数学物理方法答案(7) 刘连寿
- 格式:pdf
- 大小:259.02 KB
- 文档页数:20
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =Q ,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=Q 。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =Q ,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=Q 。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()0000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z z z z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 33222222(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。
第六章 习题答案6.1-1 求解下列本征值问题的本征值和本征函数。
(1)0=+''X X λ ()00=X ()0='l X(2)0=+''X X λ ()00='X ()0='l X (3)0=+''X X λ ()00='X ()0=l X (4)0=+''X X λ()0=a X()0=b X解:(1)0=λ时,()b ax x X +=,代入边界条件得 ()00==b X 和()0=='a l X 得到()0=x X ,不符合,所以0≠λ0>λ时,()x b x a x X λλsin cos +=,代入边界条件得()00==a X ,()()2224120sin ln l b l X nπλλ+=⇒==',2,1,0=n所以:()()x ln x X 212sin π+=,2,1,0=n(2)0=λ时,()b ax x X +=,代入边界条件得 ()00=='a X 和()0=='a l X ,所以()b x X =存在。
0>λ时,()x b x a x X λλsin cos +=,代入边界条件得()000=⇒=='b b X λ,() ,2,10sin 222==⇒=-='n ln l a l X n πλλλ综合:本征值:222l n n πλ=,2,1,0=n 本征函数:()x ln x X n πcos = ,2,1,0=n(3)0=λ时,()b ax x X +=,代入边界条件得 ()00=='a X 和()0==b l X ,()0=x X 不符合。
0>λ时,()x b x a x X λλsin cos +=,代入边界条件得()000=⇒=='b b X λ,()() ,2,1,04120cos 222=+=⇒==n ln l a l X nπλλ本征函数:()x ln x X n πcos = ,2,1,0=n(4)0=λ时,()d cx x X +=,代入边界条件得 ()0=+=d ca a X 和()0=+=d cb l X ,得到b a =,故0≠λ。
精选文档《数学物理方法》试卷答案一、选择题(每题 4 分,共 20 分)1.柯西问题指的是( B )A.微分方程和界限条件 . B.微分方程和初始条件 .C.微分方程和初始界限条件 . D.以上都不正确 .2.定解问题的适定性指定解问题的解拥有( D)A .存在性和独一性 . B.独一性和稳固性 .C. 存在性和稳固性 .D.存在性、独一性和稳固性 .2 u0,3.牛曼内问题u有解的必需条件是( C)nfA .f0 .B .u0 .C. f dS0 .D.udS0.4.用分别变量法求解偏微分方程中,特点值问题X ''(x)X ( x)0, 0 x l X (0)X (l )0的解是( B)2,cos n2A. ( nx ) .B. (n,sinnx ) .l l l l(2n2(2n 1)( 2n2(2n1)C1)x ) . D .1). (,cos(2l , sin x ) .2l2l2l 5.指出以下微分方程哪个是双曲型的(D)A .u xx 45u x2u y. uxyuyyB .u xx4u xy4u yy0 .C .2u xx 22u yy xyu x2u y.x xyu xy y y D .u xx3u xy2u yy0 .二、填空题 (每题 4 分,共 20 分)2u2u0, 0x , tt2x21.求定解问题的解是 ( 2 sin t cosx ).u x 02sin t, u x2sin t , t 0ut 00,u t t 02 cosx, 0x2.对于以下的二阶线性偏微分方程a(x, y)u xx2b(x, y)u xyc( x, y)u yy du x eu yfu 0其特点方程为 (a( x, y)(dy )22b( x, y)dxdyc( x, y)(dx) 2) .3.二阶常微分方程''( x)1 y '(x)( 1 3 ) ( ) 0的任一特解 y ( J 3 ( 1 x) y x 4 4 x 2 y x22或 0).4.二维拉普拉斯方程的基本解为( ln1),三维拉普拉斯方程的基本解为( 1).rr5.已知 J 1 (x)2sin x, J 1 ( x)2cos x ,利用 Bessel 函数递推公式求2x 2xJ 3 ( x) (2 ( 1sin x cos x) 2 x 23(1d )( sin x )) .2x xx dxx三、( 15 分)用分别变量法求解以下定解问题2u22ut 2 a x 20, 0 x l , t 0 u0,u0, t 0x xxx lut 0x,ut t 00, 0 x l.解:第一步:分别变量(4分)设 u(x,t ) X (x)T (t ) ,代入方程可得X ( x)T '' (t )2 X ''X '' ( x) T '' ( x) a(x)T (t )a 2 T( x)X (x)此式中,左端是对于 x 的函数,右端是对于 t 的函数。
数学物理方法习题解答一、复变函数部分习题解答第一章习题解答1、证明Re z 在z 平面上处处不可导。
证明:令Re z u iv =+。
Re z x =,,0u x v ∴==。
1ux∂=∂,0v y ∂=∂,u v x y ∂∂≠∂∂。
于是u 与v 在z 平面上处处不满足C -R 条件, 所以Re z 在z 平面上处处不可导。
2、试证()2f z z=仅在原点有导数。
证明:令()f z u iv =+。
()22222,0f z z x y u x y v ==+ ∴ =+=。
2,2u u x y x y ∂∂= =∂∂。
v vx y∂∂ ==0 ∂∂。
所以除原点以外,,u v 不满足C -R 条件。
而,,u u v vx y x y∂∂∂∂ , ∂∂∂∂在原点连续,且满足C -R 条件,所以()f z 在原点可微。
()000000x x y y u v v u f i i x x y y ====⎛⎫∂∂∂∂⎛⎫'=+=-= ⎪ ⎪∂∂∂∂⎝⎭⎝⎭。
或:()()()2*000lim lim lim 0z z x y z f z x i y z∆→∆→∆=∆=∆'==∆=∆-∆=∆。
22***0*00limlim lim()0z z z z z z zzz z z z z z zz z=∆→∆→∆→+∆+∆+∆∆==+−−→∆∆∆。
【当0,i z z re θ≠∆=,*2i z e z θ-∆=∆与趋向有关,则上式中**1z zz z∆∆==∆∆】 3、设333322()z 0()z=00x y i x y f z x y ⎧+++≠⎪=+⎨⎪⎩,证明()z f 在原点满足C -R 条件,但不可微。
证明:令()()(),,f z u x y iv x y =+,则()33222222,=00x y x y u x y x y x y ⎧-+≠⎪=+⎨+⎪⎩, 332222220(,)=00x y x y v x y x y x y ⎧++≠⎪=+⎨+⎪⎩。