植物生理
- 格式:doc
- 大小:78.50 KB
- 文档页数:13
植物的5大生理作用分别是植物具有多种生理作用,这些作用使其能够适应环境、生长发育和维持生命活动。
以下是植物的五大主要生理作用:
1. 光合作用(Photosynthesis):光合作用是植物的核心生理过程之一,通过光合色素在叶绿体中捕获太阳能,将二氧化碳和水转化为葡萄糖和氧气。
这个过程为植物提供了能量,并是氧气的主要来源。
2. 呼吸作用(Respiration):呼吸作用是植物释放能量的过程,与动物的呼吸作用有所不同。
植物通过呼吸作用将葡萄糖和氧气转化为二氧化碳、水和能量。
这个过程发生在细胞的线粒体中。
3. 蒸腾作用(Transpiration):蒸腾作用是植物通过叶片表面散发水蒸气的过程。
这有助于植物在光合作用中吸收的水分的运输和分配,同时也有助于维持植物体内的水分平衡。
4. 激素调节(Hormone Regulation):植物产生和调节激素,如赤霉素、生长素、脱落酸等,以控制植物的生长、开花、果实发育和其他生命周期中的关键阶段。
激素对植物的发育和适应环境的响应起着重要作用。
5. 营养吸收和运输(Nutrient Absorption and Transport):植物通过根部吸收土壤中的水分和矿物质养分。
这些养分通过根内的细胞和导管系统进行运输,分配到植物的各个组织和细胞,以支持生长和代谢。
这五大生理作用共同维持了植物的生命活动和生态功能,使其能够适应不同的环境条件,并在生态系统中发挥重要作用。
一、绪论1. 植物生理学是研究植物生命活动规律与细胞环境相互关系的科学,在细胞结构与功能的基础上研究植物环境刺激的信号转导、能量代谢和物质代谢。
二、植物的水分生理1.水势:相同温度下一个含水的系统中一偏摩尔体积的水与一偏摩尔体积纯水之间的化学势差称为水势。
把纯水的水势定义为零,溶液的水势值则是负值。
水分代谢:植物对水分的吸收、运输、利用和散失的过程。
2.衬质势:由于衬质 ( 表面能吸附水分的物质,如纤维素、蛋白质、淀粉等 ) 的存在而使体系水势降低的数值。
3.压力势:植物细胞中由于静水质的存在而引起的水势增加的值。
4.渗透势:溶液中固溶质颗粒的存在而引起的水势降低的值。
5.渗透作用:溶液中的溶剂分子通过半透膜扩散的现象。
对于水溶液而言,是指水分子从水势高处通过半透膜向水势低处扩散的现象。
6.质壁分离:植物细胞由于液泡失水而使原生质体和细胞壁分离的现象。
7.吸胀作用:亲水胶体物质吸水膨胀的现象称为吸胀作用。
胶体物质吸引水分子的力量称为吸胀。
8.根压:由于植物根系生理活动而促使液流从根部上升的压力。
伤流和吐水现象是根压存在的证据。
9.蒸腾作用:水分通过植物体表面(主要是叶片)以气体状态从体内散失到体外的现象。
10.蒸腾效率:植物在一定生育期内所积累干物质量与蒸腾失水量之比,常用 g·kg-l表示。
11.蒸腾系数:植物每制造 1g 干物质所消耗水分的 g 数,它是蒸腾效率的倒数,又称需水量。
12. 气孔蒸腾:植物细胞内的水分通过气孔进行蒸腾的方式称为气孔蒸腾。
13.气孔运动主要受保卫细胞的液泡水势的调节,但调节保卫细胞水势的途径比较复杂。
14.保卫细胞:新月形的细胞,成对分布在植物叶气孔周围,控制进出叶子的气体和水分的量。
形成气孔和水孔的一对细胞。
双子叶植物的保卫细胞通常是肾形的细胞,但禾本科的气孔则呈哑铃形。
气孔的保卫细胞含有叶绿体,因为细胞壁面对孔隙的一侧(腹侧)比较厚,而外侧(背侧)比较薄,所以随着细胞内压的变化,可进行开闭运动。
植物生理生化完整版名词解释:1. 生物膜:细胞内所有的膜,总称生物膜,生物膜一般厚为8nm,主要由类脂和蛋白质两部分组成。
细胞和多种细胞器的表面都覆盖有生物膜。
2. 原生质体:除细胞壁以外的细胞部分,包括细胞核、细胞器、细胞质基质以及其外围的细胞质膜。
原生质体失去了细胞的固有形态,通常呈球状。
3. 小孔律:气体分子通过多孔表面扩散的速度,不与小孔的面积成正比,而与小孔的周长成正比的现象。
4. 内聚力学说:又称蒸腾流―内聚力―张力学说。
即以水分子的内聚力来解释水分沿导管上升原因的学说。
5. 有益元素:某种元素并非植物必需的,但常在植物体内存在,对植物生长发育生理功能表现有利作用,并能部分替代某一必需元素的作用,减缓缺素症的元素。
如钠、硅、硒。
6. 光合作用:是绿色植物利用光能,把二氧化碳和水合成有机物质,并放出氧气的过程。
7. 同化力:在电子传递及光合磷酸化作用中形成的NADPH+H+和ATP,随后用于CO2的同化,故称为同化力。
8. 呼吸商:又称为呼吸系数,简称RQ.是指在一定时间内,植物组织释放CO2的摩尔数与吸收氧的摩尔数之比。
9. 光饱和点:开始达到光饱和现象时的光照强度称为光饱和点。
10. 呼吸跃变:是某些果实在成熟过程中的一种特殊的呼吸形式。
果实在成熟初期呼吸略有降低,随之突然升高,然后又突然下降,经过这样的转折,果实进入成熟。
果实成熟前呼吸速率突然增高的现象称为呼吸跃变(或跃迁)。
11. 第二信使:配体与受体结合后并不进入细胞内,但间接激活细胞内其他可扩散,并能调节调节信号转导蛋白活性的小分子或离子。
(受细胞外信号的作用,在胞质溶胶内形成或向胞质溶胶释放的细胞内小分子。
通过作用于靶酶或胞内受体,将信号传递到级联反应下游)。
12. P蛋白:即韧皮蛋白,位于筛管的内壁,当韧皮部组织受到伤害时,P-蛋白在筛管周围累积并形成凝胶,堵塞筛管孔以维持其他部位筛管的正压力,同时减少韧皮部内运输队的同化物的外流。
植物生理学一、名词解释1、C4植物:具有四碳二羧酸途径的植物。
2、CO2同化:CO2同化成碳水化合物的过程。
3、EMP途径(糖酵解途径):细胞质基质中的己糖经过一系列酶促反应步骤分解成丙酮酸的过程。
4、单盐毒害:溶液中只有一种金属离子时,对植物起有害作用的现象。
5、电子传递链(呼吸链):呼吸代谢中间产物的电子和质子,沿着一系列有顺序的电子传递体组成的电子传递途径,传递到分子氧的总过程。
6、顶端优势:顶芽优先生长,而侧芽生长受抑制的现象。
7、冻害:当温度降到0℃以下,植物体内发生冰冻,因而受伤甚至死亡的现象。
8、光合链;连接两个光反应系统、排列紧密而互相衔接的电子传递物质。
9、光合磷酸化:叶绿体在光下把无机磷酸和ADP转化为ATP,形成高能磷酸键的过程。
10、光合速率:通常指单位时间、单位叶面积吸收CO2的物质的量或放出O2的物质的量。
11、光合作用:绿色植物吸收阳光的能量,同化二氧化碳和水,制造有机物并释放氧气的过程。
12、光呼吸:指植物的绿色细胞在光照条件下进行的吸收O2并放出CO2的过程。
13、光形态建成:依赖光控制细胞的分化、结构和功能改变, 最终汇集成组织和器官的建成,即光控制发育的过程。
14、呼吸商:指植物组织在一定时间内,释放CO2与吸收O2的数量比值。
15、极性运输:生长素只能从形态学上端向下端的方向运输,而不能向相反的方向运输。
16、集流运输速率:指单位截面积筛分子在单位时间内运输物质的量,常用g/(m2·h)或g/(mm2·s)。
17、假环式电子传递:指水光解放出的电子经PSⅡ和PSⅠ两个光系统,最终传给O2的电子传递。
18、简单扩散:生物膜允许一些疏水分子和小而不带电的极性分子,以简单扩散方式通过细胞膜,溶质从浓度较高的区域跨膜移向浓度较低的邻近区域的物理过程。
19、近似昼夜节奏:在没有昼夜变化和温度变化的恒温条件下,叶子的升起和下降运动的每一周期近似24小时的周期性变化节律。
一.成花诱导春化作用( vernalization):低温诱导促进植物开花的作用。
温度:相对低温型:低温处理促进植物开花,如冬性一年生植物,种子吸涨后即可感受低温绝对低温型:若不经低温处理,植物绝对不能开花,如二年生植物,营养体达到一定大小才能感受低温。
低温及条件:各类植物通过春化时要求低温持续的时间不同,在一定时间内,春化的效应随低温处理时间的延长而增加。
(2)需要充足的氧气、适量的水分和作为呼吸底物的糖分(3)光照春化之前,充足的光照可促进二年生和多年生植物通过春化。
时期、部位和刺激传导(1)时期大多数一年生植物(冬小麦)在种子吸胀后即可接受低温诱导,在种子萌发和苗期均可进行。
而需低温的二年生植物(胡萝卜、月见草等)只有绿苗达到一定大小才能通过春化。
(2)部位感受低温的部位:茎尖端的生长点春化过程中的生理生化变化(1)呼吸速率—春化处理的较高(2)核酸代谢在春化过程中核酸(特别是RNA)含量增加,代谢加速,而且RNA性质有所变化。
(3)蛋白质代谢可溶性Pr及游离AA含量(Pro)增加。
(4)GA含量增加一些需春化的植物(如天仙子、白菜、胡萝卜等)未经低温处理,若施用GA也能开花。
GA以某种方式部分代替低温的作用。
春化作用的机理前体物低温中间产物低温最终产物(完成春化)高温中间产物分解(解除春化)春化作用在农业生产中的应用A、人工春化,加速成花,提早成熟(1)“闷麦法” —春天补种冬小麦(2)春小麦低温处理—早熟,躲开干热风,利于后季作物的生长(3)加速育种过程—冬性作物的育种B、指导引种引种时应注意原产地所处的纬度,了解品种对低温的要求。
如北种南引,只进行营养生长而不开花结实。
C、控制花期如低温处理可使秋播的花卉改为春播,当年开花收获营养器官的植物,可高温处理解除春化光周期的发现某些植物在完成春化作用后,只有在高温和特定的光周期处理以后,花芽才能分化。
光周期( photoperiod):一天之中白天和黑夜的相对长度。
植物生理学植物生理学是研究植物的生命过程、生理机制、代谢调节等方面的学科,是植物科学中重要的基础学科之一。
它既是农业生产技术的基础,又是环境保护、资源利用和生态建设的重要基础。
在植物生理学的研究中,主要涉及气体交换、水分运输、营养分代谢、激素作用、环境适应以及生长和发育等方面。
本文将从这几个方面来阐述植物生理学的相关内容。
一、气体交换植物通过气孔进行气体交换,吸收二氧化碳进行光合作用,产生氧气和有机物质。
在这个过程中,光合作用的速率,以及氧气和二氧化碳的浓度都会影响气孔的开启和关闭。
为了适应不同的环境条件,植物会进行调节,使其气孔开启大小和数量进行变化。
二、水分运输植物的水分运动主要是通过根系吸水以及叶片蒸腾作用来完成的。
根系吸收水分主要依赖于根系的结构和毛细作用,而叶片蒸腾作用则依赖于气孔的开启和关闭以及气温、湿度和气体浓度等环境因素。
植物通过调节这些环境因素来适应干旱、高盐、低温等不同环境条件。
三、营养分代谢植物的营养分包括糖类、蛋白质、脂类等,这些物质是植物进行生长、代谢和修复的重要物质。
糖类是植物体内的主要能量来源,同时也可以转化为植物的骨架。
植物的蛋白质则主要用于构建细胞结构和参与各种代谢和生长活动。
植物的脂类则主要在种子中储存,并可以被转化为能量。
四、激素作用植物的生长与发育过程主要受到植物生长素、乙烯、赤霉素、脱落酸等多种植物激素的调节。
这些激素可以影响植物体内各种代谢过程,包括幼苗的萌发、花序的形成、根系的发育和水分运输等,从而影响植物的生长发育。
五、环境适应植物能够通过调节身体结构和生理机制来适应不同的环境条件和生长阶段。
比如干旱条件下,植物的根系可能会长出更多的侧根,以吸收更多的水分;水稻在淹水逆境下会通过生长空气根来吸收氧气。
植物还可以调节生长素和乙烯的含量来适应不同的环境条件和生长阶段。
六、生长和发育植物的生长和发育过程主要涉及到细胞增殖、细胞分化和细胞扩张等方面。
正常的生长过程需要合适的环境条件和适宜的营养物质供应。
1、束缚水:被细胞内胶体颗粒或大分子吸附或存在于大分子结构空间不能自由移动的水2、水分临界期:作物对水分最敏感的时期,即水分过多或缺乏对产量影响最大的时期3、溶液培养法:又称水培法即用纯化的化合物配置成水溶液来培养植物以确定植物必须矿物元素种类和数量的方法4、胞饮作用:细胞通过纸膜的内折而将物质转移到胞内的过程5、抗氰呼吸:指当植物体内存在与细胞色素氧化酶的铁结合的阴离子(如氰化物、叠氮化物)时,仍能继续进行的呼吸,即不受氰化物抑制的呼吸。
6、呼吸商:又称气体交换率,指生物体在同一时间内,释放二氧化碳与吸收氧气的体积之比或摩尔数之比,即指呼吸作用所释放的CO2和吸收的O2的分子比。
7、光呼吸:植物绿色组织在光照下吸收氧和放出二氧化碳的过程。
8、光补偿点:植物同化器官中,光合作用吸收的二氧化碳与呼吸作用释放的二氧化碳相等时的光照强度。
9、代谢源:是指能够制造并输出同化物的组织、器官或部位。
10、代谢库:是指能够消耗或贮藏有机物质的组织或部位。
11、生长素的极性运输:生长素由上向下,从一个细胞到下一个细胞连续进行的运输。
12、偏上性生长:指在形态上或生理上具有正反面的植物器官(叶和侧枝等)的向上生长(向轴侧)快于向下(背轴侧)生长,而显示向上凸出的弯曲现象。
13、细胞全能性:指植物体的每个具有核的活细胞都具备母体的全部基因,在一定的条件下都具有分化发育成一个完整植株的潜在能力14、光形态建成:光控制植物生长、发育和分化的过程。
15、光周期现象:植物对白天和黑夜相对长度变化发生反应的现象16、临界夜长:指在昼夜周期中短日植物能够开花的最小暗期长度或长日植物能够开花的最大暗期长度17、休眠:植物生长极为缓慢或暂时停顿的一种现象18、衰老:在正常的环境条件下,生物机体代谢活动减弱,生理机能衰退的过程19、抗性锻炼:植物经诱导逐步适应逆境的过程20、渗透调节:水分胁迫时植物体内积累各种有机和无机物质,提高细胞液浓度,降低渗透势,保持一定的压力势,这样植物就可以保持其体内水分,适应水分胁迫环境,这种现象称为渗透调节蒸腾方式:气孔关闭、初干、暂时萎蔫质壁分离:膜的半透性、细胞死活、细胞渗透式水孔蛋白:细胞质膜、液泡膜、磷酸化.植物细胞吸收溶质:通道运输、载体运输、泵运输、胞饮作用诊断:病症诊断法、化学分析诊断法追肥:长相和叶色生理指标叶片营养状况、酰胺含量和酶活性类囊体膜四类蛋白质:P SⅡ、PSⅠ、Cytb6-f、ATPase光合碳循环中:PEP羧化酶催化PEP和HCO3-生成OAA。
名词解释1蒸腾系数;植物制造1g物质所消耗的水分克数。
2原初反应;叶绿素分子从被光激发至引起第一个光化学反应为止的过程。
包括光能的吸收、传递与光化学反应3休眠;植物的整体或某一部分暂时停顿的现象,是植物抵制不良自然环境的一种自身保护性生物学特征4光周期现象;生长在地球上的不同地区的植物在长期适应和进化过程中表现出生长发育的周期性变化,植物对昼夜长度发生反应的现象。
5光合磷酸化;在光照条件下,叶绿体将ADP和无机磷(Pi)结合形成ATP的生物学过程。
是光合细胞吸收光能后转换成化学能的一种贮存形式。
6细胞的全能性;每个生活的细胞都包括有产生一个完整机体的全套基因,在适宜的条件下细胞具有形成一个新的个体的潜在能力7光补偿点;随着光强的增高,光合速率相应提高,当达到某一光强时,叶片的光合速率等于呼吸速率,表现光合速率为0 这时的光强就是光的补偿点8三重反应;抑制茎伸长生长,促进茎或根的横向增粗及茎的横向生长,这就是乙烯所特有的三重现象9红降现象;大于680nm的远红光虽然仍被叶绿素吸收但量子产额急剧下降的现象10共质体;由胞间连丝把原生质连成一体的体系11温周期现象;植株或器官的生长速率随昼夜变化而发生变化有规律变化的现象12春化作用;低温诱导促使植物开花的作用13反应中心色素:少数特殊状态的叶绿素a分子属于此类,它具有光化学活性,既是光能的“捕捉器”,又是光能的“转换器”,因之亦称为“陷阱14溶质势;由于溶质颗粒的存在而引起的体系水势的降低的数值,表示溶液中水分潜在的渗透能力的大小15临界日长;光反应周期中引起长日植物成花所必须的最短日照时数或引起短日植物成花所必需的最长日照时数称为临界日长16极性运输;生长素只能从植物的形态上端向下端运输,而不能向相反的方向运输17交叉适应;即植物经历了某种逆境后,能提高对另一些逆境的抵抗能力,这种对不良环境之间的相互适应作用,称为交叉适应18生理干旱;是指由于土温过低,土壤溶液浓度过高或积累有毒物质等原因,根系吸水困难引起的植物体水分亏缺的现象19呼吸商;植物组织在一定时间内,放出CO2的量与吸收O2的量的比值20代谢库;指代谢活跃、正在迅速生长的器官或组织填空题1.植物的有氧呼吸包括(三羧酸循环TCA)和(戊糖磷酸途径PPD)两条主要途径。
植物生理学的定义和研究对象植物生理学是研究植物内部生理过程和对环境的响应的科学领域。
它探究植物如何通过各种生理机制实现生长、发育和适应环境的能力。
植物生理学的研究对象是植物体内的生物化学反应、细胞功能、组织结构和整体生理过程。
植物体内的生物化学反应植物体内存在着多种复杂的生物化学反应,包括光合作用、呼吸作用、物质代谢等。
植物生理学致力于揭示这些反应的机制和调控过程,以及它们在植物生长和发育中的作用。
细胞功能和组织结构植物生理学研究还涉及到植物细胞的功能和组织结构。
例如,细胞壁的合成和分解、细胞膜的透性调节、细胞器的功能等都是植物生理学关注的内容。
此外,不同组织结构在植物体内扮演着不同的角色,植物生理学也探索这些组织的特殊功能和相互作用。
生长、发育和形态建成植物生理学研究植物的生长、发育和形态建成的机制。
通过研究植物激素的合成、运输和信号传导,以及生长素、赤霉素、细胞分裂素等激素在植物生长发育中的作用,揭示植物的形态变化和器官发育的规律。
环境适应和应激响应植物生理学关注植物对环境变化的适应机制。
植物通过调节光合作用速率、气孔开闭、根系生长等生理过程来应对环境中的光照、温度、水分、营养等因素变化。
研究植物的适应策略和应激响应有助于理解植物的生存和繁衍。
植物生理学的定义和研究对象提供了深入了解植物内部生理过程和适应环境能力的基础,为农业、园艺和植物保护等领域的实践应用提供了理论指导。
植物的生长和发育过程植物的生长和发育是一个复杂而精密的过程,涉及细胞分裂、细胞扩张、器官形成和组织分化等多个环节。
这一过程由遗传因素、激素调控和环境因素相互作用而完成。
本节将介绍植物的生长和发育过程的主要阶段和相关机制。
胚胎阶段植物的生长和发育始于种子的萌发。
在胚胎阶段,种子中的胚乃至胚乳细胞开始分裂和分化,形成根尖、胚轴和原叶等胚器官。
这一过程受到种子的内外部环境因素的调控,如水分、温度和激素的影响。
幼苗期幼苗期是植物生长和发育的早期阶段。
一.名词解释1.胞间连丝:是指贯穿细胞壁、胞间层,连接相邻细胞原生质体的管状通道。
2.温周期现象与光周期现象:在自然条件下气温是呈周期性变化的,许多生物适应温度的某种节律性变化,并通过遗传成为其生物学特性,这一现象称为温周期现象。
生物在暴露于阳光期间对变化产生的反应,尤指通过生物过程显示出来的反应称光周期现象。
3.质壁分离与质壁分离复原:如果把具有液泡的细胞置于水势较低的溶液中,液泡失水,细胞收缩,体积变小。
由于细胞壁的伸缩性有限,而原生质体的伸缩性较大,随着细胞继续失水,原生质层便和细胞壁分离开来,这种现象被称为质壁分离。
如果把发生了质壁分离的细胞浸在水势较高的稀溶液或清水中,外液中的水分又会进入细胞,液泡变大,整个原生质层很快会恢复原来的状态,重新与细胞壁想贴,这种现象称为质壁分离复原。
4.根系的主动吸水与被动吸水:由根系代谢活动而引起的根系吸水过程称为主动吸水。
由蒸腾拉力引起的根系吸水称为被动吸水。
5.植物的水分临界期与最大需水期:指植物在生命周期中对水分最敏感、最易受伤害的时期。
一般而言,植物水分临界期多处于花粉母细胞四分体形成期,此时若缺水,使性器官发育不正常。
植物的最大需水期指植物生活周期中需水最多的时期。
6.大量元素与微量元素:植物生命活动必需的、且需要量较多的一些元素,它们约占植物体干重的0.01-10%,有C、H、O、N、P、S、K、Ga、Mg等9种元素。
植物生命活动必需的、而需要量很少的一类元素。
它们约占植物体干重的10(-5)-10(-3)%,有Fe、Mn、Zn、Cu、B、Mo、Cl等。
7.RuBP羧化酶与PEP羧化酶:核酮糖二磷酸羧化酶,催化1,5-二磷酸核酮糖和CO2生成二分子甘-3-磷酸甘油酸反应的酶。
亦称羧基歧化酶。
催化以磷酸烯醇型丙酮酸为底物,固定CO2形成草酰乙酸的酶,简称PEP羧化酶8.CO2饱和点与CO2补偿点:光合速率随CO2浓度增高而增加,当光合速率达到最大值时CO2浓度即为CO2饱和点。
缺素症状:N、老叶首先退绿变黄,严重时脱落,植株矮小,产量低下P、植株瘦小茎叶由绿色渐变成紫红色;分枝或分蘖减少,延迟成熟,果实与种子小且不饱满。
K、老叶出现缺绿症,叶尖与叶缘先枯黄,继而整个叶片枯黄,抗逆性降低,易倒伏。
S、影响蛋白质合成,细胞分裂受阻,植株矮小,叶片小而黄,易脱落。
Ca、生长点及幼叶首先表现症状,生长点死亡,植株成簇生长;缺钙植株的叶尖与叶缘变黄,枯焦坏死。
植株早衰,结实少甚至不结实。
Mg、叶脉仍绿而叶尖变黄,有时呈紫色,严重缺镁形成坏死斑点。
呼吸作用对植物生命活动具有十分重要的意义,主要表现在以下三个方面:(1)为植物生命活动提供能量。
除绿色细胞可直接从光合作用获取能量外,其它生命活动所需的能量都依赖于呼吸作用,呼吸过程中有机物质氧化分解,释放的能量一部分以A TP形式暂时贮存起来,以随时满足各种生理活动对能练的需求;另一部分能量则转化生成热能散失,以维持植物体温,促进代谢,保证种子萌发、幼苗生长、开花传粉、受精等生理过程的正常进行。
(2)中间产物为合成作用提供原料:呼吸过程中有机物的分解能形成许多中间产物,其中的一部分作用合成各种重要的有机物质的原料。
呼吸作用在植物体内的碳、氮和脂肪等物质代谢活动中起枢纽作用。
(3)在植物抗病免疫方面起着重要的作用:植物受伤或受到病菌侵染时,呼吸作用的一些中间产物可转化成能杀菌的植保素,以消除入侵病菌分泌物中的毒性,旺盛的呼吸还可加速细胞木质化或栓质化,促进伤口愈合。
3.白天和夜晚硝酸还原速度是否相同,为什么通常白天硝酸还原速度较快,这是因为(1)光合作用可直接为硝酸和亚硝酸还原和氨的同化提供还原力(2)光合作用制造同化物,促进呼吸作用,间接为硝酸盐的还原提供能量,也为氮代谢提供碳骨架(3)硝酸还原酶与亚硝酸还原没是诱导酶,其活性不但被硝酸又到,而且光能促进硝酸根对NR,NiR活性的激活作用4.在植物生理学中引入水势的概念有何意义(1)可用热力学知识来分析水分的运动状况,水分总是从水势高处流向水势低处(2)可用同一单位来判别水分运动(3)与吸水力联系起来5.在缺乏CO2情况下对绿色叶片照光能观察到荧光然后在供给CO2的情况下荧光猝灭,为什么荧光是激发态的叶绿素分子,以光子一般的形式释放能量的过程,在缺乏CO2的情况下,光反应形成的同化力不能用于光合碳同化,光合作用被抑制,叶片中被光激发的叶绿素分子较多地以光的方式退激,故在缺乏CO2的情况下,能观察到荧光,而供给CO2时被吸收的光能用于光合作用,荧光猝灭。
植物生理知识点总结一、光合作用光合作用是植物生理学中最重要的过程之一。
光合作用是指植物利用阳光能量将二氧化碳和水转化为有机物质和氧气的过程。
光合作用可以分为光反应和暗反应两个阶段。
1. 光反应光反应发生在叶绿体的类囊体中,需要光能的输入。
光合作用的光能主要来自于太阳光,通过光反应将光能转化为化学能。
在光反应中,光能被叶绿素吸收,激发电子从光系统Ⅱ向光系统Ⅰ传递。
这个过程中产生了氧气和ATP/NADPH。
通过这一过程,光能被转化为化学能,供给植物进行暗反应过程。
2. 暗反应暗反应发生在叶绿体的基质中,不依赖于光能的输入。
暗反应将光合细胞中的二氧化碳和水转化为葡萄糖和氧气,是光合作用最终产物的合成过程。
暗反应的关键酶是Rubisco,它参与了卡尔文循环过程。
在这一过程中,二氧化碳和水通过多步骤反应,最终产生了葡萄糖和氧气。
光合作用是植物生长和发育的基础,是维持地球生态平衡的重要过程之一。
二、生长激素生长激素是植物生长和发育的重要调节因子。
植物生长激素主要包括赤霉素、生长素、脱落酸、激动素和细胞分化素等。
1. 赤霉素赤霉素是一种重要的植物生长激素,能够促进植物的细胞伸长和生长。
赤霉素还能影响植物的开花、果实生长和根系发育等过程。
2. 生长素生长素也是一种重要的植物生长激素,能够促进细胞分裂和伸长。
生长素对植物的茎、根、叶、花、果实等器官的生长发育均有调节作用。
3. 脱落酸脱落酸是一种植物生长激素,主要调节植物的落叶过程。
脱落酸能够促使植物在适当的时候脱落叶片,防止水分蒸腾过多。
生长激素在植物生长和发育中起着重要作用,对植物的形态建成和生理功能具有重要调节作用。
三、水分运输水分是植物生长和发育的重要物质,也是植物细胞内外的主要成分之一。
水分可以通过根系吸收进入植物体内,然后通过导管组织在植物体内进行输运。
1. 根系吸收根系是植物吸收水分和营养物质的主要器官。
植物根系通过毛细管作用和渗透压来吸收土壤中的水分和无机盐。
植物生理学复习1.氧化磷酸化:是指呼吸链上的氧化过程,伴随着ADP被磷酸化为ATP的作用。
2.P/O:指呼吸链中每消耗1个氧原子与用去Pi或产生ATP的分子数。
3.抗氰呼吸:某些植物组织对氰化物不敏感的那部分呼吸。
即在有氰化物存在的情况下仍能够进行其它的呼吸途径。
4.糖酵解:指在细胞质内所发生的,由葡萄糖分解为丙酮酸的过程。
5.三羧酸循环:丙酮酸在有氧条件下,通过一个包括三羧酸和二羧酸的循环而逐步氧化分解CO2的过程。
6.末端氧化酶:是指处于生物氧化作用一系列反应的最末端,将底物脱下的氢或电子传递给氧,并形成H2O或H2O2的氧化酶类。
7.呼吸链:呼吸代谢中间产物随电子和质子,沿着一系列有顺序的电子传递体组成的电子传递途径,传递到分子氧的总轨道。
8.氧化磷酸化:是指呼吸链上的氧化过程,伴随着ADP被磷酸化为ATP的作用。
9.植物生长物质:调节植物生长发育的物质。
10.植物激素:是指一些在植物体内合成,并从产生之处运往作用部位,对生长发育起调控作用的微量(0.5)有机物。
11.植物生长调节剂:指一些具有植物激素活性的人工合成的物质。
12.三重反应:乙烯可抑制黄化豌豆幼苗上胚轴的伸长生长,促进其加粗生长,地上部分失去负向地性生长(偏上生长)。
13.极性运输: 是指生长素只能从植物体的形态学上端向下端运输。
14.程序性细胞死亡:是指为维持内环境稳定,由基因控制的细胞自主的有序性的死亡,它涉及一系列基因的激活、表达以及调控等的作用,因而是具有生理性和选择性的。
15.细胞全能性:植物的每个细胞均含有母体的全套基因,并在适宜条件下均能发育成完整个体的潜在能力。
16.愈伤组织: 原是指植物在受伤后于伤口表面形成的一团薄壁细胞,在组培中,则指在人工培养基上由外植体长出来的一团无序生长的薄壁细胞。
特征:细胞排列疏松而无规则,是一种高度液泡化的呈无定形状态的薄壁细胞.17.脱分化: 是指分化细胞失去特有的结构和功能变为未分化细胞特性的过程,即分化的细胞在适当的条件下转变为胚性状态而重新获得分裂能力的过程。
一. 名词:1.水势:每偏摩尔体积的水的化学势差称为水势,用ψw表示。
即水势为体系中水的化学势与处于等温、等压条件下纯水的化学势之差,再除以水的偏摩尔体积的商。
2.吐水:从未受伤的叶片尖端或边缘的水孔向外溢出液滴的现象。
3.伤流:从受伤或折断的植物组织伤口处溢出液体的现象。
4.根压:由于水势梯度引起的水分进入中柱后从根部沿木质部导管上升的压力。
5.蒸腾拉力:由于蒸腾作用产生的一系列水势梯度使导管中水分上升的力量。
6.水分临界期:植物在生命周期中,对缺水最敏感、最易受害的时期。
7.束缚水:与细胞组分紧密结合不能自由移动、不易蒸发散失的水。
8.光呼吸:植物的绿色细胞在光照下吸收氧气释放CO2的过程。
9.光饱和点:当达到某一光强时,光合速率就不再随光强的增高而增加,这种现象称为光饱和现象。
开始达到光合速率最大值时的光强称为光饱和点。
10.光补偿点:随着光强的增高,光合速率相应提高,当到达某一光强时,叶片的光合速率等于呼吸速率,表观光合速率为零,这时的光强称为光补偿点。
补偿点:指光合速率与呼吸速率相等时,也就是净光合速率为零时环境中的CO2浓度。
11.CO212.呼吸跃变:果实成熟过程中,呼吸速率突然增高,然后又迅速下降的现象。
13.抗氰呼吸:在氰化物存在下,某些植物呼吸不受抑制,所以也把这种呼吸称为抗氰呼吸。
14.呼吸商:植物组织在一定时间内,放出二氧化碳的量与吸收氧气的量的比值叫做呼吸商,又称呼吸系数。
15.压力流动学说:该学说的主要观点是有机物在筛管中随着液体的流动而移动,这种液流的移动是由输导系统两端渗透产生的压力梯度推动的。
16.植物激素:在植物体内合成的、能从合成部位运往作用部位、对植物生长发育产生显著调节作用的微量小分子有机物。
目前国际上公认的植物激素有五大类:生长素类、赤霉素类、细胞分裂素类、脱落酸、乙烯。
另外有人建议将油菜素甾体类、茉莉酸类也列为植物激素。
17.植物生长调节剂:一些具有类似于植物激素活性的人工合成的物质。
一、植物细胞细胞是生物体结构和功能的基本单位,可分为原核细胞( 如细菌、蓝藻) 和真核细胞( 其他单细胞和多细胞生物)两大类。
原核细胞简单,没有细胞核和高度分化的细胞器。
真核细胞结构复杂。
植物细胞的细胞壁、质体( 包括叶绿体)和液泡是其区别于动物细胞的三大结构特征,细胞是由多糖、脂类、蛋白质、核酸等生物大分子和其他小分子等成分所组成的。
原生质的物理特性、胶体性质和液晶性质与细胞的生命活动密切相关。
细胞壁由胞间层、初生壁、次生壁所构成,其化学成分主要是纤维素、半纤维素、果胶、蛋白质等物质。
细胞壁不仅是细胞的骨架与屏障,而且在物质运输、抗病抗逆、细胞识别等方面起积极作用。
胞间连丝充当了细胞间物质运输与信息传递的通道。
磷脂双分子层是组成生物膜的基本结构,其中镶嵌的各种膜蛋白决定了膜的大部分功能。
“流动镶嵌模型”是最流行的生物膜结构模型。
生物膜是细胞实现区域化的屏障,也是细胞同外界、细胞器间以及细胞器同细胞基质间进行物质交换的通道。
此外,生物膜还是生化反应的场所,并具有细胞识别、传递信息等功能。
细胞核是细胞遗传与代谢的调控中心。
染色体由核酸与蛋白构成,它是核内最重要的结构物质。
叶绿体和线粒体是植物细胞内能量转换的细胞器,并有环状DNA 及自身转录RNA 与翻译蛋白质的体系,被称为第二遗传信息系统。
它们与细胞核都具有双层被膜。
微管、微丝、中间纤维等构成了细胞骨架,是植物细胞的蛋白质纤维网架体系,它们在维持细胞形态、保持细胞内部结构的有序性、推动细胞器的运动和物质运输等方面起重要的作用。
内膜系统是在结构、功能或发生上有联系的一类亚细胞结构。
内质网内接核膜、外连质膜,甚至经胞间连丝与相邻细胞相连,参与细胞间物质运输、交换和信息传递。
高尔基体则与内质网密切配合,参与多种生物大分子的合成以及膜结构、壁物质与细胞器的组建。
溶酶体与液泡内都富含水解酶,参与细胞内物质的分解和细胞的自溶反应。
此外,液泡还具有物质贮藏、调控细胞水分平衡以及参与多种代谢的作用。
过氧化体是光呼吸的场所,而乙醛酸循环体则为脂肪酸代谢所不可少,圆球体为油脂积累和代谢所必需。
核糖体是蛋白质合成场所。
在看似无稳定结构的细胞质基质里,进行着一系列复杂而有序的生理生化反应。
细胞质基质、细胞器和生物膜系统协调配合,使细胞的结构和功能达到高度的统一。
植物细胞还能感应外界环境的刺激,并且形成或产生某种( 些)信号物质,这些信号物质传递到达作用部位,通过胞内信号转导系统最终引起一系列生理生化响应。
已确认的胞间信号有脱落酸、吲哚乙酸、细胞分裂素、多胺、乙酰胆碱、水杨酸、寡聚糖等化学信号和电波、水压等物理信号,胞内信号有钙信号系统、肌醇磷脂信号系统和环核苷酸信号系统等。
胞间与胞内信号的转化则通过质膜上的受体和G 蛋白。
而引起生理生化反应则需通过蛋白质的磷酸化作用与脱磷酸化作用。
蛋白质的可逆磷酸化作用在植物信号转导过程中,有非常重要的作用。
IP 3 .三磷酸肌醇;DG .二酰甘油;PKA .依赖cAMP 的蛋白激酶;PK Ca 2 +. 依赖Ca 2 +的蛋白激酶;PKC .依赖Ca 2 +与磷脂的蛋白激酶;PK Ca 2 +·CaM .依赖Ca 2 +·CaM 的蛋白激酶高等植物细胞具有核、叶绿体、线粒体三个基因组,后两组称为核外基因。
基因表达包括转录与翻译两个步骤。
转录是RNA的生物合成,翻译是蛋白质的生物合成,这两个过程受到严格的调节控制。
二、植物的水分生理水是生命的“先天”环境,没有水就没有植物。
水是植物体的主要组成成分。
水除了直接或间接地参与生理生化反应之外,还调节植物的生态环境。
植物体内的水分以自由水和束缚水两种形态存在,两者的比例与植物的代谢强度和抗逆性强弱有着密切关系。
每偏摩尔水的自由能就是水的化学势。
每偏摩尔体积水的化学势差就是水势。
植物细胞的水势由渗透势(溶质势)、压力势和衬质势组成,Ψw =Ψs +Ψp+Ψm 。
水势单位采用压力单位(MPa )。
水分从水势高处通过半透膜移向水势低处,就是渗透作用。
细胞吸水有渗透吸水、吸胀吸水以及代谢性吸水之分。
具有液泡的植物细胞以渗透吸水为主。
未形成液泡的嫩细胞和干燥种子的吸水主要靠吸胀吸水。
细胞与细胞之间的水分移动方向,决定于两处的水势差,水分总是从水势高处流向水势低处,直至两处水势差为零。
土壤中只有可利用水才能被植物根系吸收。
根系吸收水分最活跃的部位是根毛区。
根系吸水可分为主动吸水和被动吸水,通常被动吸水是主要的。
凡是影响根压形成和影响蒸腾速率的内外条件,都影响根的吸水。
蒸腾作用在植物生活中具有重要的作用。
气孔蒸腾是蒸腾作用的主要方式。
气孔开闭机理可以用无机离子吸收学说和苹果酸生成学说来解释。
气孔开闭的关键问题是保卫细胞中的溶质增加和水势的下降,当保卫细胞水势下降后它周围细胞吸水,气孔就张开,反之气孔则关闭。
影响气孔蒸腾的外界因素主要有光照、温度和湿度,而内部因素则以气孔开度为主。
水分在植物体内可经质外体和共质体途径运输。
运输的途径是:土壤→根毛→皮层→内皮层→中柱鞘→根的导管或管胞→茎的导管→叶柄导管→叶脉导管→叶肉细胞→叶细胞间隙→气孔下腔→气孔→大气。
水分在导管或管胞上升的动力是根压与蒸腾拉力,并以蒸腾拉力为主。
由于水分子之间的内聚力和水分子与导管壁之间的吸附力远大于水柱张力,因而导管中的水柱连续不中断,这是水分源源不断上升的保证。
灌溉的基本原则是用少量的水取得最大的效果。
要进一步发挥灌溉的作用,就需要掌握作物的需水规律。
作物需水量(蒸腾系数)因作物种类、生长发育时期不同而有差异。
合理灌溉则要以作物需水量和水分临界期为依据,参照生理指标制定灌溉方案,采用先进的灌溉方法及时地进行灌溉。
合理灌溉可取得良好的生理效应和生态效应,增产效果显著。
三、植物的矿质营养矿质元素和水分一样,主要存在于土壤中,由根系吸收进入植物体内,运输到需要的部位加以同化,以满足植物生命活动的需要。
植物对矿物质的吸收、转运和同化,通称为矿质营养。
植物体内的化学元素并非全部是植物生命活动所必需的,只有其中一部分为植物生命活动所不可缺少。
要确定植物体内各种元素是否为植物所必需,只根据灰分分析得到的数据是不够的。
通过溶液培养或砂基培养,并按照Arnon & Stout 于1939 年提出的植物必须元素的标准:(1 )如缺乏该元素,植物生育发生障碍,不能完成生活史;(2 )除去该元素,则表现出专一的病症,而且这种缺乏症是可以预防和恢复的;(3 )该元素在植物营养生理上应表现直接的效果,绝不是因土壤或培养基的物理、化学、微生物条件的改变而产生的间接效果。
目前已经明确碳、氢、氧、氮、磷、钾、钙、镁、硫、铁、锰、铜、锌、硼、钼、氯、镍17 种元素为大多数高等植物所必需的,其中碳、氢、氧、氮、磷、钾、钙、镁、硫9种元素植物需要量相对较大,称为大量元素;其余铁、锰、铜、锌、硼、钼、氯、镍8 种元素植物需要量极微,稍多即发生毒害,故称为微量元素。
必需的矿质元素在植物体内的生理作用有 3 个方面:⑴是细胞结构物质的组成成分,如N ,P ,S 等;⑵是植物生命活动的调节者,参与酶的活动,如Mn ,Mg ,Fe 等;⑶起电化学作用,即离子浓度的平衡、胶体的稳定和电荷中和等,如K + 。
可被植物吸收的氮素形态主要是铵态氮和硝态氮。
氮是构成蛋白质的主要成分,占蛋白质含量的16% ~18%。
此外,核酸、核苷酸、辅酶、磷脂、叶绿素等化合物中都含有氮,而某些植物激素、维生素和生物碱等也含有氮。
因此,氮在植物生命活动中占有首要的地位,故又称为生命元素。
磷是以正磷酸盐(H 2 P0 4 - )形式被植物吸收。
当磷进入植物体后,大部分成为有机物,有一部分仍保持无机物形式。
磷存在于磷脂、核酸和核蛋白中,磷是核苷酸衍生物( 如ATP 、FMN 、NAD + 、NADP + 和COA 等) 的组成成分,其在糖类代谢、蛋白质代谢和脂肪代谢中起着极其重要的作用。
K +既是植物的吸收形态又是在植物体内的存在形态,与氮、磷相反,钾不参与重要有机物的组成。
钾主要集中在植物生命活动最活跃的部位,如生长点、幼叶、形成层等。
钾对于参与活体内各种重要反应的酶起着活化剂的作用,是40 多种酶的辅助因子。
钾促进呼吸进程及核酸和蛋白质的形成。
钾对糖类的合成和运输有影响。
植物体内的钙有呈离子状态的,有呈盐形式的,还有与有机物结合的。
钙主要存在于叶子或老的器官和组织中。
它是一个比较不易移动的元素。
钙在生物膜中可作为磷脂的磷酸根和蛋白质的羧基间联系的桥梁,因而可以维持膜结构的稳定性。
钙是构成细胞壁的一种元素,细胞壁的胞间层是由果胶酸钙组成的。
胞质溶胶中的钙与可溶性的蛋白质形成钙调素( 简称CaM) 。
CaM 和Ca 2+ 结合,形成有活性的Ca-CaM 复合体,在代谢调节中起“第二信使”的作用。
镁主要存在于幼嫩器官和组织中,植物成熟时则集中于种子。
镁是叶绿素的组成成分之一。
在光合和呼吸过程中,镁可以活化各种磷酸变位酶和磷酸激酶。
同样,镁也可以活化DNA 和RNA 的合成过程。
SO 4 2-进入植物体后,一部分保持不变,大部分被还原成硫,进一步同化为含硫氨基酸,如胱氨酸、半胱氨酸和蛋氨酸等,而这些氨基酸几乎是所有蛋白质的构成分子。
硫也是CoA的成分之一,氨基酸、脂肪、糖类等的合成等都和CoA 有密切关系。
铁进入植物体内处于被固定状态,不易转移。
铁是许多重要氧化还原酶的组成成分。
铁在呼吸、光合等氧化还原过程中(Fe 3+ ≒Fe 2+ )都起着重要的作用。
铁影响叶绿体构造形成,和叶绿素的合成。
锰是糖酵解和三羧酸循环中某些酶的活化剂,所以锰能提高呼吸速率。
锰是硝酸还原酶的活化剂。
在光合作用方面,水的裂解需要锰参与。
铜是某些氧化酶的成分,影响氧化还原过程。
铜又存在于叶绿体的质体蓝素中,后者是光合作用电子传递体系的一员。
缺锌植物失去合成色氨酸的能力,而色氨酸是吲哚乙酸的前身,因此缺锌植物的吲哚乙酸含量低。
硼能与游离状态的糖结合,使糖带有极性,从而使糖容易通过质膜,促进运输。
硼对植物生殖过程有影响。
硼具有抑制有毒酚类化合物形成的作用。
钼是硝酸还原酶的金属成分,起着电子传递作用。
钼又是固氮酶中钼铁蛋白的成分,在固氮过程中起作用。
氯在光合作用水裂解过程中起着活化剂的作用,促进氧的释放。
根和叶的细胞分裂需要氯。
镍是近年来发现的植物生长所必需的微量元素。
镍是脲酶的金属成分,脲酶的作用是催化尿素水解成C0 2 和NH 4 + 。
镍也是固氮菌脱氢酶的组成成分。
每种元素缺乏时都会使植物出现特有的症状和出现部位,根据这些可以进行缺素的简单诊断,比较准确的方法是化学分析法。
植物细胞吸收离子的方式可分为被动吸收和主动吸收,其中被动吸收的机理被理解为简单扩散和离子通道运输,主动吸收是通过离子泵和离子载体实现的。