差分方程
- 格式:ppt
- 大小:1.10 MB
- 文档页数:77
差分方程知识点总结一、差分方程的概念差分方程是指用差分运算符号(Δ)表示的方程。
差分运算符Δ表示的是某一变量在两个连续时间点的变化量。
差分方程通常用于描述离散时间下的变化规律,比如时间序列、离散动力系统等。
二、常见的差分方程1. 一阶线性差分方程一阶线性差分方程的一般形式为:y(t+1) - y(t) = a*y(t) + b,其中a和b为常数。
一阶线性差分方程常常用于描述某一变量在不同时间点之间的线性变化规律。
2. 二阶线性差分方程二阶线性差分方程的一般形式为:y(t+2) - 2*y(t+1) + y(t) = a*y(t) + b,其中a和b为常数。
二阶线性差分方程通常用于描述某一变量在不同时间点之间的二阶线性变化规律。
3. 线性非齐次差分方程线性非齐次差分方程的一般形式为:y(t+1) - a*y(t) = b,其中a和b为常数。
线性非齐次差分方程通常用于描述某一变量在不同时间点之间的线性变化规律,并且受到外部条件的影响。
4. 滞后差分方程滞后差分方程的一般形式为:y(t+1) = f(y(t)),其中f为某一函数。
滞后差分方程通常用于描述某一变量在不同时间点之间的非线性变化规律。
5. 差分方程组差分方程组是指由多个差分方程组成的方程组。
差分方程组通常用于描述多个变量之间的变化规律,比如混合动力系统、多变量时间序列等。
三、差分方程的解法1. 特征根法特征根法是解一阶或二阶线性差分方程的一种常用方法。
通过求解特征方程,可以求得差分方程的通解。
2. 递推法递推法是解一阶或二阶非齐次差分方程的一种常用方法。
通过递推关系,可以求得差分方程的特解。
3. Z变换法Z变换法是解一阶或二阶差分方程的一种常用方法。
通过对差分方程进行Z变换,可以将其转换为等价的代数方程,然后求解其解。
4. 数值解法对于复杂的差分方程,通常采用数值解法求解。
数值解法包括Euler法、Runge-Kutta法、递推法等,通过迭代计算逼近差分方程的解。
高考数学中的差分方程及相关概念在高中数学中,我们学习了许多数学知识,其中差分方程是一个比较重要的概念,在高考中也经常出现。
那么差分方程是什么?有什么用处呢?一、什么是差分方程差分方程,也叫离散微积分方程,是指用有限差分代替导数的微分方程,其本质是一种递推式。
差分方程的一般形式为y[n+1] = f(y[n], y[n-1], ... , y[n-k]),其中y[n]是第n个离散点的函数值,y[n-k]是第n-k个离散点的函数值。
差分方程是一种离散的动态系统,可以用来描述各种离散事件的演化。
它广泛应用于数学、物理、工程、经济等领域中各种动态系统的建模与分析。
二、差分方程的分类根据差分方程的阶数及系数对n的依赖关系,差分方程可以分为以下几类:1.一阶线性差分方程一阶线性差分方程的一般形式为y[n+1] = ay[n] + b,其中a和b 是常数。
这种差分方程的解可以用递推公式y[n] = ay[n-1] + b求得。
2.二阶线性差分方程二阶线性差分方程的一般形式为y[n+2] + ay[n+1] + by[n] = f[n],其中a、b是常数,f[n]是已知函数。
这种差分方程的解可以用特征根法或借助于已知解求得通解。
3.非线性差分方程非线性差分方程的一般形式为y[n+1] = f(y[n]),其中f(y[n])是非线性函数。
这种差分方程的解一般需要运用迭代法或数值解法求解。
三、差分方程的应用差分方程是一种用来描述具有离散状态的系统演化的工具,它在许多领域中都有着广泛的应用,例如:1.物理学差分方程在物理学中应用广泛,例如:在天体物理学中,用差分方程描述行星运动的轨迹、研究宇宙星系的演化等;在量子力学中,用差分方程描述粒子的运动状态等。
2.经济学差分方程在经济学中也有着广泛的应用,例如:在货币政策分析中,用差分方程描述货币供应量、利率与物价水平等的变化;在经济增长模型中,用差分方程描述经济增长的变化趋势等。
差分方程对连续型变量而言,我们常常导致到微分方程的问题. 对离散型变量将导致另一类的问题.一、差分的定义定义 设)(x y y =是一个函数, 自变量从x 变化到x +1, 这时函数的增量记为)()1(x y x y y x -+=∆, 我们趁这个量为)(x y 在点x 步长为1的一阶差分,简称为)(x y 的一阶差分. 为了方便我们也记)(),1(1x y y x y y x x =+=+,即x x x y y y -=∆+1.称x x x x x x x x y y y y y y y y +-=---=∆∆+++++121122)()()(为)(x y 二阶差分,简记为x y 2∆.同样记)(2x y ∆∆为x y 3∆,并称为三阶差分.一般记)(1x n x n y y -∆∆=∆,称为n 阶差分.且有i n x i ni i n x ny C y -+=-=∆∑)1(0. 性质: 当a,b,C 是常数, y x 和z x 是函数时,(1) Δ(C )=0;(2) Δ(Cy x )= C Δ(y x );(3) Δ(ay x + b z x )= a Δy x + b Δ z x ;(4) Δ(y x z x )= z x+1Δy x +y x Δ z x = y x+1Δz x +z x Δy x ;(5) 1111++++∆-∆=∆-∆=⎪⎪⎭⎫ ⎝⎛∆x x x x x x x x x x x x x xz z z y y z z z z y y z z y . 例 已知),0(≠=x x y x α求Δ(y x ).解 Δ(y x )= ααx x -+)1(.特别, 当n 为正整数时, Δ(y x )= i n n i i n x C-=∑1, 阶数降了一阶.推论 若m, ,n 为正整数时, m,> n P(x)为n 次多项式,则0)(=∆x P m .例 已知),10(≠<=a a y x x 求Δ(y x ).解 Δ(y x )= )1(1-=-+a a a a x x x .二、差分方程定义 设是含有未知函数差分的等式,称为差分方程。
第八讲 差分方程模型一、差分方程介绍规定t 只取非负整数。
记为变量在t 点的取值,则称t y y t t t y y y −=Δ+1为的一阶向前差分,简称差分,称Δ为的二阶差分。
类似地,可以定义的阶差分。
t y t t t t t y t t y y y y y y +−=Δ−Δ=ΔΔ=+++12122)(t y t y n t ny Δ由及的差分给出的方程称为的差分方程,其中含的最高阶差分的阶数称为该差分方程的阶。
差分方程也可以写成不显含差分的形式。
例如,二阶差分方程也可改写成t y t 、t y t y t y 02=+Δ+Δt t t y y y 012=+−++t t t y y y 。
满足一差分方程的序列称为差分方程的解。
类似于微分方程情况,若解中含有的独立常数的个数等于差分方程的阶数时,称此解为该差分方程的通解。
若解中不含任意常数,则称此解为满足某些初值条件的特解。
t y 称如下形式的差分方程)(110t b y a y a y a t n t n t n =+++−++L (1) 为阶常系数线性差分方程,其中是常数,n n a a a ,,,10L 00≠a 。
其对应的齐次方程为0110=+++−++t n t n t n y a y a y a L (2)容易证明,若序列与均为(2)的解,则也是方程(2)的解,其中为任意常数。
若是方程(2)的解,是方程(1)的解,则也是方程(1)的解。
)1(t y )2(t y )2(2)1(1t tt y c y c y +=21,c c )1(t y )2(t y )2()1(t t t y y y +=方程(1)可用如下的代数方法求其通解: (I )先求解对应的特征方程(3)00110=+++−a a a n nL λλ(II )根据特征根的不同情况,求齐次方程(2)的通解。
(i )若特征方程(3)有n 个互不相同的实根n λλ,,1L ,则齐次方程(2)的通解为t n n t c c λλ++L 11 (为任意常数)n c c ,,1L (ii )若λ是特征方程(3)的重根,通解中对应于k λ的项为t k k tc c λ)(11−++L ,),,1(k i c i L =为任意常数。
什么叫差分方程什么叫差分方程?给我举几个例子呗§1 基本理论1. 差分2. 任意数列{xn },定义差分算子Δ如下:Δxn=xn+1-xn对新数列再应用差分算子,有Δ2xn=Δ(Δkxn).性质性质1 Δk(xn+yn)=Δkxn+Δkyn性质2 Δk(cxn)=cΔkxn性质3 Δkxn=∑(-1)jCjkXn+k-j性质4 数列的通项为n的无限次可导函数,对任意k>=1,存在η,有Δkxn=f(k)(η) 差分方程定义8。
1 方程关于数列的k阶差分方程:xn-a1xn-1-a2xn-2-……aBxn-k=b(n=k,k+1,……)其中a1,a2,------ak 为常数,ak≠0. 若b=0,则该方程是齐次方程关于λ 的代数方程λk-a1λk-1-------ak-1λ-ak=0为对应的特征方程,根为特征值。
1.实验内容与练习2.1 插分例1 Xn={n3},求各阶差分数列:xn △xn △2xn △3xn △4xn1 7 12 6 08 19 18 6 027 37 24 6 064 61 30 6125 91 36216 127343可见,{n3},三阶差分数列为常数数列,四阶为0。
练习1 对{1},{n},{n2},{n4},{n5}, 分别求各阶差分数列。
练习2 {C0n-1}{C1n-1}{C2n-1},{C4n-1},分别求各阶差分数列.{Xn}的通项为n的三次函数,Xn=a3n3+a2n2+a1n+a0证明它为常数数列。
证明由Xn=a3n3+a2n2+a1n+a0可直接计算。
定理8。
1 若数列的通项是关于n 的k次多项式,则k 阶差分数列为非零数列,k+1阶差分数列为0。
练习3 证明定理8。
1 。
定理8。
2 若{Xn}的k 阶插分为非零常数列,则{Xn}是n的k次多项式,练习4 根据插分的性质证明定理8。
2例2。
求∑i3例3例4解设Sn=∑i3 表Sn △Sn △2Sn △3Sn △4Sn △5Sn1 8 19 18 6 09 27 37 24 6 036 64 61 30 6 0100 125 91 36 6 0225 216 127 42441 343 169784 5121296设Sn=a4n4+a3n3+a2n2+a1n+a0,s1=1,s2=9,s3=36,s4=100,s5=225,得a0=0, a1=0, a2=1/4, a3=1/2, a4=1/4.所以,Sn=(1/4)n4+(1/2)n3+(1/4)n2.练习{Xn}的通项Xn为n的k次多项式,证明∑xi为n的k+1次多项式;求∑i4.由练习2 {Crn-1}可得。
微积分Calculus差分方程的概念一差分的概念1定义()y f x =的增量1x x xy y y +∆=− 称为函数()y f x =在点x 的一阶差分,x y ∆记为。
当自变量从变到时,函数x 1x + (1)x a a =−()(1)n n nx x x ∆=+-分别求()x a ∆与()n x ∆由定义知:1()x x xa a a +∆=-例解2()0c ∆= (1)(为常数)c ()x x cy c y ∆=∆(为常数)c (2)由定义容易证明,差分具有以下性质:()x x x x ay bz a y b z ∆+=∆+∆(3)(为常数),a b 11()x x x x x x x x x y z y z z y y z z y ++∆=∆+∆=∆+∆(4)1()(0)x x x x xx x x x y z y y z z z z z +⋅∆−⋅∆∆=≠⋅(5)113[cos(1)cos ]cos (33)x x x x x x ++=+−+−13cos(1)3cos x x x x+=+−求的一阶差分3cos x y x =(3cos )xx y x ∆=∆13(cos )cos 3x xx x +=∆+⋅∆按照差分的定义,我们可以继续求二阶及其它各阶差分。
例解二阶差分:x x x x y y y y ∆−∆=∆∆=∆+12)()(112x x x x y y y y −−−=+++x x x y y y +−=++122xx x x y y y y 21223)(∆−∆=∆∆=∆+三阶差分:32(2)x x x y y y ++=−+xx x x y y y y −+−=+++1233321(2)x x x y y y ++−−+反之x x x y y y ∆+=+1x x x x y y y y 222∆+∆+=+xx x x x y y y y y 32333∆+∆+∆+=+22x =−2()x x y y ∆=∆∆(22)x =∆−2()(2)2x =∆−∆=32()x x y y ∆=∆∆0312+−+=x 已知231y x x =−+,求x y ∆2x y ∆3和2()3()(1)x y x x ∆=∆−∆+∆(2)0=∆=例解二差分方程的概念含有自变量、未知函数及未知函数差分的方程称为差分方程。