公式:①l=αR;②S=lR;③S=αR2.其中R是扇形的半径,l是弧长,α(0<α<2π)为圆心角,S是扇形面积.4.任意角的三角函数的定义【知识点的认识】任意角的三角函数1定义:设α是一个任意角,它的终边与单位圆交于点P(x,y),那么sin α=y,cos α=x,tan α=.2.几何表示:三角函数线可以看作是三角函数的几何表示,正弦线的起点都在x轴上,余弦线的起点都是原点,正切线的起点都是(1,0).【命题方向】已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣【分析】由条件直接利用任意角的三角函数的定义求得cosα的值.解:∵角α的终边经过点(﹣4,3),∴x=﹣4,y=3,r==5.∴cosα===﹣,故选:D.【点评】本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.【解题方法点拨】利用三角函数的定义求三角函数值的方法利用三角函数的定义,求一个角的三角函数值,需确定三个量:(1)角的终边上任意一个异于原点的点的横坐标x;(2)纵坐标y;(3)该点到原点的距离r.若题目中已知角的终边在一条直线上,此时注意在终边上任取一点有两种情况(点所在象限不同).5.三角函数的恒等变换及化简求值【概述】三角函数的恒等变化主要是指自变量x数值比较大时,如何转化成我们常见的数值比较小的而且相等的三角函数,主要的方法就是运用它们的周期性.【公式】①正弦函数有y=sin(2kπ+x)=sin x,sin(+x)=sin(﹣x)=cos x②余弦函数有y=cos(2kπ+x)=cos x,cos(﹣x)=sin x③正切函数有y=tan(kπ+x)=tan x,tan(﹣x)=cot x,④余切函数有y=cot(﹣x)=tan x,cot(kπ+x)=cot x.【例题解析】例:sin60°cos(﹣45°)﹣sin(﹣420°)cos(﹣570°)的值等于解:,,,,∴原式=.先利用诱导公式把sin(﹣420°)和cos(﹣570°)转化成﹣sin60°和﹣cos30°,利用特殊角的三角函数值求得问题的答案.这其实也就是一个化简求值的问题,解题时的基本要求一定要是恒等变换.【考点点评】本考点是三角函数的基础知识,三角函数在高考中占的比重是相当大的,所有有必要认真掌握三角函数的每一个知识点,而且三角函数的难度相对于其他模块来说应该是比较简单的.6.同角三角函数间的基本关系【知识点的认识】1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1.(2)商数关系:=tanα.2.诱导公式公式一:sin(α+2kπ)=sin α,cos(α+2kπ)=cos_α,其中k∈Z.公式二:sin(π+α)=﹣sin_α,cos(π+α)=﹣cos_α,tan(π+α)=tan α.公式三:sin(﹣α)=﹣sin_α,cos(﹣α)=cos_α.公式四:sin(π﹣α)=sin α,cos(π﹣α)=﹣cos_α.公式五:sin(﹣α)=cosα,cos(﹣α)=sinα.公式六:sin(+α)=cosα,cos(+α)=﹣sinα3.两角和与差的正弦、余弦、正切公式(1)C(α﹣β):cos(α﹣β)=cosαcosβ+sinαsinβ;(2)C(α+β):cos(α+β)=cosαcosβ﹣sinαsinβ;(3)S(α+β):sin(α+β)=sinαcosβ+cosαsinβ;(4)S(α﹣β):sin(α﹣β)=sinαcosβ﹣cosαsinβ;(5)T(α+β):tan(α+β)=.(6)T(α﹣β):tan(α﹣β)=.4.二倍角的正弦、余弦、正切公式(1)S2α:sin 2α=2sin_αcos_α;(2)C2α:cos 2α=cos2α﹣sin2α=2cos2α﹣1=1﹣2sin2α;(3)T2α:tan 2α=.【解题方法点拨】诱导公式记忆口诀:对于角“±α”(k∈Z)的三角函数记忆口诀“奇变偶不变,符号看象限”,“奇变偶不变”是指“当k为奇数时,正弦变余弦,余弦变正弦;当k为偶数时,函数名不变”.“符号看象限”是指“在α的三角函数值前面加上当α为锐角时,原函数值的符号”.7.三角函数中的恒等变换应用【知识点的认识】1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1.(2)商数关系:=tanα.2.诱导公式公式一:sin(α+2kπ)=sin α,cos(α+2kπ)=cosα,tan(α+2kπ)=tanα,其中k∈Z.公式二:sin(π+α)=﹣sinα,cos(π+α)=﹣cosα,tan(π+α)=tan α.公式三:sin(﹣α)=﹣sinα,cos(﹣α)=cosα,tan(﹣α)=﹣tanα.公式四:sin(π﹣α)=sin α,cos(π﹣α)=﹣cosα,tan(π﹣α)=﹣tanα.公式五:sin(﹣α)=cosα,cos(﹣α)=sin α,tan(﹣α)=cotα.公式六:sin(+α)=cosα,cos(+α)=﹣sinα,tan(+α)=﹣cotα.3.两角和与差的正弦、余弦、正切公式(1)C(α﹣β):cos (α﹣β)=cosαcosβ+sinαsinβ;(2)C(α+β):cos(α+β)=cosαcosβ﹣sinαsinβ;(3)S(α+β):sin(α+β)=sinαcosβ+cosαsinβ;(4)S(α﹣β):sin(α﹣β)=sinαcosβ﹣cosαsinβ;(5)T(α+β):tan(α+β)=.(6)T(α﹣β):tan(α﹣β)=.4.二倍角的正弦、余弦、正切公式(1)S2α:sin 2α=2sinαcosα;(2)C2α:cos 2α=cos2α﹣sin2α=2cos2α﹣1=1﹣2sin2α;(3)T2α:tan 2α=.。
专题三 第一讲A 组1.(2017·某某模拟)已知sin φ=35,且φ∈(π2,π),函数f (x )=sin(ωx +φ)(ω>0)的图象的相邻两条对称轴之间的距离等于π2,则f (π4)的值为导学号 52134381( B )A .-35B .-45C .35D .45[解析] 由函数f (x )=sin(ωx +φ)的图象的相邻两条对称轴之间的距离等于π2,得到其最小正周期为π,所以ω=2,f (π4)=sin(2×π4+φ)=cos φ=-1-sin 2φ=-45.2.(2015·全国卷Ⅰ)函数f (x )=cos(ωx +φ)的部分图像如图所示,则f (x )的单调递减区间为导学号 52134382( D )A .⎝ ⎛⎭⎪⎫k π-14,k π+34,k ∈ZB .⎝ ⎛⎭⎪⎫2k π-14,2k π+34,k ∈ZC .⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD .⎝ ⎛⎭⎪⎫2k -14,2k +34,k ∈Z[解析] 由五点作图知,⎩⎪⎨⎪⎧14ω+φ=2k π+π2,54ω+φ=2k π+3π2,k ∈Z ,可得ω=π,φ=π4,所以f (x )=cos ⎝ ⎛⎭⎪⎫πx +π4.令2k π<πx +π4<2k π+π,k ∈Z ,解得2k -14<x <2k +34,k ∈Z ,故单调减区间为⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z .故选D .3.若f (x )=2sin(ωx +φ)+m ,对任意实数t 都有f (π8+t )=f (π8-t ),且f (π8)=-3,则实数m 的值等于导学号 52134383( C )A .-1B .±5C .-5或-1D .5或1[解析] 依题意得,函数f (x )的图象关于直线x =π8对称,于是x =π8时,函数f (x )取得最值,因此有±2+m =-3,∴m =-5或m =-1,选C .4.函数y =cos(x +π2)+sin(π3-x )具有性质导学号 52134384( B )A .最大值为1,图象关于点(π6,0)对称B .最大值为3,图象关于点(π6,0)对称C .最大值为1,图象关于直线x =π6对称D .最大值为3,图象关于直线x =π6对称[解析] y =-sin x +32cos x -12sin x =-3(32sin x -12cos x )=-3sin(x -π6), ∴最大值为3,图象关于点(π6,0)对称.5.(2017·某某测试)设x 0为函数f (x )=sin πx 的零点,且满足|x 0|+f (x 0+12)<33,则这样的零点有导学号 52134385( C )A .61个B .63个C .65个D .67个[解析] 依题意,由f (x 0)=sin πx 0=0,得πx 0=k π,k ∈Z ,x 0=k ,k ∈Z .当k 是奇数时,f (x 0+12)=sin[π(k +12)]=sin(k π+π2)=-1,|x 0|+f (x 0+12)=|k |-1<33,|k |<34,满足这样条件的奇数k 共有34个;当k 是偶数时,f (x 0+12)=sin[π(k +12)]=sin(k π+π2)=1,|x 0|+f (x 0+12)=|k |+1<33,|k |<32,满足这样条件的偶数k 共有31个.综上所述,满足题意的零点共有34+31=65个.故选C .6.(2017·某某市高三一模)已知函数f (x )=2sin(π+x )sin(x +π3+φ)的图象关于原点对称,其中φ∈(0,π),则φ=__π6__.导学号 52134386[解析] 本题主要考查三角函数的奇偶性,诱导公式. 因为f (x )=2sin(π+x )sin(x +π3+φ)的图象关于原点对称,所以函数f (x )=2sin(π+x )sin(x +π3+φ)为奇函数,则y =sin(x +π3+φ)为偶函数,又φ∈(0,π),所以φ=π6.7.如果两个函数的图象平移后能够重合,那么称这两个函数为“互为生成”函数.给出下列四个函数:①f (x )=sin x +cos x; ②f (x )=2(sin x +cos x ); ③f (x )=sin x; ④f (x )=2sin x +2.其中为“互为生成”函数的是__①④__.(填序号).导学号 52134387 [解析] 首先化简题中的四个解析式可得:①f (x )=2sin(x +π4),②f (x )=2sin(x +π4),③f (x )=sin x ,④f (x )=2sin x +2,可知③f (x )=sin x 的图象要与其他的函数图象重合,单纯经过平移不能完成,必须经过伸缩变换才能实现,所以③f (x )=sin x 不能与其他函数成为“互为生成”函数,同理①f (x )=2sin(x +π4)的图象与②f (x )=2sin(x +π4)的图象也必须经过伸缩变换才能重合,而④f (x )=2sin x +2的图象向左平移π4个单位,再向下平移2个单位即可得到①f (x )=2sin(x +π4)的图象,所以①④为“互为生成”函数.8.已知函数f (x )=(2cos 2x -1)sin2x +12cos 4x .导学号 52134388(1)求f (x )的最小正周期及最大值; (2)若α∈⎝⎛⎭⎪⎫π2,π,且f (α)=22,求a 的值.[解析] (1)因为f (x )=(2cos 2x -1)sin2x +12cos4x=cos2x sin2x +12cos4x=12(sin4x +cos4x ) =22sin(4x +π4) 所以f (x )的最小正周期为π2,最大值为22.(2)因为f (α)=22,所以sin(4α+π4)=1. 因为α∈(π2,π),所以4α+π4∈(9π4,17π4),所以4α+π4=5π2,故α=9π16.9.某同学用“五点法”画函数f (x )=A sin(ωx +φ)(ω>0,|φ|<π2)在某一个周期内的图象时,列表并填入了部分数据,如下表:导学号 52134389(1)请将上表数据补充完整,并直接写出函数f (x )的解析式;(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为(5π12,0),求θ的最小值.[解析] (1)根据表中已知数据,解得A =5,ω=2,φ=-π6,数据补全如下表:且函数解析式为f (x )=5sin(2x -π6).(2)由(1)知f (x )=5sin(2x -π6),则g (x )=5sin(2x +2θ-π6).因为函数y =sin x 图象的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z . 由于函数y =g (x )的图象关于点(5π12,0)成中心对称,所以令k π2+π12-θ=5π12, 解得θ=k π2-π3,k ∈Z .由θ>0可知,当k =1时,θ取得最小值π6.B 组1.(2016·某某卷)为了得到函数y =sin(2x -π3)的图象,只需把函数y =sin2x 的图象上所有的点导学号 52134390( D )A .向左平行移动π3个单位长度B .向右平行移动π3个单位长度C .向左平行移动π6个单位长度D .向右平行移动π6个单位长度[解析] 因为y =sin(2x -π3)=sin[2(x -π6)],所以只需把函数y =sin2x 的图象上所有的点向右平行移动π6个单位长度即可,故选D .2.函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的图象关于直线x =π3对称,它的最小正周期为π,则函数f (x )图象的一个对称中心是导学号 52134391( B )A .(π3,1)B .(π12,0)C .(5π12,0)D .(-π12,0)[解析] 由题意知T =π,∴ω=2,由函数图象关于直线x =π3对称,得2×π3+φ=π2+k π(k ∈Z ),即φ=-π6+k π(k∈Z ).又|φ|<π2,∴φ=-π6,∴f (x )=A sin(2x -π6),令2x -π6=k π(k ∈Z ),则x =π12+k2π(k ∈Z ).∴一个对称中心为(π12,0),故选B .3.已知函数f (x )=1+cos2x -2sin 2(x -π6),其中x ∈R ,则下列结论中正确的是导学号 52134392( D )A .f (x )是最小正周期为π的偶函数B .f (x )的一条对称轴是x =π3C .f (x )的最大值为2D .将函数y =3sin2x 的图象向左平移π6得到函数f (x )的图象[解析] f (x )=cos2x +cos(2x -π3)=cos2x +12cos2x +32sin2x=3sin(2x +π3),故选D .4.(2017·某某一模)定义运算:⎪⎪⎪⎪⎪⎪a 1a 2a 3a 4=a 1a 4-a 2a 3.将函数f (x )=⎪⎪⎪⎪⎪⎪3 sin ωx 1 cos ωx (ω>0)的图象向左平移5π6个单位,所得图象对应的函数为偶函数,则ω的最小值是导学号 52134393( B )A .15B .1C .115D .2[解析] 本题主要考查三角函数的图象和性质.由题意可得f (x )=3cos ωx -sin ωx =2cos(ωx +π6),将函数f (x )的图象向左平移5π6个单位后得到g (x )=2cos[ω(x +5π6)+π6]=2cos[ωx +5ω+1π6]的图象,g (x )为偶函数,所以5ω+1π6=k π,k ∈Z ,所以ω的最小值是1,故选B .5.给出下列四个命题:①f (x )=sin(2x -π4)的对称轴为x =k π2+3π8,k ∈Z ;②函数f (x )=sin x +3cos x 最大值为2; ③函数f (x )=sin x cos x -1的周期为2π;④函数f (x )=sin(x +π4)在[-π2,π2]上是增函数.其中正确命题的个数是导学号 52134394( B ) A .1 B .2 C .3D .4[解析] ①由2x -π4=k π+π2,k ∈Z ,得x =k π2+3π8(k ∈Z ),即f (x )=sin(2x -π4)的对称轴为x =k π2+3π8,k ∈Z ,故①正确;②由f (x )=sin x +3cos x =2sin(x +π3)知,函数的最大值为2,故②正确;③f (x )=sin x cos x -1=12sin2x -1,函数的周期为π,故③错误;④函数f (x )=sin(x +π4)的图象是由f (x )=sin x 的图象向左平移π4个单位得到的,故④错误.6.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2,x ∈R )的图象的一部分如图所示,则函数f (x )的解析式为__f (x )=2sin(π4x +π4)__.导学号 52134395[分析] 观察图象,由最高点与最低点确定A ,由周期确定ω,由特殊点的坐标确定φ.[解析] 由图象知A =2,T =8=2πω,所以ω=π4,得f (x )=2sin(π4x +φ).由对应点得当x =1时,π4×1+φ=π2⇒φ=π4.所以f (x )=2sin(π4x +π4).7.已知函数f (x )=sin ωx +cos ωx (ω>0)在(π2,π)上单调递减,则ω的取值X围是__[12,54]__.导学号 52134396[解析] f (x )=sin ωx +cos ωx =2sin(ωx +π4),令2k π+π2≤ωx +π4≤2k π+3π2(k ∈Z ),解得2k πω+π4ω≤x ≤2k πω+5π4ω(k ∈Z ).由题意,函数f (x )在(π2,π)上单调递减,故(π2,π)为函数单调递减区间的一个子区间,故有⎩⎪⎨⎪⎧2k πω+π4ω≤π2,2k πω+5π4ω≥π,解得4k +12≤ω≤2k +54(k ∈Z ).由4k +12<2k +54,解得k <38.由ω>0,可知k ≥0,因为k ∈Z ,所以k =0,故ω的取值X 围为[12,54].8.已知函数f (x )=sin(2x +π3)+sin(2x -π3)+2cos 2x ,x ∈R .导学号 52134397(1)求函数f (x )的最小正周期;(2)求函数f (x )在区间[-π4,π4]上的最大值和最小值.[解析] (1)∵f (x )=sin2x ·cosπ3+cos2x ·sin π3+sin2x ·cos π3-cos2x sin π3+cos2x +1=sin2x +cos2x +1=2sin(2x +π4)+1,∴f (x )的最小正周期T =2π2=π.(2)由(1)知,f (x )=2sin(2x +π4)+1.∵x ∈[-π4,π4],∴令2x +π4=π2得x =π8,∴f (x )在区间[-π4,π8]上是增函数;在区间[π8,π4]上是减函数,又∵f (-π4)=0,f (π8)=2+1,f (π4)=2,∴函数f (x )在区间[-π4,π4]上的最大值为2+1,最小值为0.9.(2017·某某质检)已知函数f (x )=sin x cos x +12cos 2x .导学号 52134398(1)若tan θ=2,求f (θ)的值;(2)若函数y =g (x )的图象是由函数y =f (x )的图象上所有的点向右平移π4个单位长度而得到,且g (x )在区间(0,m )内是单调函数,某某数m 的最大值.[解析] (1)因为tan θ=2, 所以f (θ)=sin θcos θ+12cos 2θ=sin θcos θ+12(2cos 2θ-1)=sin θcos θ+cos 2θ-12=sin θcos θ+cos 2θsin 2θ+cos 2θ-12 =tan θ+1tan 2θ+1-12=110. (2)由已知得f (x )=12sin 2x +12cos 2x=22sin(2x +π4). 依题意, 得g (x )=22sin[2(x -π4)+π4], 即g (x )=22sin(2x -π4). 因为x ∈(0,m ),所以2x -π4∈[-π4,2m -π4],又因为g (x )在区间(0,m )内是单调函数,所以2m -π4≤π2,即m ≤3π8,故实数m 的最大值为3π8.。
专题三 函数图象与性质综合题类型一 交点问题典例精析例 在平面直角坐标系xOy 中,已知点A (-1,2),点B (3,2),点C (-2,-3)是平面内3个点.(1)连接AB ,若直线y =34x +b 与线段AB 有交点,求b 的取值范围;(2)连接BC ,若直线y =34x +b 与线段BC 在第三象限内有交点,求b 的取值范围;(3)若直线y =kx +3与直线BC 无交点,求k 的值;(4)若直线AB 、直线y =kx +3与直线BC 能够围成三角形,求k 的取值范围;(5)若双曲线y =k x 过点A 且与直线y =34x +b 在(-5≤x ≤-1)有交点,求b 的取值范围;(6)连接AB ,若抛物线y =x 2+c 与线段AB 有公共点,求c 的取值范围;(7)若抛物线y =x 2+c (-2≤x ≤2)与直线BC 有一个交点,求c 的取值范围;(8)连接AB ,若抛物线y =(x -k )2与线段AB 有公共点,求k 的取值范围;(9)若双曲线y =k x过点B 且与抛物线y =x 2 +c 在2≤x ≤6有交点,求c 的取值范围.1. (2020河北24题10分)表格中的两组对应值满足一次函数y =kx +b ,现画出了它的图象为直线l ,如图.而某同学为观察k ,b 对图象的影响,将上面函数中的k 与b 交换位置后得另一个一次函数,设其图象为直线l ′.(1)求直线l 的解析式;(2)请在图上画出..直线l ′(不要求列表计算),并求直线l ′被直线l 和y 轴所截线段的长; (3)设直线y =a 与直线l ,l ′及y 轴有三个不同的交点,且其中两点关于第三点对称,直接..写出a 的值.第1题图2. (2016河北26题12分)如图,抛物线L :y =-12(x -t )(x -t +4)(常数t >0)与x 轴从左到右的交点为B ,A ,过线段OA 的中点M 作MP ⊥x 轴,交双曲线y =k x(k >0,x >0)于点P ,且OA ·MP =12. (1)求k 值;(2)当t =1时,求AB 长,并求直线MP 与L 对称轴之间的距离;(3)把L 在直线MP 左侧部分的图象(含与直线MP 的交点)记为G ,用t 表示图象G 最高点的坐标;(4)设L 与双曲线有个交点的横坐标为x 0,且满足4≤x 0≤6,通过L 位置随t 变化的过程,直接..写出t的取值范围.第2题图针对演练3. (2020承德二模)如图,在平面直角坐标系中,点A,B,C三点的坐标分别为(2,0),(1,2),(4,3),直线l的解析式为y=kx+4-3k(k≠0).(1)当k=1时,直线l与x轴交于点D,则点D的坐标为________,S△ABD=________;(2)小明认为点C也在直线l上,他的判断是否正确,请说明理由;(3)若线段AB与直线l有交点,求k的取值范围.第3题图4. 如图,在平面直角坐标系中,边长为2的正方形ABCD 位于第二象限,且AB ∥x 轴,点B 在点C的正下方,双曲线y =1-2m x(x <0)经过点C. (1)求m 的取值范围;(2)若点B (-1,1),判断双曲线是否经过点A ;(3)设点B (a ,2a +1).①若双曲线经过点A ,求a 的值;②若直线y =2x +2交AB 于点E ,双曲线与线段AE 有交点,求a 的取值范围.第4题图5.(2020石家庄模拟)如图,已知点A(0,2),B(2,2),C(-1,-2),抛物线F:y=x2-2mx+m2-2与直线x=-2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y p,求y p的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤-2,比较y1与y2的大小;(3)当抛物线F与线段AB有公共点时,直接写出m的取值范围.第5题图6. 如图,已知抛物线y =ax 2-2x +3a (a >0)与x 轴相交于不同的两点A (x 1,0),B (x 2,0),且x 1<x 2.点P 为双曲线y =k x(1≤x ≤4)上的任意一点,过点P 作x 轴的垂线,交x 轴于点C ,交抛物线y =ax 2-2x +3a (a >0)于点Q .(1)若△POC 的面积为6,求k 值;(2)若k =3.①当a =12时,求点A 、B 的坐标,并求当点P 到抛物线对称轴的距离最大时,PQ 的值; ②若抛物线与双曲线有一个交点,直接写出a 的取值范围.第6题图7. (2020唐山开平区一模)已知,如图,二次函数L ∶y =mx 2+2mx +k (其中m ,k 是常数,k 为正整数),(1)若L 经过点(1,k +6),求m 的值;(2)当m =2,若L 与x 轴有公共点时且公共点的横坐标为非零的整数,确定k 的值;(3)在(2)的条件下,将L ∶y =mx 2+2mx +k 的图象向下平移8个单位,得到函数图象M ,求M 的解析式;(4)在(3)的条件下,将M 的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象N ,请结合新的图象解答问题,若直线y =12x +b 与N 有两个公共点时,请直接写出b 的取值范围.第7题图8.如图①,二次函数y=ax2-3ax+c的图象与x轴交于点A、B,与y轴交于点C,直线y=-x+4经过点B、C.(1)求抛物线的表达式;(2)过点A的直线y=kx+k交抛物线于点M,交直线BC于点N,连接AC,当直线y=kx+k平分△ABC 的面积时,求点M的坐标;(3)如图②,把抛物线位于x轴上方的图象沿x轴翻折,当直线y=kx+k与翻折后的整个图象只有三个交点时,求k的取值范围.第8题图类型二整点问题例我们把横,纵坐标都是整数的点叫作整点.在平面直角坐标系中,点A(5,0),B(0,5),C(-1,0).(1)若直线l过点A,B,求直线l与坐标轴围成的区域W1内(含边界)整点的个数;(2)连接AB,BC,AC,求△ABC所围成的区域W2内(不含边界)整点的个数;(3)若直线y=a、线段AB与y轴所围成的三角形区域W3内(含边界)恰有6个整点,求a的取值范围;(4)若直线y=x+b与直线AB及y轴所围成的三角形区域W4内(不含边界)恰有4个整点,求b的取值范围;(5)若直线y=kx+2与直线BC及x轴所围成的区域W5内(不含边界)恰有4个整点,求k的取值范围;(6)若双曲线y =4x (x >0)与线段AB 交于D ,E 两点(点D 在点E 的上方),求曲线DE 与线段DE 所围成的区域W 6内(含边界)整点的个数;(7)在(6)的条件下,若直线y =x +b 与双曲线y =4x 交于点F ,与y 轴交于点G ,连接DG ,若线段DG ,FG ,曲线DF 所围成的区域W 7内(含边界)恰有5个整点,求b 的取值范围;(8)若抛物线y =x 2-2x +m -2与过点B 的直线y =5所围成的区域W 8内(不含边界)有4个整点,求m 的取值范围;(9)若抛物线y =x 2-2x +m -2与直线y =-x +2交于M ,N 两点(点M 在点N 的左侧),将曲线MN 与线段MN 所围成的区域记为W 9,若W 9内(不含边界)恰好有4个整点,求m 的取值范围.1.(2019河北26题12分)如图,若b是正数..,直线l:y=b与y轴交于点A;直线a:y=x-b与y轴交于点B;抛物线L:y=-x2+bx的顶点为C,且L与x轴正半轴的交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上..写出b...,把横、纵坐标都是整数的点称为“美点”,分别直接=2019和b=2019.5时“美点”的个数.第1题图针对演练2.在平面直角坐标系xOy中,直线x=5与直线y=3,x轴分别交于点A,B,直线y=kx+b(k≠0)经过点A且与x轴交于点C(9,0).(1)求直线y=kx+b的表达式;(2)横、纵坐标都是整数的点叫做整点.记线段AB,BC,CA围成的区域(不含边界)为W.①结合函数图象,直接写出区域W内的整点个数;②将直线y=kx+b向下平移n个单位,当平移后的直线与区域W没有公共点时,请结合图象直接写出n的取值范围.第2题图3. 已知点A (4,1),若直线y 1=14x +b 与双曲线y 2=4x(x >0)交于点B ,与y 轴交于点C.探究:由双曲线y 2=4x (x >0)与线段OA ,OC ,BC 围成的区域M 内(不含边界)整点的个数(点的横、纵坐标都是整数的点称为整点).(1)当b =-1时,如图,求区域M 内的整点的个数;(2)当b <0时,若区域M 内恰好有4个整点,求b 的取值范围.第3题图4. 如图,函数y 1=-x 2+12x +c (-2020≤x ≤1)的图象记为L 1,最大值为M 1;函数y 2=-x 2+2cx +1(1≤x≤2020) 的图象记为L 2,最大值为M 2.L 1的右端点为A ,L 2的左端点为B ,L 1,L 2合起来的图形记为L .(1)当c =1时,求M 1,M 2的值;(2)若把横、纵坐标都是整数的点称为“美点”,当点A ,B 重合时,求L 上“美点”的个数; (3)若M 1,M 2的差为4716,直接写出c 的值.第4题图5. 如图,在平面直角坐标系中,设抛物线y =-x 2+bx +b -1为L 1,A (-5,-2),B (5,-2). (1)若L 1经过原点,求抛物线L 1的解析式,并求出此时抛物线的顶点坐标;(2)无论b 取何值,L 1总经过一个定点M ,随着b 的变化,抛物线L 1的顶点总在另一条抛物线上运动,且这条抛物线的顶点为M ,若设另一条抛物线为L 2.①求点M 的坐标; ②求出抛物线L 2的解析式;(3)若把抛物线L 1:y =-x 2+bx +b -1经过线段AB 端点时与线段AB 所围成的封闭图形称为C ,图形C 边界上横、纵坐标都是整数的点为“理想点”,求图形C 上“理想点”的个数.第5题图专题三 函数图象与性质综合题类型一 交点问题例 解:(1)∵直线y =34x +b 与线段AB 有交点,即直线y =34x +b 与线段AB 两端点交点为临界点,如解图①②,将A (-1,2)代入y =34x +b ,得b =114,将B (3,2)代入y =34x +b ,得b =-14,∴b 的取值范围为-14≤b ≤114;例题解图①例题解图②(2)设线段BC 的解析式为y =kx +m (k ≠0),将B (3,2),C (-2,-3)代入,得⎩⎪⎨⎪⎧3k +m =2-2k +m =-3,解得⎩⎪⎨⎪⎧k =1m =-1,∴线段BC 的解析式为y =x -1(-2≤x ≤3), ∴线段BC 与y 轴的交点为(0,-1). 当y =34x +b 过点(0,-1),如解图③,∴即b =-1,当y =34x +b 过点C (-2,-3),如解图④,∴-3=-32+b ,∴b =-32,∴当直线y =34x +b 与线段BC 在第三象限内有交点,b 的取值范围为-32≤b <-1;例题解图③例题解图④(3)由(2)知,直线BC 的解析式为y =x -1, 若y =kx +3与直线BC 无交点,∴直线y =kx +3与直线BC 平行,如解图⑤, ∴当k =1时,直线y =kx +3与直线BC 无交点;例题解图⑤(4)由(2)知直线BC 的解析式为y =x -1, 由题可知直线AB 的解析式为y =2,若直线AB ,直线y =kx +3与直线BC 能够围成三角形, 即直线y =kx +3与直线AB 、直线BC 都有交点, ∴k ≠1,k ≠0.∵直线AB 与直线BC 交于点B ,∴当直线y =kx +3过点B (3,2)时,直线AB 、直线y =kx +3与直线BC 交于一点,不能围成三角形.∴将B (3,2)代入y =kx +3,得3k +3=2,∴k =-13.综上所述,k ≠-13,0,1;(5)∵双曲线y =kx 过点A (-1,2),∴k =-2,∴双曲线的解析式为y =-2x .∵-5≤x ≤-1. ∴令x =-5,则y =25.当直线y =34x +b 与双曲线y =-2x 相切时,如解图⑥,∴34x +b =-2x ,整理得34x 2+bx +2=0, ∴b 2-6=0,∴b =6或b =-6(舍去).当直线y =34x +b 过点(-5,25),如解图⑦,∴25=-5×34+b , ∵b =8320.由解图可知,b 的取值范围为6≤b ≤8320;例题解图⑥例题解图⑦(6)由题可知A (-1,2),B (3,2), 抛物线y =x 2+c 的对称轴为直线x =0,∴当抛物线顶点在线段AB 上时,如解图⑧, ∴c =2.当抛物线过点B 时,如解图⑨, ∴2=9+c ,∴c =-7, ∴c 的取值范围为-7≤c ≤2;例题解图⑧例题解图⑨(7)联立⎩⎪⎨⎪⎧y =x -1y =x 2+c ,整理得x 2-x +c +1=0,如解图○10, ∴(-1)2-4(c +1)=0, ∴c =-34.例题解图○10对于抛物线y=x2+c,当x=2时,y=4+c,当点(2,4+c)在直线BC上时,如解图⑪,此时抛物线与直线BC有两个交点,将(2,4+c)代入直线BC解析式y=x-1,得2-1=4+c,解得c=-3;例题解图⑪当x=-2时,y=4+c,当点(-2,4+c)在直线BC上时,如解图⑫,此时抛物线与直线BC有一个交点,将(-2,4+c)代入直线BC解析式y=x-1,得-2-1=4+c,解得c=-7;例题解图⑫综上所述,抛物线y=x2+c(-2≤x≤2)与直线BC有一个交点,c的取值范围为-7≤c<-3,或c=-34;(8)∵A(-1,2),B(3,2),抛物线y=(x-k)2与线段AB有公共点,则当y=(x-k)2过点A(-1,2),如解图⑬,∴2=(-1-k)2,∴k=-1-2或k=-1+2(舍).当y=(x-k)2过点B(3,2),如解图⑭,∴2=(3-k)2,∴k=3+2或k=3-2(舍).∴k 的取值范围为-1-2≤k ≤3+2;例题解图⑬ 例题解图⑭(9)∵双曲线y =kx 过点B (3,2),∴2=k 3,∴k =6,∴双曲线的解析式为y =6x .∵2≤x ≤6, ∴当x =2时,y =3, 当x =6时,y =1,当抛物线过点(2,3)时,如解图⑮,将(2,3)代入y =x 2+c , 即3=4+c , ∴c =-1,同理当抛物线过点(6,1)时,将(6,1)代入y =x 2+c , 即1=36+c ,∴c =-35, ∴c 的取值范围为-35≤c ≤-1.例题解图⑮1. 解:(1)∵(-1,-2),(0,1)在函数y =kx +b 的图象上,∴⎩⎪⎨⎪⎧-2=-k +b 1=b ,解得⎩⎪⎨⎪⎧k =3b =1.∴直线l 的解析式为y =3x +1;(3分) (2)依题意,直线l ′的解析式为y =x +3, ∴直线l ′的图象如解图,第1题解图联立方程组⎩⎪⎨⎪⎧y =3x +1,y =x +3,解得⎩⎪⎨⎪⎧x =1,y =4,(5分)∴直线l 与直线l ′的交点坐标为(1,4). 又∵直线l ′与y 轴的交点坐标为(0,3),∴直线l ′被直线l 和y 轴所截得的线段长为(1-0)2+(4-3)2=2;(7分) (3)a 的值为52或175或7.(10分)2. 解:(1)设点P (x ,y ),则MP =y ,由OA 的中点为M ,知OA =2x ,代入OA ·MP =12,得2x ·y =12,即xy =6, ∵点P 在双曲线y =kx (k >0,x >0)上,∴k =xy =6;(3分)(2)当t =1时,令y =0,则0=-12(x -1)(x +3),解得x 1=1,x 2=-3,∵点B 在点A 左边, ∴B (-3,0),A (1,0), ∴AB =4.(5分)∴L 的对称轴为直线x =-1,∵点M 的坐标为(12,0),∴MP 与L 对称轴的距离为32;(6分)(3)∵A (t ,0),B (t -4,0), ∴L 的对称轴为直线x =t -2.(7分) 又∵点M 的横坐标为t2,∴当t -2≤t2,即t ≤4时,顶点(t -2,2)就是G 的最高点;当t -2>t 2,即t >4时,L 与MP 的交点(t 2,-18t 2+t )就是G 的最高点;(10分)(4)5≤t ≤8-2或7≤t ≤8+ 2.(12分)第2题解图3. 解:(1)(-1,0),3;4. 解:(1)∵双曲线y =1-2mx (x <0)位于第二象限,∴1-2m <0, ∴m >12;(2)∵点B (-1,1), ∴A (-3,1),C (-1,3), ∵双曲线y =1-2mx (x <0)经过点C ,∴双曲线的解析式为y =-3x ,∵-3×1=-3, ∴双曲线经过点A ; (3)①∵点B (a ,2a +1),∴A (a -2,2a +1),C (a ,2a +3).∵双曲线y =1-2mx (x <0)经过点A 、C ,∴(a -2)(2a +1)=a (2a +3), 解得a =-13;②∵点E 在AB 上, ∴点E 的纵坐标为2a +1, 代入y =2x +2得,x =a -12,∴E (a -12,2a +1),∵C (a ,2a +3),双曲线y =1-2mx(x <0)经过点C , ∴双曲线为y =a (2a +3)x,把E (a -12,2a +1)代入得,2a +1=a (2a +3)a -12,解得a =-16,由①知,双曲线过点A 时,a =-13.∴双曲线与线段AE 有交点,a 的取值范围是-13≤a ≤-16.5. 解:(1)∵抛物线F 经过点C (-1,-2), ∴-2=1+2m +m 2-2. ∴m =-1.∴抛物线F 的表达式是y =x 2+2x -1;(2)当x =-2时,y P =4+4m +m 2-2=(m +2)2-2. ∴当m =-2时,y P 的最小值为-2. 此时抛物线F 的表达式是y =(x +2)2-2. ∴当x ≤-2时,y 随x 的增大而减小. ∵x 1<x 2≤-2, ∴y 1>y 2;(3)-2≤m ≤0或2≤m ≤4. 6. 解:(1)∵△POC 的面积为6,∴12x P ·y P =6. ∴x P ·y P =12. ∴k =12; (2)①∵a =12,∴抛物线的解析式为y =12x 2-2x +32.当y =0时,12x 2-2x +32=0,解得x 1=1,x 2=3.∵x 1<x 2,∴A (1,0),B (3,0).∵抛物线的解析式为y =12x 2-2x +32,∴抛物线的对称轴为直线x =2, ∵k =3,∴y =3x(1≤x ≤4).当点P 位于(4,34)时,点P 到x =2的距离最大,当x =4时,y =12×42-2×4+32=32,∴PQ =32-34=34;②3576≤a ≤54. 7. 解:(1)将点(1,k +6)代入y =mx 2+2mx +k 中,得m =2; (2)y =mx 2+2mx +k =2x 2+4x +k ,由题意得:b 2-4ac =16-8k ≥0,解得k ≤2, ∵k 为正整数, ∴k =1或2.当k =1时,方程2x 2+4x +0没有整数解,故舍去, 则k =2;(3)由(2)得m =2,k =2,∴y =2x 2+4x +2,向下平移8个单位,平移后的表达式为y =2x 2+4x +2-8=2x 2+4x -6;(4)-12<b <32或b >27332.第7题解图8. 解:(1)由直线y =-x +4知,点B 、C 的坐标分别为(4,0)、(0,4), 把点B 、C 的坐标分别为(4,0)、(0,4), 代入y =ax 2-3ax +c 中,得⎩⎪⎨⎪⎧c =416a -12a +c =0, 解得⎩⎪⎨⎪⎧a =-1c =4,∴抛物线的表达式为y =-x 2+3x +4; (2)由y =-x 2+3x +4,得A (-1,0). 如解图,过点N 作NG ⊥AB 于点G ,第8题解图∵直线y =kx +k 平分△ABC 的面积, ∴NG =12OC =2,∴当y =2时,2=-x +4,∴x =2, ∴N (2,2).把N (2,2)代入y =kx +k ,得k =23,∴直线AM 的解析式为k =23x +23,联立⎩⎪⎨⎪⎧y =23x +23y =-x 2+3x +4,解得⎩⎨⎧x 1=103y 1=269,⎩⎪⎨⎪⎧x 2=-1y 2=0.∴M (103,269);(3)翻折后的整个图象包括两部分:分别是抛物线y =x 2-3x -4(-1≤x ≤4)与y =-x 2+3x +4(x >4或x <-1).①当直线y =kx +k 与抛物线y =x 2-3x -4=(x -32)2-254(-1≤x ≤4)相交时,由⎩⎪⎨⎪⎧y =kx +ky =x 2-3x -4,得x 2-3x -4=kx +k , 整理,得x 2-(k +3)x -(k +4)=0, 解得x 1=-1,x 2=k +4. ∴y 1=0,y 2=k 2+5k . ∴两个函数图象有两个交点,其中一个交点为A (-1,0),另一个交点坐标为(k +4,k 2+5k ).观察图象可知:另一个交点在x 轴下方,横坐标在-1与4之间,纵坐标在-254与0之间.∴-1<k +4<4,解得-5<k <0. -254<k 2+5k <0,整理,得 4k 2+20k +25>0且k 2+5k <0, 解得,(2k +5)2>0且-5<k <0. k 为任意实数,(2k +5)2>0恒成立, ∴-5<k <0;②当直线y =kx +k 与图象y =-x 2+3x +4(x >4或x <-1)相交时, -x 2+3x +4=kx +k , 整理得x 2+(k -3)x +(k -4)=0 解得x 1=-1,x 2=4-k ,∴y 1=0,y 2=5k -k 2. ∴两个函数图象有两交点,其中一个是点A (-1,0),另一个交点坐标为(4-k ,5k -k 2). 观察图象可知:另一个交点的横坐标大于4,纵坐标小于0, 即4-k >4,解得k <0. 5k -k 2<0,∴k (5-k )<0, ∵k <0,∴5-k >0,∴k <5. ∴k <0.∴综上所述,当直线y =kx +k 与翻折后的整个图象只有三个交点时,k 的取值范围是-5<k <0.类型二 整点问题例 解:(1)如解图①,设直线l 的解析式为y =px +q , 将A (5,0),B (0,5)代入得,⎩⎪⎨⎪⎧5p +q =0,q =5,解得⎩⎪⎨⎪⎧p =-1,q =5. ∴直线l 的解析式为y =-x +5.结合图象可知,线段OA 上共有6个整点,线段OB (不含原点)上共有5个整点,线段AB 上(不含端点)共有4个整点,△AOB 内部共有6个整点,∴直线l 与坐标轴围成的区域W 1内(含边界)整点的个数为6+5+4+6=21个;例题解图①(2)如解图②,设直线BC 的解析式为y =p 1x +q 1, 将B (0,5),C (-1,0)代入得,⎩⎪⎨⎪⎧q 1=5,-p 1+q 1=0,解得⎩⎪⎨⎪⎧p 1=5,q 1=5, ∴直线BC 的解析式为y =5x +5,结合图象,△BOC(不含边界)所围成的区域内无整点,由(1)知,△AOB(不含边界)所围成的区域内有6个整点,∴△ABC所围成的区域W2内(不含边界)整点的个数等于线段OB(不含端点)上的整点个数加上△AOB 内部的整点个数为4+6=10个;例题解图②(3)如解图③,当a=3时,直线y=3,线段AB与y轴所围成的三角形区域W3内(含边界)恰好有6个整点,∴结合图象可知,当2<a≤3时,直线y=a,线段AB与y轴所围成的三角形区域W3内(含边界)恰好有6个整点;例题解图③(4)如解图④,当b=0时,y=x,此时y=x与直线AB及y轴所围成的三角形区域W4内(不含边界)有2个整点,当b=-1时,y=x-1,此时y=x-1与直线AB及y轴所围成的三角形区域W4内(不含边界)有4个整点,结合图象可知,-1≤b<0;例题解图④(5)如解图⑤,x <时当直线y =kx +2过(-5,1)时,直线y =kx +2与直线BC 及x 轴所围成的三角形区域W 5内(不含边界)有4个整点,将(-5,1)代入y =kx +2得k =15,当直线y =kx +2过(-4,1)时,直线y =kx +2与直线BC 及x 轴所围成的三角形区域W 5内(不含边界)有3个整点,将(-4,1)代入y =kx +2得k =14,结合图象可知,15≤k <14;同理,x >0时,当直线y =kx +2过(3,1)时,直线y =kx +2与直线BC 及x 轴所围成的三角形区域W 5内(不含边界)有3个整点,将(3,1)代入y =kx +2得k =-13,当直线y =kx +2过(4,1)时,直线y =kx +2与直线BC 及x 轴所围成的三角形区域W 5内(不含边界)有4个整点,将(4,1)代入y =kx +2得k =-14,∴-13≤k <-14,综上可得,15≤k <14或-13≤k <-14;例题解图⑤(6)如解图⑥,由图象可知曲线DE 上有(1,4)(2,2),(4,1)共3个整点,线段DE (不含端点)上有(2,3),(3,2)共2个整点,曲线DE 与线段DE 围成的区域内部无整点,∴曲线DE 与线段DE 所围成的区域W 6内(含边界)有5个整点;例题解图⑥(7)如解图⑦,当G 点与原点重合时,此时线段DG ,FG 与曲线DF 所围成的区域W 7内(含边界)有6个整点,此时b=0,如解图⑧,当点G的纵坐标在0与-1之间时,此时线段DG,FG与曲线DF所围成的区域W7内(含边界)有5个整点,如解图⑨,当G点与过(0,-1)时,此时线段DG,FG与曲线DF所围成的区域W7内(含边界)有8个整点,此时b=-1,∴-1<b<0;例题解图⑦例题解图⑧例题解图⑨(8)由抛物线y=x2-2x+m-2可得,抛物线的对称轴为直线x=1,且抛物线恒过点(0,m-2),如解图○10,当抛物线的顶点为(1,2)时,此时抛物线与直线y=5所围成的区域W8内(不含边界)有4个整点,分别为(1,3),(0,4),(1,4),(2,4),将(1,2)代入抛物线解析式得,1-2+m-2=2,解得m=5,当抛物线的顶点为(1,3)时,此时抛物线与直线y=5所围成的区域W8内(不含边界)有1个整点(1,4),将(1,3)代入抛物线解析式得,1-2+m-2=3,解得m=6,结合图象可知,5≤m<6.例题解图○10(9)由抛物线y=x2-2x+m-2可得,抛物线的对称轴为直线x=1,且抛物线恒过点(0,m-2),如解图⑪,当抛物线的顶点为(1,-2)时,此时抛物线与直线y=-x+2所围成的区域W9内(不含边界)有4个整点,分别为(0,0),(0,1),(1,0),(1,-1),将(1,-2)代入抛物线解析式得,1-2+m-2=-2,解得m=1,当抛物线的顶点为(1,-1)时,此时抛物线与直线y=-x+2所围成的区域W9内(不含边界)有2个整点,分别为(0,1),(1,0),将(1,-1)代入抛物线解析式得,1-2+m-2=-1,解得m=2,∴综上所述,1≤m<2.例题解图⑪1.解:(1)当x=0时,y=x-b=-b,∴B(0,-b),∵AB=8,A(0,b),∴b-(-b)=8.∴b=4;(2分)∴L 的解析式为y =-x 2+4x , ∴L 的对称轴为直线x =2,将x =2代入直线a 的解析式中得y =2-4=-2, ∴L 的对称轴与a 的交点坐标为(2,-2);(4分) (2)∵y =-x 2+bx =-(x -b 2)2+b 24, ∴L 的顶点C 的坐标为(b 2,b 24).∵点C 在l 下方,∴点C 与l 的距离为b -b 24=-14(b -2)2+1≤1,∴点C 与l 距离的最大值为1;(7分)(3)由题意可得,y 1=b ,y 2=x 0-b ,y 3=-x 20+bx 0, ∵y 3是y 1,y 2的平均数, ∴y 3=y 1+y 22,即-x 20+bx 0=x 02, 化简得x 0(2x 0-2b +1)=0, 解得x 0=0或x 0=b -12,∵x 0≠0, ∴x 0=b -12,对于L ,当y =0时,0=-x 2+bx ,即0=-x (x -b ).解得x 1=0,x 2=b , ∵b >0,∴D 点坐标为(b ,0),∴点(x 0,0)与点D 间的距离为b -(b -12)=12;(10分)(4)当b =2019时,“美点”的个数为4040;(11分) 当b =2019.5时,“美点”的个数为1010.(12分) 2. 解:(1)如解图,则点A 的坐标为(5,3), ∵直线y =kx +b 过点A (5,3),点C (9,0),∴⎩⎪⎨⎪⎧5k +b =39k +b =0,解得⎩⎨⎧k =-34b =274, 即直线y =kx +b 的表达式是y =-34x +274;(2)①3个;第2题解图3. 解:(1)∵A (4,1), ∴直线OA 的解析式为y =14x .∵直线y 1=14x +b ,∴直线y 1与OA 平行,当b =-1时,直线解析式为y 1=14x -1,解方程4x =14x -1得x 1=2-25(舍去),x 2=2+25,则B (2+25,5-12),∵C (0,-1),∴区域M 内的整点为(1,0),(2,0),(3,0),共3个;(2)当直线y 1在OA 的下方时,当直线y 1=14x +b 过点(1,-1)时,b =-54,则直线y 1=14x +b 经过(5,0),∴区域M 内恰有4个整点,则b 的取值范围是-54≤b <-1.当直线l 在OA 的上方时,∵点(2,2)在函数y 2=4x(x >0)的图象上,当直线y 1=14x +b 过(1,2)时,b =74,此时区域M 内有3个整点.当直线y 1=14x +b 过(1,3)时,b =114,∴区域M 内恰有4个整点时,b 的取值范围是74<b ≤114.综上所述,区域M 内恰有4个整点时,b 的取值范围是-54≤b <-1或74<b ≤114.4. 解:(1)当c =1时,y 1=-x 2+ 12x +c =-x 2+ 12x +1=-(x -14)2+1716 .又∵-2020≤x ≤1,∴M 1=1716. y 2=-x 2+2cx +1=-x 2+2x +1=-(x -1)2+2. 又∵1≤x ≤2020, ∴M 2=2;(2)当x =1时,y 1=-x 2+12x +c =c -12;y 2=-x 2+2cx +1=2c .若点A ,B 重合,则c -12=2c ,解得c =-12.∴L 1∶y 1=-x 2+12 x -12(-2020≤x ≤1);L 2∶y 2=-x 2-x +1(1≤x ≤2020).在L 1上,x 为奇数的点是“美点”,则L 1上有1011个“美点”, 在L 2上,x 为整数的点是“美点”,则L 2上有2020个“美点”. 又∵点A ,B 重合,则L 上“美点”的个数是1011+2020-1=3030; (3)c =-238或2.5. 解:(1)∵L 1:y =-x 2+bx +b -1经过原点, ∴将(0,0)代入得b =1,∴抛物线L 1的解析式为y =-x 2+x , 将y =-x 2+x 配方得y =-(x -12)2+14,∴顶点坐标为(12,14);(2)①对于抛物线L 1:y =-x 2+bx +b -1=(x +1)b -x 2-1,当x =-1时,y =-2,故抛物线y =-x 2+bx +b -1总经过一个定点M (-1,-2);②∵抛物线L 2的顶点为M , ∴设它的解析式为y =a (x +1)2-2, 又∵抛物线L 1的顶点总在抛物线L 2上, ∴将点(12,14)代入解得a =1,∴抛物线L 2的解析式为y =(x +1)2-2,即y =x 2+2x -1;(3)当抛物线L 1经过点B 时,将B (5,-2)代入抛物线L 1解析式y =-x 2+bx +b -1得b =4, ∴抛物线L 1的解析式为y =-x 2+4x +3,令y =-2,得-2=-x 2+4x +3,解得x 1=-1,x 2=5,∴抛物线L 1与线段AB 交于(-1,-2),(5,-2)两点,由解析式可以得出,只要x 取整数,则抛物线L 1上点的纵坐标也一定是整数.∴抛物线L 1经过端点B 时形成的封闭图形C 上的“理想点”个数为12个;当抛物线L 1经过点A 时,将A (-5,-2)代入抛物线L 1解析式y =-x 2+bx +b -1得b =-6, ∴抛物线L 1的解析式为y =-x 2-6x -7,从解析式可以得出,只要x 取整数,则抛物线L 1上点的纵坐标也一定是整数,令y =-2,得-2=-x 2-6x -7,解得x 1=-5,x 2=-1, ∴抛物线L 1与线段AB 交于(-5,-2),(-1,-2)两点,故当抛物线L 1经过端点A 时形成的封闭图形C 上的“理想点”的个数为8个; 综上所述,封闭图形C 上的“理想点”的个数为8个或12个.。
专题三 函数的奇偶性及周期性一、题型全归纳题型一 函数奇偶性的判断【题型要点】判断函数奇偶性的方法(1)根据定义判断,首先看函数的定义域是否关于原点对称,在定义域关于原点对称的条件下,再化简解析式,根据f (-x )与f (x )的关系作出判断. (2)利用函数图象特征判断.(3)分段函数奇偶性的判断,要分别从x >0或x <0来寻找等式f (-x )=f (x )或f (-x )=-f (x )成立,只有当对称的两个区间上满足相同关系时,分段函数才具有确定的奇偶性.【例1】判断函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0.的奇偶性。
【解析】法一:图象法画出函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,x 2-x ,x >0的图象如图所示,图象关于y 轴对称,故f (x )为偶函数.法二:定义法易知函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称,当x >0时,f (x )=x 2-x ,则当x <0时,-x >0,故f (-x )=x 2+x =f (x );当x <0时,f (x )=x 2+x ,则当x >0时,-x <0,故f (-x )=x 2-x =f (x ),故原函数是偶函数. 法三:f (x )还可以写成f (x )=x 2-|x |(x ≠0),故f (x )为偶函数【例2】已知函数f (x )=x 2x -1,g (x )=x2,则下列结论正确的是( )A .h (x )=f (x )+g (x )是偶函数B .h (x )=f (x )+g (x )是奇函数C .h (x )=f (x )g (x )是奇函数D .h (x )=f (x )g (x )是偶函数 【答案】A.【解析】:易知h (x )=f (x )+g (x )的定义域为{x |x ≠0},关于原点对称.因为f (-x )+g (-x )=-x 2-x -1+-x2=-x ·2x 1-2x -x 2=x (1-2x )-x 1-2x -x 2=x 2x -1+x2=f (x )+g (x ),所以h (x )=f (x )+g (x )是偶函数.故选A. 题型二 函数奇偶性的应用【题型要点】与函数奇偶性有关的问题及解决方法(1)已知函数的奇偶性求函数值:将待求值利用奇偶性转化为已知区间上的函数值求解.(2)已知函数的奇偶性求解析式:将待求区间上的自变量转化到已知区间上,再利用奇偶性求出,或充分利用奇偶性构造关于f (x )的方程(组),从而得到f (x )的解析式.(3)已知函数的奇偶性求函数解析式中参数的值:常常利用待定系数法,由f (x )±f (-x )=0得到关于待求参数的恒等式,由系数的对等性得参数的值或对方程求解.(4)应用奇偶性画图象和判断单调性:利用奇偶性可画出另一对称区间上的图象并判断另一区间上的单调性. 【例1】(2019·高考全国卷Ⅱ)设f (x )为奇函数,且当x ≥0时,f (x )=e x -1,则当x <0时,f (x )=( ) A .e -x -1 B .e -x +1 C .-e -x -1D .-e -x +1【解析】解法一:依题意得,当x <0时,f (x )=-f (-x )=-(e -x -1)=-e -x +1,选D. 解法二:依题意得,f (-1)=-f (1)=-(e 1-1)=1-e ,结合选项知,选D.【例2】已知函数f (x )为奇函数,当x >0时,f (x )=x 2-x ,则当x <0时,函数f (x )的最大值为 . 【解析】:解法一:当x <0时,-x >0,所以f (-x )=x 2+x .又因为函数f (x )为奇函数,所以f (x )=-f (-x )=-x 2-x =-221⎪⎭⎫ ⎝⎛+x +14,所以当x <0时,函数f (x )的最大值为14.解法二:当x >0时,f (x )=x 2-x =221⎪⎭⎫ ⎝⎛+x -14,最小值为-14,因为函数f (x )为奇函数,所以当x <0时,函数f (x )的最大值为14.题型三 函数的周期性【题型要点】函数周期性的判断与应用(1)判断函数的周期性只需证明f (x +T )=f (x )(T ≠0)便可证明函数是周期函数,且周期为T ,函数的周期性常与函数的其他性质综合命题.(2)根据函数的周期性,可以由函数局部的性质得到函数的整体性质,在解决具体问题时,要注意结论:若T 是函数的周期,则kT (k ∈Z ,且k ≠0)也是函数的周期.【例1】(2020·广东六校第一次联考)在R 上函数f (x )满足f (x +1)=f (x -1),且f (x )=⎩⎪⎨⎪⎧x +a ,-1≤x <0|2-x |,0≤x <1,其中a∈R ,若f (-5)=f (4.5),则a =( ) A .0.5 B .1.5 C .2.5D .3.5【解析】由f (x +1)=f (x -1),得f (x )是周期为2的函数,又f (-5)=f (4.5),所以f (-1)=f (0.5),即-1+a =1.5,所以a =2.5.故选C.【例2】已知f (x )是R 上最小正周期为2的周期函数,且当0≤x <2时,f (x )=x 3-x ,则函数y =f (x )的图象在区间[0,4]上与x 轴的交点的个数为( ) A .2 B .3 C .4D .5【解析】当0≤x <2时,令f (x )=x 3-x =x (x 2-1)=0,所以y =f (x )的图象与x 轴交点的横坐标分别为x 1=0,x 2=1.当2≤x <4时,0≤x -2<2,又f (x )的最小正周期为2,所以f (x -2)=f (x ),所以f (x )=(x -2)(x -1)(x -3),所以当2≤x <4时,y =f (x )的图象与x 轴交点的横坐标分别为x 3=2,x 4=3.又f (4)=f (2)=f (0)=0,综上可知,共有5个交点.题型四 函数性质的综合应用【题型要点】函数性质综合应用问题的常见类型及解题策略(1)单调性与奇偶性的综合:注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性的综合:此类问题多考查求值问题,常用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)单调性、奇偶性与周期性的综合:解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.【例1】已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)=( ) A .-50 B .0 C .2 D .50【答案】C【解析】因为f (x +2)=f [1+(1+x )]=f [1-(1+x )]=f (-x )=-f (x ),所以f (x +4)=-f (x +2)=f (x ),即f (x )是周期为4的周期函数.又f (x )为奇函数,且x ∈R ,所以f (0)=0,f (1)=2,f (2)=f (1+1)=f (0)=0,f (3)=f (1+2)=f (1-2)=f (-1)=-f (1)=-2,f (4)=f (0)=0,所以f (1)+f (2)+f (3)+f (4)=0,而50=4×12+2,所以f (1)+f (2)+f (3)+…+f (50)=f (1)+f (2)=2.【例2】(2020池州联考)已知函数f (x )的定义域为R ,且满足下列三个条件:①∀x 1,x 2∈[4,8],当x 1<x 2时,都有f (x 1)-f (x 2)x 1-x 2>0;②f (x +4)=-f (x );③y =f (x +4)是偶函数.若a =f (6),b =f (11),c =f (2 025),则a ,b ,c 的大小关系正确的是( ) A .a <b <c B .b <a <c C .a <c <b D .c <b <a 【答案】B【解析】由条件①知,当x ∈[4,8]时,f (x )为增函数;由条件②知,f (x +8)=-f (x +4)=f (x ),f (x )是周期为8的周期函数;由条件③知,y =f (x )关于直线x =4对称,所以f (11)=f (3)=f (5),f (2025)=f (1)=f (7),故f (5)<f (6)<f (7),即b <a <c .故选B.二、高效训练突破 一、选择题1.(2020·洛阳一中月考)下列函数中,与函数y =-3|x |的奇偶性相同,且在(-∞,0)上单调性也相同的是( ) A .y =-1xB .y =log 2|x |C .y =1-x 2D .y =x 3-1【答案】C.【解析】:函数y =-3|x |为偶函数,在(-∞,0)上为增函数,选项A 的函数为奇函数,不符合要求;选项B 的函数是偶函数,但其单调性不符合要求;选项D 的函数为非奇非偶函数,不符合要求;只有选项C 符合要求.2.已知f (x )为定义在R 上的奇函数,当x ≥0时,f (x )=2x +m ,则f (-2)=( ) A .-3 B .-54C.54 D .3 【答案】A【解析】:.由f (x )为R 上的奇函数,知f (0)=0,即f (0)=20+m =0,解得m =-1,则f (-2)=-f (2)=-(22-1)=-3.3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x +m (m 为常数),则f (-log 35)=( ) A .-6 B .6 C .4 D .-4 【答案】D【解析】 因为f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=3x +m ,所以f (0)=1+m =0⇒m =-1,则f (-log 35)=-f (log 35)=-(3log 35-1)=-4.4.已知定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2x -2x ,则f (x )x>0的解集为( )A .(-1,0)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(0,1)D .(-∞,-1)∪(1,+∞)【解析】因为当x >0时,函数f (x )单调递增,又f (1)=0,所以f (x )=2x -2x >0的解集为(1,+∞),所以f (x )x >0在(0,+∞)上的解集为(1,+∞).因为f (x )是奇函数,所以f (x )x 是偶函数,则f (x )x >0在R 上的解集为(-∞,-1)∪(1,+∞).5.已知定义域为R 的奇函数f (x )满足⎪⎭⎫⎝⎛+x f 23=⎪⎭⎫⎝⎛x f -21,且当0≤x ≤1时,f (x )=x 3,则⎪⎭⎫⎝⎛25f =( ) A .-278B .-18C.18D.278【解析】:因为⎪⎭⎫⎝⎛+x f 23=⎪⎭⎫⎝⎛x f -21,所以⎪⎭⎫ ⎝⎛25f =⎪⎭⎫ ⎝⎛+123f =⎪⎭⎫ ⎝⎛1-21f =⎪⎭⎫⎝⎛21-f ,又因为函数为奇函数,所以⎪⎭⎫ ⎝⎛21-f =⎪⎭⎫ ⎝⎛21-f =321-⎪⎭⎫⎝⎛=-18.6.已知函数f (x )=2|x |+x 3+12|x |+1的最大值为M ,最小值为m ,则M +m 等于( )A .0B .2C .4D .8【解析】:f (x )=2|x |+x 3+12|x |+1=1+x 32|x |+1.设g (x )=x 32|x |+1,因为g (x )定义域为R ,关于原点对称,且g (-x )=-g (x ),所以g (x )为奇函数,所以g (x )max +g (x )min =0.因为M =f (x )max =1+g (x )max ,m =f (x )min =1+g (x )min ,所以M +m =1+g (x )max +1+g (x )min =2.7.(2019·沈阳测试)设函数f (x )=ln(1+x )+m ln(1-x )是偶函数,则( )A .m =1,且f (x )在(0,1)上是增函数B .m =1,且f (x )在(0,1)上是减函数C .m =-1,且f (x )在(0,1)上是增函数D .m =-1,且f (x )在(0,1)上是减函数 【答案】B【解析】因为函数f (x )=ln(1+x )+m ln(1-x )是偶函数,所以⎪⎭⎫ ⎝⎛21f =⎪⎭⎫⎝⎛21-f ,则(m -1)ln 3=0,即m =1,则f (x )=ln(1+x )+ln(1-x )=ln(1-x 2),因为当x ∈(0,1)时,y =1-x 2是减函数,故f (x )在(0,1)上是减函数.故选B.8.(2019·广州模拟)定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x )=f (x +4),且当x ∈(-1,0)时,f (x )=2x +15,则f (log 220)=( ) A .1B.45 C .-1D .-45【解析】 因为x ∈R ,且f (-x )=-f (x ),所以函数为奇函数.因为f (x )=f (x +4),所以函数的周期为4.故f (log 220)=f (log 220-4)=⎪⎭⎫ ⎝⎛45log 2f =⎪⎭⎫ ⎝⎛45log --2f =⎪⎭⎫ ⎝⎛54log --2f =⎪⎭⎫ ⎝⎛+-5154log 22=⎪⎭⎫⎝⎛+-5154=-1.故选C.9.(2020·成都八中月考)设函数f (x )=ln(1+|x |)-11+x 2,则使f (x )>f (2x -1)成立的x 的取值范围是( ) A.⎪⎭⎫⎝⎛131,B.⎪⎭⎫ ⎝⎛∞31-,∪(1,+∞)C.⎪⎭⎫ ⎝⎛3131,D.⎪⎭⎫ ⎝⎛∞31-,∪⎪⎭⎫ ⎝⎛∞+,31 【解析】 由题意知f (-x )=f (x ),所以函数f (x )是偶函数,当x ≥0时,易得函数f (x )=ln(1+x )-11+x 2是增函数,所以不等式f (x )>f (2x -1)等价于|2x -1|<|x |,解得13<x <1,则x 的取值范围是⎪⎭⎫⎝⎛131, 10.(2020·福建龙岩期末)设函数f (x )是定义在R 上的奇函数,满足f (x +1)=-f (x -1),若f (-1)>1,f (5)=a 2-2a -4,则实数a 的取值范围是( ) A .(-1,3) B .(-∞,-1)∪(3,+∞) C .(-3,1)D .(-∞,-3)∪(1,+∞)【解析】:由f (x +1)=-f (x -1),可得f (x +2)=-f (x ),则f (x +4)=f (x ),故函数f (x )的周期为4,则f (5)=f (1)=a 2-2a -4,又因为f (x )是定义在R 上的奇函数,f (-1)>1,所以f (1)<-1,所以a 2-2a -4<-1,解得-1<a <3,故答案为A.二、填空题1.已知定义在R 上的函数满足f (x +2)=-1f (x ),当x ∈(0,2]时,f (x )=2x -1.则f (17)= ,f (20)= . 【答案】:1 -13【解析】: 因为f (x +2)=-1f (x ), 所以f (x +4)=-1f (x +2)=f (x ),所以函数y =f (x )的周期T =4. f (17)=f (4×4+1)=f (1)=1.f (20)=f (4×4+4)=f (4)=f (2+2)=-1f (2)=-12×2-1=-13.2.(2020·晋中模拟)已知f (x )是R 上的奇函数,f (1)=2,且对任意x ∈R 都有f (x +6)=f (x )+f (3)成立,则f (2 023)=__________. 【答案】 2【解析】因为f (x +6)=f (x )+f (3),令x =-3,f (3)=f (-3)+f (3)=-f (3)+f (3)=0,所以f (x +6)=f (x )+0=f (x ),所以T =6,f (2 023)=f (337×6+1)=f (1)=2.3.已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2,f (1)+g (-1)=4,则g (1)等于 . 【答案】:3【解析】:f (-1)+g (1)=2,即-f (1)+g (1)=2①, f (1)+g (-1)=4,即f (1)+g (1)=4②, 由①②得,2g (1)=6,即g (1)=3.4.设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 3(x +1),x ≥0,g (x ),x <0,则g (f (-8))= .【答案】:-1【解析】:因为f (x )是定义在R 上的奇函数, 所以f (-8)=-f (8)=-log 39=-2,所以g (f (-8))=g (-2)=f (-2)=-f (2)=-log 33=-1.5.设函数f (x )是定义在R 上周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则⎪⎭⎫⎝⎛23f = .【答案】:32【解析】:依题意得,f (2+x )=f (x ),f (-x )=f (x ),则⎪⎭⎫⎝⎛23f =⎪⎭⎫ ⎝⎛21-f =⎪⎭⎫ ⎝⎛21f =12+1=32.6.已知f (x ),g (x )分别是定义在R 上的奇函数和偶函数,且f (x )-g (x )=x⎪⎭⎫⎝⎛21,则f (1),g (0),g (-1)之间的大小关系是 . 【答案】:f (1)>g (0)>g (-1)【解析】:在f (x )-g (x )=x⎪⎭⎫ ⎝⎛21中,用-x 替换x ,得f (-x )-g (-x )=2x ,由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数,所以f (-x )=-f (x ),g (-x )=g (x ),因此得-f (x )-g (x )=2x.联立方程组解得f (x )=2-x -2x2,g (x )=-2-x +2x 2,于是f (1)=-34,g (0)=-1,g (-1)=-54,故f (1)>g (0)>g (-1).7.(2019·常德模拟)设f (x )是偶函数,且当x >0时,f (x )是单调函数,则满足f (2x )=⎪⎭⎫⎝⎛++41x x f 的所有x 之和为______。
2022年高考数学一轮复习小题多维练(新高考版)专题03 函数及其表示方法一、单选题1.若函数f(x)=ln(e2x﹣ae x+1)对x∈R恒有意义,则实数a的取值范围是()A.(﹣∞,+∞)B.(2,+∞)C.(﹣2,2)D.(﹣∞,2)【答案】D【分析】根据对数函数以及指数函数的性质求出a的取值范围即可.【解答】解:由题意得:e2x﹣ae x+1>0恒成立,即a<=e x+恒成立,∵e x+≥2,当且仅当e x=1即x=0时“=”成立,故a<2,故选:D.【知识点】函数的定义域及其求法2.已知函数f(x)的定义域为(﹣1,1),则函数的定义域为()A.(1,2)B.(0,2)C.(0,1)D.(﹣1,1)【答案】A【分析】根据函数f(x)的定义域,列出使函数g(x)有意义的不等式组,求出解集即可.【解答】解:函数f(x)的定义域为(﹣1,1),令,解得,即1<x<2,所以函数的定义域为(1,2).故选:A.【知识点】函数的定义域及其求法3.已知函数的值域为[0,+∞),则m的取值范围是()A.[0,4]B.(0,4]C.(0,4)D.[4,+∞)【答案】D【分析】当m=0时,mx2+mx+1=1对任意实数x恒成立,不合题意;要使函数的值域为[0,+∞),需二次三项式mx2+mx+1对应的二次函数开口向上且判别式大于等于0,由此联立不等式组求解.【解答】解:当m=0时,mx2+mx+1=1对任意实数x恒成立,不合题意;要使函数的值域为[0,+∞),则,解得m≥4.∴m的取值范围是[4,+∞).故选:D.【知识点】函数的值域4.设f(x)是定义在R上以2为周期的偶函数,当x∈[2,3]时,f(x)=x,则x∈[﹣2,0]时,f(x)的解析式为()A.f(x)=2+|x+1|B.f(x)=3﹣|x+1|C.f(x)=2﹣x D.f(x)=x+4【答案】B【分析】①当x∈[﹣2,﹣1]时,则x+4∈[2,3],由题意可得:f(x+4)=x+4.再根据函数的周期性可得f (x)=f(x+4)=x+4.②当x∈[﹣1,0]时,则2﹣x∈[2,3],由题意可得:f(2﹣x)=2﹣x.再根据函数的周期性与函数的奇偶性可得函数的解析式.【解答】解:①当x∈[﹣2,﹣1]时,则x+4∈[2,3],因为当x∈[2,3]时,f(x)=x,所以f(x+4)=x+4.又因为f(x)是周期为2的周期函数,所以f(x)=f(x+4)=x+4.所以当x∈[﹣2,﹣1]时,f(x)=x+4.②当x∈[﹣1,0]时,则2﹣x∈[2,3],因为当x∈[2,3]时,f(x)=x,所以f(2﹣x)=2﹣x.又因为f(x)是周期为2的周期函数,所以f(﹣x)=f(2﹣x)=2﹣x.因为函数f(x)是定义在实数R上的偶函数,所以f(x)=f(﹣x)=f(2﹣x)=2﹣x.所以由①②可得当x∈[﹣2,0]时,f(x)=3﹣|x+1|.故选:B.【知识点】奇函数、偶函数、函数的周期性、函数解析式的求解及常用方法5.函数f(x)=ax m(1﹣2x)n(a>0)在区间[0,]上的图象如图所示,则m、n的值可能是()A.m=1,n=1B.m=1,n=2C.m=2,n=3D.m=3,n=1【答案】D【分析】由图得,原函数的极大值点约为0.375.把选项代入验证看哪个对应的极大值点符合要求即可得出答案.【解答】解:由于本题是选择题,可以用代入法来作,由图得,原函数的极大值点约为0.375.当m=1,n=1时,f(x)=ax(1﹣2x)=﹣2a(x﹣)2+.在x=处有极大值,故A错误;当m=1,n=2时,f(x)=ax m(1﹣2x)n=ax(1﹣2x)2=a(4x3﹣4x2+x),所以f′(x)=a(2x﹣1)(6x﹣1),a>0,令f′(x)=0⇒x=,x=,即函数在x=处有极大值,故B错误;当m=2,n=3时,f(x)=ax m(1﹣2x)n=ax2(1﹣2x)3,有f'(x)=a(1﹣2x)2(2x﹣10x2),令f′(x)=0⇒x=0,x=,x=,即函数在x=处有极大值,故C错误;当m=3,n=1时,f(x)=ax m(1﹣2x)n=ax3(1﹣2x)=a(x3﹣2x4),有f′(x)=ax2(3﹣8x),令f′(x)=0,⇒x=0,x=,即函数在x=处有极大值,故D正确.故选:D.【知识点】函数的图象与图象的变换、函数解析式的求解及常用方法6.函数f(x)=sin()+cos()的图象大致是()A.B.C.D.【答案】C【分析】令,结合复合函数的单调性可知函数f(x)先增后减,进而排除选项A,B;再根据时,f(x)<0,f(0)=1,排除选项D,进而得解.【解答】解:函数f(x)的定义域为R,令,可知函数t(x)在R上单调递增,且t(x)的值域为(﹣1,1),又因为,结合复合函数的单调性,可知函数f(x)先增后减,故选项A,B错误;当时,f(x)<0,f(0)=1,故选项D错误.故选:C.【知识点】函数的图象与图象的变换7.已知函数f(x)=,则方程f2(x)﹣f(x)=0的不相等的实根个数()A.5B.6C.7D.8【答案】C【分析】方程f2(x)﹣f(x)=0可解出f(x)=0或f(x)=1,方程f2(x)﹣f(x)=0的不相等的实根个数即两个函数f(x)=0或f(x)=1的所有不相等的根的个数的和,根据函数f(x)的形式,求方程的根的个数的问题可以转化为求两个函数y=0,y=1的图象与函数f(x)的图象的交点个数的问题.【解答】解:方程f2(x)﹣f(x)=0可解出f(x)=0或f(x)=1,方程f2(x)﹣f(x)=0的不相等的实根个数即两个函数f(x)=0或f(x)=1的所有不相等的根的个数的和,方程的根的个数与两个函数y=0,y=1的图象与函数f(x)的图象的交点个数相同,如图,由图象,y=1的图象与函数f(x)的图象的交点个数有四个,y=0的图象与函数f(x)的图象的交点个数有三个,故方程f2(x)﹣f(x)=0有七个解,故选:C.【知识点】函数的零点与方程根的关系、分段函数的解析式求法及其图象的作法8.如图,已知函数f(x)的图象关于坐标原点对称,则函数f(x)的解析式可能是()A.f(x)=x2ln|x|B.f(x)=xlnx C.D.【答案】C【分析】据题意可知f(x)是奇函数,从而可以排除A,B;当x>0时,,从而排除选项D,只能选C.【解答】解:∵f(x)的图象关于原点对称;∴函数f(x)是奇函数;f(x)=x2ln|x|为偶函数,f(x)=xlnx是非奇非偶函数,∴A,B都错误;∵x>0时,,∴D错误.故选:C.【知识点】函数解析式的求解及常用方法二、多选题9.下列函数中,值域为[2,+∞)的是()A.y=x+,x>0B.=cos x+,x∈(﹣,)C.y=D.y=x+【答案】ABC【分析】根据基本不等式(a>0)即可判断选项A,B,C都正确,对于选项D,x<0时,y<0,从而判断选项D错误,从而得出正确的选项.【解答】解:A.x>0时,,当且仅当x=1时取等号,符合题意,该选项正确;B.时,0<cos x≤1,,当且仅当cos x=1时取等号,符合题意,该选项正确;C.,当且仅当,即x=0时取等号,该选项正确;D.当x<0时,,该选项错误.故选:ABC.【知识点】函数的值域10.已知集合M={﹣1,1,2,4},N={1,2,4,16},请根据函数定义,下列四个对应法则能构成从M到N的函数的是()A.y=2x B.y=|x|C.y=x+2D.y=x2【答案】BD【分析】根据题意,由函数的定义依次分析选项,综合即可得答案.【解答】解:根据题意,依次分析选项:对于A,y=2x,当x=4时,y=8∉N,故A错误;对于B,y=|x|,任取x∈M,总有y=|x||∈N,故B正确,对于C,y=x+2,当x=4时,y=6∉N,故C错误,对于D,y=x2,任取x∈M,总有y=x2∈N,故D正确.故选:BD.【知识点】函数的概念及其构成要素11.下列各组函数中是同一函数的是()A.f(x)=x与g(x)=B.f(x)=与g(x)=C.f(x)=x﹣1与g(x)=D.f(x)=x2+1与g(t)=t2+1【答案】BD【分析】根据相同函数的定义:定义域和对应关系都相同.【解答】解:对于A:f(x)=x与g(x)=|x|的对应关系不同,因此不是同一函数;对于B:f(x)==与g(x)=,因此是同一函数;对于C:f(x)=x﹣1与g(x)===x﹣1,(x≠﹣1),定义域不同,因此不是同一函数;对于D:f(x)=x2+1与g(t)=t2+1,定义域和对应关系都相同,因此是同一函数.故选:BD.【知识点】判断两个函数是否为同一函数12.若函数y=x2﹣4x﹣4的定义域为[0,m],值域为[﹣8,﹣4],则实数m的值可能为()A.2B.3C.4D.5【答案】ABC【分析】求出二次函数的对称轴方程,可知当m=2时函数有最小值,再由f(0)=﹣4结合二次函数的对称性可得m的可能取值.【解答】解:函数y=x2﹣4x﹣4的对称轴方程为x=2,当0≤m≤2时,函数在[0,m]上单调递减,x=0时取最大值﹣4,x=m时有最小值m2﹣4m﹣4=﹣8,解得m=2.则当m>2时,最小值为﹣8,而f(0)=﹣4,由对称性可知,m≤4.∴实数m的值可能为2,3,4.故选:ABC.【知识点】函数的值域、函数的定义域及其求法13.已知符号函数sgn(x)=,下列说法正确的是()A.函数y=sgn(x)是奇函数B.对任意的x≥0,sgn(x)=1C.对任意的x∈R,x•sgn(x)=|x|D.y=2x•sgn(﹣x)的值域为(﹣∞,1)【答案】AC【分析】由已知结合函数单调性的定义及指数函数的性质分别检验各选项即可判断.【解答】解:sgn(x)=的图象如图所示,图象关于原点对称,为奇函数,A正确;当x=0时,x=0,sgn(x)=0,当x>0时,x>0,sgn(x)=1,B错误;因为x•sgn(x)==|x|,C正确;因为y=2x sgn(﹣x)=其值域为[0,1)∪(﹣∞,﹣1],D不正确.故选:AC.【知识点】函数的值域14.已知定义在R上的函数f(x),其导函数f′(x)的大致图象如图所示,则下列叙述不正确的是()A.f(a)>f(e)>f(d)B.函数f(x)在[a,b]上递增,在[b,d]上递减C.函数f(x)的极值点为c,eD.函数f(x)的极大值为f(b)【答案】ABD【分析】根据导数与函数单调性的关系及所给图象可得f(x)的单调性,判断函数的极值即可.【解答】解:由导数与函数单调性的关系知,当f′(x)>0时f(x)递增,f′(x)<0时f(x)递减,结合所给图象知,x∈(a,c)时,f′(x)>0,∴f(x)在(a,c)上单调递增,x∈(c,e)时,f′(x)<0,∴f(x)在(c,e)上单调递减,函数f(x)在x=c处取得极大值,在x=e处取得极小值;f(c)>f(e),故选:ABD.【知识点】利用导数研究函数的单调性、函数的图象与图象的变换三、填空题15.已知函数,则该函数的定义域是.【答案】(-1,1)【分析】根据对数函数成立的条件即可得到结论.【解答】解:要使函数有意义,则,即(x﹣1)(x+1)<0,即﹣1<x<1,即函数的定义域为(﹣1,1),故答案为:(﹣1,1).【知识点】函数的定义域及其求法16.若函数f(x)=(a>0,a≠1)的定义域和值域都是[0,1],则log a+log=﹣.【答案】-1【分析】因为f(1)=0,所以f(x)是[0,1]上的递减函数,根据f(0)=1解得a=2,再代入原式可得.【解答】解:因为f(1)=0,所以f(x)是[0,1]上的递减函数,所以f(0)=1,即=1,解得a=2,所以原式=log2+log=log2)=﹣1,故答案为:﹣1.【知识点】函数的值域、函数的定义域及其求法17.对于函数y=f(x),若存在定义域D内某个区间[a,b],使得y=f(x)在[a,b]上的值域也是[a,b],则称函数y=f(x)在定义域D上封闭.如果函数(k≠0)在R上封闭,那么实数k的取值范围是﹣∞﹣.【答案】(1,+∞)∪(-∞,-1)【分析】由题意便知方程组至少有两个解,从而可得到至少有两个解,从而有k=1+|x|>1,这样即求出k的取值范围.【解答】解:根据题意知方程至少有两个不同实数根;即至少有两个实数根;∴;∴k=1+|x|>1;由=﹣x至少有两个不同实数根,同理可得k<﹣1.∴实数k的取值范围为(1,+∞)∪(﹣∞,﹣1).故答案为:(1,+∞)∪(﹣∞,﹣1).【知识点】函数的定义域及其求法、函数的值域18.设奇函数f(x)定义在(﹣π,0)∪(0,π)上,其导函数为f′(x),且f()=0,当0<x<π时,f′(x)sin x﹣f(x)cos x<0,则关于x的不等式f(x)<2f()sin x的解集为﹣.【分析】设g(x)=,利用导数判断出g(x)单调性,根据函数的单调性求出不等式的解集.【解答】解:设g(x)=,∴g′(x)=,∵f(x)是定义在(﹣π,0)∪(0,π)上的奇函数,故g(﹣x)===g(x)∴g(x)是定义在(﹣π,0)∪(0,π)上的偶函数.∵当0<x<π时,f′(x)sin x﹣f(x)cos x<0∴g'(x)<0,∴g(x)在(0,π)上单调递减,∴g(x)在(﹣π,0)上单调递增.∵f()=0,∴g()==0,∵f(x)<2f()sin x,即g()•sin x>f(x);①当sin x>0时,即x∈(0,π),g()>=g(x);所以x∈(,π);②当sin x<0时,即x∈(﹣π,0)时,g()=g(﹣)<=g(x);所以x∈(﹣,0);不等式f(x)<2f()sin x的解集为解集为(﹣,0)∪(,π).故答案为:(﹣,0)∪(,π)【知识点】利用导数研究函数的单调性、函数的定义域及其求法19.函数的单调递增区间为﹣∞﹣,值域为﹣∞﹣.【分析】通过求导判断函数的单调递增区间,根据单调性判断函数的值域.【解答】解:>0,解得x>或x<﹣,函数的单调递增区间为(﹣∞,﹣)和(,+∞),单调递减区间为(﹣,),即函数在x=﹣处有极小值f(﹣)=﹣4,在x=处有极小值f()=4,所以函数的值域为(﹣∞,﹣4)∪(4,+∞).故答案为:(﹣∞,﹣)和(,+∞),(﹣∞,﹣4]∪[4,+∞).【知识点】函数的单调性及单调区间、函数的值域20.若f(x)=|x﹣a|•|x﹣3a|,且x∈[0,1]上的值域为[0,f(1)],则实数a的取值范围是.【分析】结合图象,分类讨论即可得解.【解答】解:结合图象,①当a=0时,显然成立;②当a<0时,f(x)在[0,1]上递增,最小值为3a2≠0,不成立;③当a>0时,要使值域为[0,f(1)],则需满足,即,故;综上,实数a的取值范围为.故答案为:.【知识点】函数的值域21.设f(x)是定义在R上以2为周期的偶函数,当x∈[0,1]时,f(x)=log2(x+1),则函数f(x)在[1,2]上的解析式是﹣【答案】f(x)=log2(3-x)【分析】设x∈(1,2),则x﹣2∈(﹣1,0),2﹣x∈(0,1),由已知表达式可求得f(2﹣x),再由f (x)为周期为2的偶函数,可得f(x)=f(x﹣2)=f(2﹣x),从而得到答案.【解答】解:∵f(x)是定义在R上以2为周期的偶函数,当x∈[0,1]时,f(x)=log2(x+1),∴设x∈(1,2),则x﹣2∈(﹣1,0),2﹣x∈(0,1),∴f(2﹣x)=log2[(2﹣x)+1]=log2(3﹣x),又f(x)为周期为2的偶函数,所以f(x)=f(x﹣2)=f(2﹣x)=log2(3﹣x).故答案为:f(x)=log2(3﹣x).【知识点】函数解析式的求解及常用方法22.甲乙两地相距500km,汽车从甲地匀速行驶到乙地,速度v不能超过120km/h.已知汽车每小时运输成本为元,则全程运输成本与速度的函数关系是y=,当汽车的行驶速度为km/h时,全程运输成本最小.【分析】由已知可得汽车从甲地匀速行驶到乙地的时间为:,结合汽车每小时运输成本为元,可得:全程运输成本与速度的函数关系式,再由基本不等式可得v=100时,y取最小值.【解答】解:∵甲乙两地相距500km,故汽车从甲地匀速行驶到乙地的时间为:,又由汽车每小时运输成本为元,则全程运输成本与速度的函数关系是y=•()=(0<v≤120),由基本不等式得≥2=3600,当且仅当,即v=100时,取最小值,故答案为:(0<v≤120),100【知识点】函数解析式的求解及常用方法23.函数y=5sin(x+)(﹣15≤x≤10)的图象与函数y=图象的所有交点的横坐标之和为.【答案】-7【分析】由函数解析式可得两函数图象均关于点(﹣1,0)对称,再分析可得在(﹣1,0)内两函数图象有一个交点,画出图象的大致形状,即可求得两图象所有交点的横坐标之和.【解答】解:函数y=5sin(x+)的图象关于点(﹣1,0)对称,对于函数y=,当x=﹣1时,y=0,当x≠﹣1时,可得y=在(﹣1,0)上单调递增,在(0,+∞)上单调递减,且当x∈(﹣1,+∞)时,y=的最大值为,函数图象关于点(﹣1,0)对称;对于函数y=5sin(x+),当x=0时,y=5sin>=,故在(﹣1,0)内两函数图象有一个交点.根据两函数图象均关于点(﹣1,0)对称,画出两函数在[﹣15,10]上的大致图象,得到交点横坐标之和为﹣1+(﹣2)×3=﹣7【知识点】函数的图象与图象的变换、正弦函数的图象24.已知函数y=与函数y=的图象共有k(k∈N*)个公共点,A1(x1,y1),A2(x2,y2),…,A k(x k,y k),则(x i+y i)=.【答案】2【分析】f(x)关于(0,1)对称,同理g(x)=关于(0,1)对称,如图所示,两个图象有且只有两个交点,即可得出结论.【解答】解:由题意,函数f(x)==2﹣,f(﹣x)+f(x)=2,∴f(x)关于(0,1)对称,同理g(x)=关于(0,1)对称,如图所示,两个图象有且只有两个交点,∴(x i+y i)=2,故答案为2.【知识点】函数的图象与图象的变换25.函数f(x)=,若关于x的方程2f2(x)﹣(2a+3)f(x)+3a=0有五个不同的实数解,则a的取值范围是.【分析】程2f2(x)﹣(2a+3)f(x)+3a=0有五个不同的实数解x,即要求f(x)=常数有3个不同的f (x),根据题意,先做出函数f(x)的图象,结合图象可知,只有当f(x)=a时,有3个根,再结合方程2f2(x)﹣(2a+3)f(x)+3a=0有2个不同的实数解,可求【解答】解:方程2f2(x)﹣(2a+3)f(x)+3a=0有五个不同的实数解,解:∵题中原方程2f2(x)﹣(2a+3)f(x)+3a=0有且只有5个不同实数解,∴即要求对应于f(x)等于某个常数有3个不同实数解,∴故先根据题意作出f(x)的简图:由图可知,只有当f(x)=a时,它有三个根.所以有:1<a<2 ①.再根据2f2(x)﹣(2a+3)f(x)+3a=0有两个不等实根,得:△=(2a+3)2﹣4×2×3a>0⇒②结合①②得:1<a<或a<2.故答案为:(1,)∪(,2).【知识点】指数型复合函数的性质及应用、函数的零点与方程根的关系、分段函数的解析式求法及其图象的作法26.设定义域为R的函数若关于x的方程f2(x)﹣(2m+1)f(x)+m2=0有7个不同的实数根,则实数m=.【答案】2【分析】题中原方程f2(x)﹣(2m+1)f(x)+m2=0有7个不同的实数根,即要求对应于f(x)=某个常数有3个不同实数解,故先根据题意作出f(x)的简图,由图可知,只有当f(x)=4时,它有三个根.故关于x的方程f2(x)﹣(2m+1)f(x)+m2=0有7个不同的实数根.【解答】解:∵题中原方程f2(x)﹣(2m+1)f(x)+m2=0有7个不同的实数根,∴即要求对应于f(x)等于某个常数有3个不同实数解,∴故先根据题意作出f(x)的简图:由图可知,只有当f(x)=4时,它有三个根.故关于x的方程f2(x)﹣(2m+1)f(x)+m2=0有一个实数根4.∴42﹣4(2m+1)+m2=0,∴m=2,或m=6,m=6时,方程f2(x)﹣(2m+1)f(x)+m2=0有5个不同的实数根,所以m=2.故答案为:2.【知识点】函数与方程的综合运用、分段函数的解析式求法及其图象的作法。
1中考复习数学分类专题检测三 函数及其图象(时间:90分钟 总分:120分)一、选择题(每小题4分,共40分)1.在平面直角坐标系中,点P (3,-x 2-1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 2.若反比例函数y =kx 的图象经过点(-1,2),则这个函数的图象一定经过点( )A .(2,-1)B .⎝ ⎛⎭⎪⎫-12,2C .(-2,-1)D .⎝ ⎛⎭⎪⎫12,23.如果一次函数y =kx +b 的图象经过第一象限,且与y 轴负半轴相交,那么( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <04.如右图,在今年我市初中学业水平考试体育学科的女子800米耐力测试中,某考点同时起跑的小莹和小梅所跑的路程s (米)与所用时间t (秒)之间的函数图象分别为线段OA 和折线OBCD .下列说法正确的是( )A .小莹的速度随时间的增大而增大B .小梅的平均速度比小莹的平均速度大C .在起跑后180秒时,两人相遇D .在起跑后50秒时,小梅在小莹的前面 5.把抛物线y =-x 2向左平移1个单位长度,然后向上平移3个单位长度,则平移后抛物线的解析式为( )A .y =-(x -1)2-3B .y =-(x +1)2-3C .y =-(x -1)2+3D .y =-(x +1)2+36.矩形面积为4,长为y ,宽为x ,y 是x 的函数,其函数图象大致是()7.如图,A 是反比例函数y =kx 图象上一点,过点A 作AB ⊥y 轴于点B ,点P 在x 轴上,△ABP 的面积为2,则k 的值为( )A .1B .2C .3D .44题图 7题图 8题图8.图(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2 m ,水面宽为4 m .如图(2)建立平面直角坐标系,则抛物线的关系式是( )A .y =-2x 2B .y =2x 2C .y =-12x 2D .y =12x 29.函数y =x +m 与y =mx (m ≠0)在同一坐标系内的图象如图,可以是()10.函数y =ax 2+bx +c 的图象如图所示,那么关于x 的一元二次方程 ax 2+bx +c -3=0的根的情( )A .有两个不相等的实数根B .有两个异号的实数根C .有两个相等的实数根D .没有实数根 二、填空题(每小题4分,共24分)11.在平面直角坐标系中,点A (1,2)关于y 轴对称的点为B (a ,2),则a =__________.212.函数y=-xx-1中自变量x的取值范围是__________.13.如图,l1反映了某公司的销售收入与销量的关系,l2反映了该公司产品的销售成本与销量的关系,当该公司赢利(收入大于成本)时,销售量必须__________.13题图14题图15题图14.已知关于x的一次函数y=mx+n的图象如图所示,则|n-m|-m2可化简为_____.15.函数y1=x(x≥0),y2=4x(x>0)的图象如图所示,则结论:①两函数图象的交点A的坐标为(2,2);②当x>2时,y2>y1;③当x=1时,BC=3;④当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.其中正确结论的序号是__________.16.抛物线y=-x2+bx+c的部分图象如图所示,请写出与其关系式、图象相关的2个正确结论:_______,______.(对称轴方程,图象与x轴正半轴、y轴交点坐标例外)三、解答题(共56分)17.(6分)在平面直角坐标系xOy中,反比例函数y=kx的图象与y=3x的图象关于x轴对称,又与直线y=ax+2交于点A(m,3),试确定a的值.18.(9分)为奖励在演讲比赛中获奖的同学,班主任派学习委员小明为获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则需86元;如果买3个笔记本和1支钢笔,则需57元.(1)求购买每个笔记本和钢笔分别为多少元;(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超过10支,那么超出部分可以享受8折优惠,若买x(x>0)支钢笔需要花y元,请你求出y与x的函数关系式;(3)在(2)的条件下,小明决定买同一种奖品,数量超过10个,请帮小明判断买哪种奖品省钱.19.(9分)如图,一次函数y=ax+b的图象与反比例函数y=kx的图象相交于A,B两点,与y轴交于点C,与x轴交于点D,点D的坐标为(-2,0),点A的横坐标是2,tan∠CDO=12.(1)求点A的坐标;(2)求一次函数和反比例函数的解析式;(3)求△AOB的面积.20.(10分)某单位准备印制一批证书.现有两个印刷厂可供选择.甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费.甲、乙两厂的印刷费用y(千元)与证书数量x(千个)的函数关系图象分别如图中甲、乙所示.(1)请你直接写出甲厂的制版费及y甲与x的函数解析式,并求出其证书印刷单价.(2)当印制证书8千个时,应选择哪个印刷厂节省费用?节省费用多少元?(3)如果甲厂想把8千个证书的印制工作承揽下来,在不降低制版费的前提下,每个证书最少降低多少元?21.(10分)近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难事件的调查中发现:从零时起,井内空气中CO的浓度达到4 mg/L,此后浓度呈直线型增加,在第7小时达到最高值46 mg/L,发生爆炸;爆炸后,空气中的CO浓度成反比例下降.如图,根据题中相关信息回答下列问题.(1)求爆炸前后空气中CO浓度y与时间x的函数关系式,写出相应自变量的取值范围.(2)当空气中的CO浓度达到34 mg/L时,井下3 km的矿工接到自动报警信号,这时他们至少要以多快的速度撤离才能在爆炸前逃生?(3)矿工只有在空气中的CO浓度降到4 mg/L及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井.22.(12分)如图,对称轴为直线x=72的抛物线经过点A(6,0)和B(0,4).(1)求抛物线解析式及顶点坐标.(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形.求OEAF的面积S与x之间的函数关系式,并写出自变量x 的取值范围.①OEAF的面积为24时,请判断OEAF是否为菱形?②是否存在点E ,使OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.参考答案一、1.D 2.A 将(-1,2)代入y =k x ,得k =-2,则y =-2x ,然后将A 项的横坐标代入,得y =-22=-1,可知A 项符合,其他选项不符合. 3.B ∵当k <0,b <0时,一次函数y =kx +b 的图象只能过第二、三、四象限,而不过第一象限,又∵函数图象与y 轴负半轴相交,∴b <0,k >0. 4.D 5.D 将抛物线向左平移1个单位长度得到y =-(x +1)2,再向上平移3个单位长度得到y =-(x +1)2+3. 6.B 7.D8.C 根据题意设抛物线解析式为y =ax 2,点(2,-2)在函数图象上,所以代入y =ax 2,得a =-12, 故解析式为y =-12x 2. 9.B ∵对于y =x +m 中,k =1>0, ∴y 随x 的增大而增大;又∵当m >0时,y =mx (m ≠0)的图象在第一、三象限内,且y =x +m 的图象与y 轴交于正半轴,故知选B.10.C 由图象可知,4ac -b 24a =3,可得b 2-4ac =-12a .而一元二次方程ax 2+bx +c -3=0判别式为b 2-4a (c -3)=b 2-4ac +12a =-12a +12a =0,所以方程有两相等的实数根.二、11.-1 12.x ≥0,且x ≠113.大于4 从图象上看,销量等于4时,销售收入和成本相等;销量大于4时,收入大于成本.14.n 由图象可知m <0,n >0, ∴|n -m |-m 2=n -m +m =n .15.①③④ 令y 1=y 2,即x =4x ,得x =±2,∵x >0, ∴x =2,∴交点A 的坐标为(2,2),结论①正确;由两个函数图象可知,当x >2时,函数y 2在函数y 1的下方,即当x >2时,y 2<y 1,所以结论②错误;当x =1时,y 1=1,y 2=4,所以BC =y 2-y 1=3,结论③正确; 由正比例函数、反比例函数的性质可知,结论④正确.16.答案不唯一.如①c =3;②b +c =1;③c -3b =9;④b =-2;⑤当x >-1时,y 随x 的增大而减小;⑥当x <-1时,y 随x 的增大而增大,等等.三、17.解:由题意,得k =-3,即y =-3x ,把A (m,3)代入得m =-1,即A (-1,3).将A (-1,3)代入y =ax +2,得-a +2=3,故a =-1.18.解:(1)设每个笔记本x 元,每支钢笔y 元,则⎩⎪⎨⎪⎧ 4x +2y =86,3x +y =57,解得⎩⎪⎨⎪⎧x =14,y =15,故每个笔记本14元,每支钢笔15元.(2)y =⎩⎪⎨⎪⎧15x ,0<x ≤10,12x +30,x >10.(3)当14x <12x +30时,x <15;当14x =12x +30时,x =15;当14x >12x +30时,x >15.综上,当买超过10件但少于15件商品时,买笔记本省钱;当买15件奖品时,买笔记本和钢笔一样;当买奖品超过15件时,买钢笔省钱.19.解:(1)过点A 作AE 垂直x 轴于E ,因为D (-2,0),E (2,0),所以OD =OE =2.因为在R t △ADE 中,∠AED =90°,tan ∠ADE =AE DE ,因为tan ∠CDO =tan ∠ADE =12,OD =2,OE =2,所以AE =tan ∠ADE ·DE =12×4=2,所以A (2,2).(2)因为反比例函数y =k x 过点A (2,2),所以k =4,所以y =4x.因为一次函数y =ax +b 过A (2,2),D (-2,0),所以⎩⎪⎨⎪⎧2a +b =2,-2a +b =0,解得⎩⎪⎨⎪⎧a =12,b =1,所以y =12x +1.(3)因为4x =12x +1,所以x 2+2x -8=0,即(x +4)(x -2)=0,所以x 1=-4,x 2=2,所以B (-4,-1),所以S △AOB =S △AOD +S △BOD =12×2×2+12×2×1=3.20.解:(1)制版费1千元,y 甲=12x +1,证书单价0.5元.(2)把x =6代入y 甲=12x +1中得y 甲=4.当x ≥2时,由图象可设y 乙与x 的函数关系式为y 乙=kx +b ,由已知得⎩⎪⎨⎪⎧2k +b =3,6k +b =4,解得⎩⎨⎧b =52,k =14,得y 乙=14x +52.当x =8时,y 甲=12×8+1=5,y 乙=14×8+52=92,5-92=0.5(千元).即当印制8千张证书时,选择乙厂,节省费用500元. (3)设甲厂每个证书的印刷费用应降低a 元, 8 000a =500, 解得a =0.062 5.答:甲厂每个证书印刷费最少降低0.062 5元.21.解:(1)∵爆炸前浓度呈直线型增加,∴可设y 与x 的函数关系式为y =k 1x +b . 由图象知y =k 1x +b 过点(0,4)与(7,46),∴⎩⎪⎨⎪⎧ b =4,7k 1+b =46,解得⎩⎪⎨⎪⎧k 1=6,b =4.∴y =6x +4,此时自变量x 的取值范围是0≤x ≤7. ∵爆炸后浓度成反比例下降, ∴可设y 与x 的函数关系式为y =k 2x.由图象知y =k 2x 过点(7,46),∴k 27=46,∴k 2=322,∴y =322x ,此时自变量x 的取值范围是x >7.(2)当y =34时,由y =6x +4得6x +4=34,x =5.∴撤离的最长时间为7-5=2(h). ∴撤离的最小速度为3÷2=1.5(km/h).(3)当y =4时,由y =322x 得x =80.5,80.5-7=73.5(h).∴矿工至少在爆炸后73.5小时才能下井.22.解:(1)由抛物线的对称轴是x =72,可设解析式为y =a ⎝⎛⎭⎫x -722+k , 把A ,B 两点坐标代入上式,得⎩⎨⎧a ⎝⎛⎭⎫6-722+k =0,a ⎝⎛⎭⎫0-722+k =4,解得a =23,k =-256,故抛物线解析式为y =23⎝⎛⎭⎫x -722-256,顶点为⎝⎛⎭⎫72,-256. (2)∵点E (x ,y )在抛物线上,位于第四象限,且坐标适合y =23⎝⎛⎭⎫x -722-256, ∴y <0,即-y >0,-y 表示点E 到OA 的距离. ∵OA 是OEAF 的对角线,∴S =2S △OAE =2×12×OA ·|y |=-6y =-4⎝⎛⎭⎫x -722+25. ∵抛物线与x 轴的两个交点是(1,0)和(6,0), ∴自变量x 的取值范围是1<x <6.①根据题意,当S =24时,即-4⎝⎛⎭⎫x -722+25=24, 化简,得⎝⎛⎭⎫x -722=14,解得x 1=3,x 2=4, 故所求的点E 有两个,分别为E 1(3,-4),E 2(4,-4), 点E 1(3,-4)满足OE =AE ,此时OEAF 是菱形; 点E 2(4,-4)不满足OE =AE ,此时OEAF 不是菱形.②当OE ⊥EA ,且OE =EA 时,OEAF 是正方形,此时点E 的坐标只能是(3,-3),而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E ,使OEAF 为正方形.。