必修1课件2.2.2-3对数函数及其性质(三)
- 格式:ppt
- 大小:488.00 KB
- 文档页数:14
对数函数及其性质(三)教学目标(一)教学知识点1.了解反函数的概念,加深对函数思想的理解 2.反函数的求法. (二)能力训练要求1.使学生了解反函数的概念; 2.使学生会求一些简单函数的反函数. (三)德育渗透目标培养学生用辩证的观点,观察问题、分析问题、解决问题的能力.教学重点1.反函数的概念; 2.反函数的求法.教学难点反函数的概念.教学过程一、复习引入:1、我们知道,物体作匀速直线运动的位移s 是时间t 的函数,即s =vt ,其中速度v 是常量,定义域t ≥0,值域s ≥0;反过来,也可以由位移s 和速度v (常量)确定物体作匀速直线运动的时间,即vst =,这时,位移s 是自变量,时间t 是位移s 的函数,定义域s ≥0,值域t ≥0.问题1:函数s =vt 的定义域、值域分别是什么? 问题2:函数vst =中,谁是谁的函数? 问题3:函数s =vt 与函数vst =之间有什么关系? 2、又如,在函数y =2x +6中,x 是自变量,y 是x 的函数,定义域x ∈R ,值域y ∈R . 我们从函数y =2x +6中解出x ,就可以得到式子32-=yx . 这样,对于y 在R 中任何一个值,通过式子32-=yx ,x 在R 中都有唯一的值和它对应. 因此,它也确定了一个函数:y 为自变量,x 为y 的函数,定义域是y ∈R ,值域是x ∈R .3、再如:指数函数x a y =中,x 是自变量,y 是x 的函数,由指数式与对数式的互化有:y x a log = 对于y 在(0,+∞)中任何一个值,通过式子y x a log =,x 在R 中都有唯一的值和它对应. 因此,它也确定了一个函数:y x a log =,y 为自变量,x 为y 的函数,定义域是y ∈(0,+∞),值域是x ∈R . 二、讲解新课:1.反函数的定义一般地,设函数))((A x x f y ∈=的值域是C ,根据这个函数中x ,y 的关系,用y 把x 表示出,得到x =ϕ(y ). 若对于y 在C 中的任何一个值,通过x =ϕ(y ),x 在A 中都有唯一的值和它对应,那么,x =ϕ(y )就表示y 是自变量,x 是自变量y 的函数,这样的函数x =ϕ(y ) (y ∈C )叫做函数))((A x x f y ∈=的反函数,记作)(1y fx -=,习惯上改写成)(1x f y -=开始的两个例子:s =vt 记为vt t f =)(,则它的反函数就可以写为vtt f=-)(1,同样62+=x y 记为62)(+=x x f ,则它的反函数为:32)(1-=-xx f . 探讨1:所有函数都有反函数吗?为什么?反函数也是函数,因为它符合函数的定义,从反函数的定义可知,对于任意一个函数)(x f y =来说,不一定有反函数,如2x y =,只有“一一对应”确定的函数才有反函数,2x y =,),0[+∞∈x 有反函数是x y =探讨2探讨3:)(1x fy -=的反函数是什么?若函数)(x f y =有反函数)(1x fy -=,那么函数)(1x f y -=的反函数就是)(x f y =,这就是说,函数)(x f y =与)(1x f y -=互为反函数探讨4:探究互为反函数的函数的图像关系观察讨论函数、反函数的图像,归纳结论:(1)函数)(x f y =的图象和它的反函数)(1x fy -=的图象关于直线x y =对称.(2)互为反函数的两个函数具有相同的增减性. 三、讲解例题:例1.求下列函数的反函数:①)(13R x x y ∈-=; ②)(13R x x y ∈+=.解:①由13-=x y 解得31+=y x∴函数)(13R x x y ∈-=的反函数是)(31R x x y ∈+=, ②由)(13R x x y ∈+=解得x=31-y ,∴函数)(13R x x y ∈+=的反函数是)(13R x x y ∈-= 小结:求反函数的一般步骤分三步,一解、二换、三注明.例2. 函数log (1)a y x =-(01)a a >≠且的反函数的图象经过点(1,4),求a 的值. 【解析】根据反函数的概念,知函数log (1)a y x =-(01)a a >≠且的反函数的图象经过点(4,1),∴1log 3a =, ∴3a =.【小结】若函数()y f x =的图象经过点(,)a b ,则其反函数的图象经过点(,)b a . 例3.已知函数1)(+==x x f y ,求)3(1-f的值.解:方法一:∵0≥x ∴1≥y 由1+=x y 解得:2)1(-=y x∴)1()1()(21≥-=x x x f 为原函数的反函数, ∴)3(1-f =4.方法二:由反函数的定义得:13+=x , 解得:x =4, 即)3(1-f =4.练习1.求下列函数的反函数:(1)y =x4(x ∈R ), (2)y =x 25.0(x ∈R ), (3)y =x )31((x ∈R ),(4)y =x)2((x ∈R ), (5)y =lg x (x >0), (6)y =24log x (x >0)(7)y =a log (2x )(a >0,且a ≠1,x >0) (8)y=alog 2x(a >0,a ≠1,x >0) 解:(1)所求反函数为:y =4log x(x >0), (2)所求反函数为:y =25.0log x(x >0) (3)所求反函数为:y =x 31log (x >0), (4)所求反函数为:y =x 2log(x >0)(5)所求反函数为:y =x10 (x ∈R), (6)所求反函数为:y =24x=x2 (x ∈R) (7)所求反函数为:y =xa 21(a >0,且a ≠1,x ∈R ) (8)所求反函数为:y =2xa (a >0,且a ≠1,x ∈R )练习2.函数y =3x 的图象与函数3log y x =的图象关于(D )A.y 轴对称B. x 轴对称C. 原点对称D. y x =直线对称 (备选题)3.求函数2385-+=x x y 的值域.解:∵2385-+=x x y ∴5382-+=y y x ∴ y ≠35 ∴函数的值域为{y|y ≠35}(备选题)4.利用互为反函数的图像的性质求参数()n mx y +=既在函数若点2,1.,,,n m 求又在其反函数图象上上解:由已知得:⎩⎨⎧=+=+122n m n m ,即⎩⎨⎧=-=73n m , 故m 、n 的值分别是-3、7.(备选题)5.mx x x f +-=25)(已知的值求对称的图象关于直线m x y ,=.解:由已知可知,)(x f 的反函数是它的本身,即)()(1x f x f -=.由m x x x f +-=25)(得,125)(1---=-x mx x f 所以12525---=+-x mx m x x 恒成立. 比较对应系数得.1-=m五、课堂小结1.反函数的定义;求反函数的步骤. 2.互为反函数的函数图象间关系;3.互为反函数的两个函数具有相同的增减性. 六、课外作业:1. 阅读教材P.73;2. 《学案》P.88~ P.89.。
§2.2.2对数函数及其性质(第一、二课时)一.教学目标1.知识技能①对数函数的概念,熟悉对数函数的图象与性质规律. ②掌握对数函数的性质,能初步运用性质解决问题. 2.过程与方法让学生通过观察对数函数的图象,发现并归纳对数函数的性质. 3.情感、态度与价值观①培养学生数形结合的思想以及分析推理的能力; ②培养学生严谨的科学态度. 二.学法与教学用具1.学法:通过让学生观察、思考、交流、讨论、发现函数的性质; 2.教学手段:多媒体计算机辅助教学. 三.教学重点、难点1、重点:理解对数函数的定义,掌握对数函数的图象和性质.2、难点:底数a 对图象的影响及对数函数性质的作用. 四.教学过程 1.设置情境在2.2.1的例6中,考古学家利用logP 估算出土文物或古遗址的年代,对于每一个C 14含量P ,通过关系式,都有唯一确定的年代t 与之对应.同理,对于每一个对数式log xa y =中的x ,任取一个正的实数值,y 均有唯一的值与之对应,所以log xa y x =关于的函数.2.探索新知一般地,我们把函数log a y x =(a >0且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).提问:(1).在函数的定义中,为什么要限定a >0且a ≠1.(2).为什么对数函数log a y x =(a >0且a ≠1)的定义域是(0,+∞).组织学生充分讨论、交流,使学生更加理解对数函数的含义,从而加深对对数函数的理解.答:①根据对数与指数式的关系,知log a y x =可化为y a x =,由指数的概念,要使ya x =有意义,必须规定a >0且a ≠1.②因为log a y x =可化为y x a =,不管y 取什么值,由指数函数的性质,ya >0,所以(0,)x ∈+∞.例题1:求下列函数的定义域(1)2log a y x = (2)log (4)a y x =- (a >0且a ≠1) 分析:由对数函数的定义知:2x >0;4x ->0,解出不等式就可求出定义域. 解:(1)因为2x >0,即x ≠0,所以函数2log x a y =的定义域为{}|0x x ≠.(2)因为4x ->0,即x <4,所以函数(4)log x a y -=的定义域为{|x x <}4.下面我们来研究函数的图象,并通过图象来研究函数的性质:先完成P 81表2-3,并根据此表用描点法或用电脑画出函数2log xy =的图象, 再利用电脑软件画出0.5log .x y =的图象x注意到:122log log y x x ==-,若点2(,)log x y y x =在的图象上,则点12(,)log x y y x -=在的图象上. 由于(,x y -)与(,x y -)关于x 轴对称,因此,12log y x =的图象与2log y x =的图象关于x 轴对称 . 所以,由此我们可以画出12log y x =的图象 ..例题训练:1. 比较下列各组数中的两个值大小(1)22log 3.4,log 8.5(2)0.30.3log 1.8,log 2.7(3)log 5.1,log 5.9a a (a >0,且a ≠1)分析:由数形结合的方法或利用函数的单调性来完成:(1)解法1:用图形计算器或多媒体画出对数函数2log y x =的图象.在图象上,横坐标为3、4的点在横坐标为8.5的点的下方:所以,22log 3.4log 8.5<解法2:由函数2log y x R =在+上是单调增函数,且3.4<8.5,所以22log 3.4log 8.5<. 解法3:直接用计算器计算得:2log 3.4 1.8≈,2log 8.5 3.1≈(2)第(2)小题类似(3)注:底数是常数,但要分类讨论a 的范围,再由函数单调性判断大小. 解法1:当a >1时,log a y x =在(0,+∞)上是增函数,且5.1<5.9. 所以,log 5.1a <log 5.9a当a <1时,log a y x =在(0,+∞)上是减函数,且5.1<5.9. 所以,log 5.1a >log 5.9a解法2:转化为指数函数,再由指数函数的单调判断大小不一, 令 11log 5.1, 5.1,ba b a ==则 令22log 5.9, 5.9,b a b a ==则 则2 5.9b a =则当a >1时,x y a =在R 上是增函数,且5.1<5.9 所以,1b <2b ,即log 5.1a <log 5.9a当0<a <1时,xy a =在R 上是减函数,且5.1>5.9 所以,1b <2b ,即log 5.1a >log 5.9a 说明:先画图象,由数形结合方法解答 课堂练习:P85 练习 第2,3题 补充练习1.已知函数(2)xy f =的定义域为[-1,1],则函数2(log )y f x =的定义域为 2.求函数22log (1)y x x =+≥的值域.3.已知log 7m <log 7n <0,按大小顺序排列m, n, 0, 1 4.已知0<a <1, b >1, ab >1. 比较1log ,log ,log a a b b b 1的大小b归纳小结:② 对数函数的概念必要性与重要性; ②对数函数的性质,列表展现.。