含30度角直角三角形的性质用
- 格式:ppt
- 大小:1.41 MB
- 文档页数:24
课题 14.3.2.2等边三角形(第2课时)刘莹教学任务分析教学过程设计BD=2、如图1,∠ABC=30°,AC ⊥BC ,AB=4cm , (1) 求AC 的长,(2) 如图2,若D 是AB 中点,连结DC ,求DC 的长 (3) 如图3,若D 是AB 中点,DE ⊥BC ,求DE 的长A B C如图1 A B E CD 如图2 4、如图是屋架设计图的一部分, 点D 是斜梁AB A的中点,立柱BC 、DE 垂直于横梁AC , AB=7.4 m ,∠A=30°,立柱BC 、DE 要多长?追问:(1)若D 变成AB 上使CD ⊥AB 于D 的点,其它条件不变,如图a ,你能分解出30°角的直角三角形吗?求出那些线段的长?(2)如图a ,BD 与AB 有何数量关系,此结论与AB 的长度有关吗?(课后讨论)课堂练习:1、填空:∵Rt △ACB 中,∠C=90°,∠A=30° ∴BC= ( ) C .(1)、(3)D .(2)、(4)C AD B学生仔细读题,分析其中的数量关系 教师提示:要准确选择直角三角形请个别学生板演详细过程,强调解题格式要规范A B E C D 如图3分析:观察图形可以发现在Rt △AED 与Rt △ACB 中,由于∠A=30°,所以DE=1/2AD ,BC=1/2AB ,又由D 是AB 的中点,所以DE=1/4AB .解:∵DE ⊥AC ,BC ⊥AC ,∠A=30°,∴ BC=1/2AB ,DE=1/2AD , ∴BC=1/2×7.4=3.7(m). 又∵AD=1/2AB ,∴DE=1/2AD=1/2×3.7=1.85(m). 答:立柱BC 的长是3.7 m ,DE 的长是1.85 m .B AE C D 图a 学生思考、讨论、整理(1)5个Rt △ADE ,Rt △DCE ,Rt 形是正确解题的关键课堂练习反馈调控综合应用,巩固提高课本例题涉及的线段、角较多,学生不易找到解题的突破口,因此设计该分层推进的补充题,为解答以下例题做好铺垫帮助学生进一步认识直角三角形的性质因为它由角的特殊性,揭示了直角三角形中的直角边与斜边的关系,鼓励学生积极参与数学活动,激发学生。
含30°角的直角三角形的性质-人教版八年级数学上册教案教学目标•掌握含30°角的直角三角形的性质•能够应用所学知识解决相关问题•提高学生对几何中角度的理解教学重点•直角三角形的性质•含30°角的直角三角形的性质教学难点•让学生理解并应用30°角的性质教学过程一、引入现在我们要学习的是含30°角的直角三角形的性质,我们先来看下面这个直角三角形:A/\\/ \\C /____\\ B这个三角形中,角A是90°角,角B和角C是锐角或钝角。
现在我们来看一下,如果角B是30度,会发生什么变化呢?A/\\/ \\30° /____\\ BC 60°二、讲解我们可以发现,在这个三角形中,角C变成了60度,角B变成了30度,而角A还是90度。
接下来,我们来探究一下这个三角形的一些性质。
首先是角A,我们知道在任何一个直角三角形中,角A都是90度。
所以在这个三角形中,角A也是90度。
接着是角B和角C,我们知道在一个三角形中,三个角的和为180度。
所以在这个三角形中,角B和角C的和为150度。
而当角B是30度时,我们可以得出角C是60度。
我们再次观察这个三角形,我们可以发现这个三角形也是一个等腰三角形。
因为AC和BC的长度相等,即∠CAB = ∠CBA.另外,这个三角形也是一个等边三角形。
因为AC=BC,而AC和BC垂直(由于∠A=90°),所以ACB=60°,那么∠CAB = ∠ACB = ∠BCA = 30°,即三个角都是30度。
由于这个三角形满足等边、等腰、直角三种特殊情况的性质,所以它被称为“三六九十”三角形(三个角分别是30度、60度、90度,边长比分别是1:√3:2)。
三、练习1.在三角形ABC中,∠A = 90°,AB = AC,∠ABC = 30°,求∠BCA和∠CAB。
答案:∠CAB = ∠BCA = 60°2.在三角形ABC中,∠A = 90°,AB = AC,∠CAB = 30°,求∠ABC。
含30度角的直角三角形性质教学设计教学内容:含30°角的直角三角形的性质(人教版八年级数学上P80-81)知识目标:1.理解掌握有一个角为30°的直角三角形的性质。
2.有一个角为30°的直角三角形的性质的简单应用.能力目标:1.经历“探索——发现——猜想——证明”的过程,培养学生观察、分析、归纳问题的能力。
2.通过运用性质解决有关的问题,提高运用知识和技能解决问题的能力,发展应用意识。
情感目标:引导学生对图形的观察、发现,激发学生的好奇心和求知欲.重点:含30°角的直角三角形的性质的发现与应用.难点:含30°角的直角三角形性质的探索与证明.复习提问:等边三角形的性质与判定。
新课:(一)活动问题1.1、我们刚才回答了等边三角形是轴对称图形,沿着对称轴折叠,得到一个什么三角形?今天,我们来研究这个含30度角的的直角三角形,看它的边具有什么性质.板书课题:含30°角的直角三角形的性质2、观察你的30°角的直角三角尺,角有什么性质?边有什么数量关系?30°角所对的直角边是斜边的一半.(或者说:30°角所对的直角边是斜边的2倍)3.、用直尺把斜边和30°角所对的直角边量一量,你有什么发现?30°角所对的直角边是斜边的一半.(或者说:30°角所对的直角边是斜边的2倍)4、对于任意大小的含30°角的直角三角形,是不是也具备这个性质?大家画一画,量一量,说一说。
(二)活动问题21、刚才我们通过猜想,测量,得到了性质,那怎样推理证明呢?请同桌把两个含30°角的直角三角形拼一拼,组成平面图形,有几种拼法?学生动手拼图,互相交流,找一学生演示。
学生观察摆出的两个三角形.讨论并回答,同学们从不同的角度说明,拼成的是等边三角形.2、探究:在这些图形中,重点说拼成的等边三角形。
若学生不能单独回答可以先与同伴交流结论成立的理由。
《等边三角形的判定及含30°角的直角三角形的性质,反证法》复习课时教案【课题】《等边三角形的判定及含30°角的直角三角形的性质,反证法》复习【课型】复习【教学目标】知识:1、复习并掌握等边三角形的判定方法,能够运用等边三角形的性质和判定解决问题;2.理解并掌握含30°角直角三角形的性质,能灵活运用其解决有关问题.3、反证法复习能力:学生经历“探索-发现-猜想-证明”的过程,能够用综合法证明。
情感:在探究性学习活动中养成刻苦钻研的习惯,具有勇于探索创新的精神。
【教学重难点】重点:复习并掌握等边三角形的判定方法,掌握含30°角直角三角形的性质。
难点:够运用等边三角形的性质和判定解决问题,能灵活运用含30°角直角三角形的性质解决有关问题【教学方法】自主探究法【教具与教学准备】导学案、PPT、多媒体【学情分析】通过观察、操作、想象、推理、交流等活动能够解决本节课的内容。
【教学过程】一、激趣导入,交代目标:(一)激趣导入设计意图(以旧引新,从学生熟知的知识入手,起点低,让全体同学都参与,也为类比探索新知做好准备。
)知识回顾(1分钟)1、等边三角形的性质和判定2、含30°角直角三角形的性质3.反证法(二)交代目标多媒体出示,让一名学生读出来,共同学习,从而明确本节课的学习目标设计意图:明确本节课的学习目标,使学生的学习有针对性。
二、自主探究,合作学习:(一)依据导纲,自主学习探究一:探究点一:等边三角形的判定(先自主探究,然后组内交流讨论,各个小组展示)【类型一】三边都相等的三角形是等边三角形已知a,b,c是△ABC的三边,且满足关系式a2+c2=2ab+2bc-2b2,试说明△ABC 是等边三角形.方法总结:(1)几个非负数的和为零,那么每一个非负数都等于零;(2)有两边相等的三角形是等腰三角形,三边都相等的三角形是等边三角形,等边三角形是特殊的等腰三角形.【类型二】三个角都是60°的三角形是等边三角形如图,在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.试判定△ODE的形状,并说明你的理由.方法总结:证明一个三角形是等边三角形时,如果较易求出角的度数,那么就可以分别求出这个三角形的三个角都等于60°,从而判定这个三角形是等边三角形.【类型三】有一个角是60°的等腰三角形是等边三角形如图,在△EBD中,EB=ED,点C在BD上,CE=CD,BE⊥CE,A是CE延长线上一点,AB=BC.试判断△ABC的形状,并证明你的结论.方法总结:(1)已知一个三角形中两边相等,要证明这个三角形是等边三角形,有两种思考方法:①证明另一边也与这两边相等;②证明这个三角形中有一个角等于60°.(2)已知一个三角形中有一个角等于60°,要证明这个三角形是等边三角形,有两种思考方法:①证明另外两个角也等于60°;②证明这个三角形中有两边相等.探究二:含30°角的直角三角形的性质(先自主探究,然后组内交流讨论,各个小组展示)【类型一】利用含30°角的直角三角形的性质求线段长如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB上的高,AD=3cm,则AB的长度是()A.3cm B.6cm C.9cm D.12cm方法总结:运用含30°角的直角三角形的性质求线段长时,要分清线段所在的直角三角形.【类型二】与角平分线有关的综合运用如图,∠AOB=30°,OP平分∠AOB,PC∥OA交OB于C,PD⊥OA于D,若PC=3,则PD等于()A.3 B.2C.1.5 D.1方法总结:含30°角的直角三角形与角平分线的综合运用时,关键是寻找或作辅助线构造含30°角的直角三角形.【类型三】利用含30°角的直角三角形解决实际问题某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知AC=50m,AB=40m,∠BAC=150°,这种草皮每平方米的售价是a元,求购买这种草皮至少需要多少元?方法总结:解此题的关键在于作出CA边上的高,根据相关的性质求BD的长,正确的计算出△ABC的面积.(二)分组研讨,组内合作设计意图(让学生学会梳理知识,善于找出疑问,以便进一步提高,同时培养学生的语言表达能力。
含30°角的直角三角形的性质【教学目标】1.知识与技能:使学生理解含30°角的直角三角形的性质。
2.过程与方法:(1)通过探究含30°角的直角三角形的性质,使学生进一步认识到数学来源于生活实践。
(2)体验用操作、归纳得出数学结论的过程。
(3)会用这一性质解决相关数学问题。
3.情感、态度与价值观:(1)通过拼等边三角形这一探究活动,培养学生的合作交流、乐于探究、大胆猜想等良好品质。
(2)使学生经历观察、探究、归纳、推理和证明的全过程,培养学生科学、严谨、求真的学习态度。
【教学重点:】理解含30°角的直角三角形的性质及应用。
【教学难点:】含30°角的直角三角形性质的探究。
【教学过程】活动一:旧知准备问题:已知△,∠60°,()。
请你在括号内补充一个条件,使△能成为等边三角形。
学生活动:学生补充条件并说明。
教师活动:教师找学生补充条件,根据学生的叙述板书。
设计意图:此题的设计意图是通过问题形式回顾旧知,促使学生经常温故知新,同时为新课应用判定做铺垫。
传统的回顾旧知,一般是直接找学生背诵等边三角形的判定,容易产生误导:学习就是背诵定理、性质。
最终会造成学生会背性质、定理,却不能应用解决实际问题。
著名数学家哈墨斯曾经说过:“问题是数学的心脏!”这里通过一个半开放性的问题,可以使不同的学生想到不同的条件,如:∠60°(或∠60°)、、、等多种答案,对等边三角形的判定有一个深入的理解,而非机械记忆定理、性质所能解决的。
同时不同层次的学生也会在不同层面上体验到成功。
充分培养学生的创新精神和发散思维,使学生遇到问题学会思考,避免对性质、定理的学习停留在简单的对字面意思的理解上,有效克服学生的简单机械记忆。
活动二:探究直角三角形的性质1.拼一拼:你能用两个含有30°角的三角板摆放在一起构成一个等边三角形吗?你能借助这个图形,找到30°角所对的直角边与斜边之间的数量关系吗?组内交流自己的想法。
人教版数学八年级上册《含30°角的直角三角形的性质》教案一. 教材分析人教版数学八年级上册《含30°角的直角三角形的性质》这一节,主要让学生掌握含30°角的直角三角形的性质。
在学习了锐角三角函数、直角三角形的性质等知识的基础上,通过探索含30°角的直角三角形的性质,培养学生的观察、思考、归纳能力。
二. 学情分析学生在之前的学习中,已经掌握了锐角三角函数、直角三角形的性质等知识,具备了一定的观察、思考、归纳能力。
但对于含30°角的直角三角形的性质,可能还较为陌生,需要通过实例来引导学生探索、总结。
三. 教学目标1.理解含30°角的直角三角形的性质。
2.能够运用含30°角的直角三角形的性质解决实际问题。
3.培养学生的观察、思考、归纳能力。
四. 教学重难点1.含30°角的直角三角形的性质的掌握。
2.运用含30°角的直角三角形的性质解决实际问题。
五. 教学方法采用问题驱动法、实例教学法、小组合作法等,引导学生观察、思考、探索,培养学生的观察、思考、归纳能力。
六. 教学准备1.PPT课件七. 教学过程1.导入(5分钟)利用PPT课件,展示含30°角的直角三角形的图片,引导学生观察,激发学生的学习兴趣。
2.呈现(10分钟)教师通过三角板演示含30°角的直角三角形,让学生直观地感受其性质。
同时,引导学生思考、归纳,总结出含30°角的直角三角形的性质。
3.操练(10分钟)学生分组合作,利用三角板和练习题,进行实践活动,巩固含30°角的直角三角形的性质。
4.巩固(10分钟)教师通过PPT课件,呈现一些有关含30°角的直角三角形的性质的题目,让学生独立完成,检查学生对知识点的掌握情况。
5.拓展(10分钟)教师引导学生运用含30°角的直角三角形的性质,解决实际问题,如测量高度、距离等。
含30度角的直角三角形三边关系比例一、直角三角形的性质直角三角形是指其中有一个角为90度的三角形。
在直角三角形中,三条边之间有着特定的关系比例,其中包括含30度角的直角三角形。
下面我们将重点讨论含30度角的直角三角形中三边的关系比例。
二、含30度角的直角三角形的特点1. 角度关系含30度角的直角三角形中,另外一个角度是60度,而最后一个角度即为90度。
2. 边长关系设直角三角形的三条边分别为a、b、c,其中a为斜边,b、c为两个直角边。
根据三角函数中正弦、余弦和正切的定义,我们可以得出以下关系:sin30°=b/c,即b=1/2c;cos30°=a/c,即a=√3/2c;tan30°=b/a,即b=a/√3=√3/3。
三、含30度角的直角三角形的应用含30度角的直角三角形在实际生活中有着广泛的应用,在工程学、建筑学等领域都有着重要的地位。
下面我们就会列举一些含30度角的直角三角形的应用例子。
1. 光学仪器在光学仪器中,含30度角的直角三角形被广泛用于折射、反射等光学现象的研究中。
比如反射三棱镜中的反射角度就是30度,而折射角度也与此有关。
2. 地形测量在地形测量中,含30度角的直角三角形经常用于测量斜坡的倾角、高度差等地形信息,为地理学家、土木工程师等提供重要的数据支持。
3. 建筑设计在建筑设计中,含30度角的直角三角形被用于设计坡顶、楼梯的护栏、天窗等部分,为建筑师提供了良好的设计基础。
四、结语含30度角的直角三角形是一种重要的几何图形,其三边关系比例对于许多实际问题的解决具有重要意义。
通过深入了解和研究含30度角的直角三角形,我们可以更好地应用数学知识于实际生活中,为人类社会的发展和进步做出贡献。
希望本文能够给读者带来有益的启发,激发大家对数学的兴趣。
五、含30度角的直角三角形的计算在含30度角的直角三角形中,我们可以利用三角函数来计算三边的关系比例。
如果已知斜边或直角边的长度,我们可以通过代入三角函数公式来计算其他边的长度。
3. 直角三角形的性质和判定(3)课题含30°角的直角三角形的性质学习目标1.通过拼图,探索、发现、归纳、证明含30°角的直角三角形的性质。
2.能说出有一个角为30°的直角三角形的性质并会简单应用。
课标要求能说出有一个角为30°的直角三角形的性质并会简单应用。
知识点必会含30°角的直角三角形的性质定理级简单应用探讨探索──发现──猜想──证明直角三角形中有一个角为30°的性质.学习活动学习导航一、复习1.等边三角形的性质2.等边三角形的判断①②二、自学指导:一、学生看P4---P5并思考一下问题:A. 我们学习过直角三角形,直角三角形的角之间都有什么数量关系?B. 用两个全等的含30°角的直角三角尺,你能拼出一个怎知识回顾,为新课做准备。
样的三角形?•能拼出一个等边三角形吗?说说你的理由.C. 直角三角形与等边三角形的关系?D. 用你的30°角的直角三角尺,把斜边和30°角所对的直角边量一量,你有什么发现?结论:三、课内探究:(一). 对的直角边等于斜边的一半.其条件和结论分别是什么?如何用数学符号来表达?如何证明?条件:结论:用数学符号表示:画图证明:学生自学,师巡视指导学生小组讨论后汇报仔细考虑,认真完成。
你还能用什么方法来证明?写出你的证明过程。
(二)例:.右图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m, ∠A=30 °,立柱BC、DE要多长?(三)总结归纳得到性质:在直角三角形中,如果一个锐角等于30 °,那么它所对的直角边等于斜边的一半.四、课内检测:1.在△ABC中,∠ACB=90°,∠A=30°,CD⊥AB,AB=4,则BC= ,BD= 。
2.线段AB=4cm,M是AB垂直平分线上的一点,MA=4cm,则∠MAB=3.三角形三个内角的度数比是1﹕2﹕3,它的最大边长为4㎝,那么它的最小边长为___.五、逆命题成立吗?在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。
13.3.4含30°角的直角三角形的性质夯实基础篇一、单选题:1.如图,在△AB C中,∠B=30°,ED垂直平分BC,ED=3.则CE长为()A.6B.9C.3D.8【答案】A【知识点】线段垂直平分线的性质;含30°角的直角三角形【解析】【解答】∵ED垂直平分BC,∴BE=CE,∠EDB=90°,∵∠B=30°,ED=3,∴BE=2DE=6,∴CE=6.故选A.【分析】由ED垂直平分BC,即可得BE=CE,∠EDB=90°,又由直角三角形中30°角所对的直角边是其斜边的一半,即可求得BE的长,则问题得解.2.如右图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,∠A=30°,DE的长为()A.7.4m B.3.7m C.1.85m D.2.85m 【答案】C【知识点】含30°角的直角三角形【解析】【解答】在直角三角形ADE中,∵∠A=30°,AB=7.4,D为AB的中点∴DE=12AD=1122AB=1.85.故答案为:C 。
【分析】根据题意,由直角三角形中30°角所对的直角边的性质即可得到答案。
3.在ABC 中,AB BC ,120ABC ,过点B 作BD BC ,交AC 于点D ,若1AD ,则CD 的长度为()A .2B .3C .4D .5【答案】A【知识点】等腰三角形的性质;含30°角的直角三角形【解析】【解答】解:在ABC 中,AB BC ,120ABC ,∴∠A =∠C =(180º-120º)÷2=30º,∵BD BC ,∴∠DBC =90º,∴∠ABD =∠ABC -∠DBC =120º-90º=30º,∴BD =AD =1,∵∠DBC =90º,∠C =30º,∴CD =2BD =2,故答案为:择:A .【分析】由AB BC ,120ABC ,得出∠A =∠C =30º,由BD BC 得出∠DBC =90º利用角的差∠ABD =∠ABC -∠DBC =30º=∠A ,得到等腰三角形,BD =AD =1,利用30º所对直角边等于斜边的一半CD =2BD 即可.4.如图,ABC 中,90C ,60BAC ,AD 平分BAC ,若15BC ,则点D 到线段AB 的距离等于()A .6B .5C .8D .10【答案】B 【知识点】点到直线的距离;角平分线的性质;含30°角的直角三角形【解析】【解答】解:过点D 作DE ⊥AB 于E ,∵AD 平分BAC ,∠C =90°,60BAC∴DC =DE ,∠ABC =90°-∠BAC =30°在Rt △BDE 中,BD =2DE∵BD +DC =BC =15∴2DE +DE =15解得:DE =5,即点D 到线段AB 的距离等于5.故答案为:B.【分析】过点D 作DE ⊥AB 于E ,根据角平分线的性质可得DC =DE ,由余角的性质可得∠ABC =30°,则BD =2DE ,结合BD +DC =BC =15可得DE 的值,据此解答.5.如图,在Rt ABC 中,CM 平分ACB 交AB 于点M ,过点M 作//MN BC 交AC 于点N ,且MN 平分AMC ,若1AN ,则BC 的长为()A .4B .6C .D .8【答案】B 【知识点】平行线的性质;含30°角的直角三角形【解析】【解答】解:∵在Rt △AB C 中,CM 平分∠ACB 交AB 于点M ,过点M 作MN ∥BC 交AC 于点N ,且MN 平分∠AMC ,∴∠AMN =∠NMC =∠B ,∠NCM =∠BCM =∠NMC ,∴∠ACB =2∠B ,NM =NC ,∴∠B =30°,∵AN =1,∴MN =2,∴AC =AN +NC =3,∴BC =6,故答案为:B .【分析】根据题意,可以求得∠B 的度数,然后根据解直角三角形的知识可以求得NC 的长,从而可以求得BC 的长.6.如图所示,△ABC 是边长为20的等边三角形,点D 是BC 边上任意一点,DE ⊥AB 于点E ,DF ⊥AC 于点F ,则BE +CF =()A.5B.10C.15D.20【答案】B【知识点】等边三角形的性质;含30°角的直角三角形【解析】【解答】因为△ABC是边长为20的等边三角形,所以BC=20,∠B=∠C=60,又因为DE⊥AB于点E,DF⊥AC于点F,所以,∠BDE=30,∠CDF=30,所以,BE=12BD,CF=12DC,所以,BE+CF=12BD+12DC=12BC=10.故答案为:B【分析】根据等边三角形的性质得到边长,再根据在直角三角形中,30度角所对的边是斜边的一半,求出BE、CF的值.二、填空题:7.如图∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=6,则PD等于.【答案】3【知识点】等腰三角形的判定与性质;含30°角的直角三角形【解析】【解答】如图,过点P作PE⊥OB于E,∵PC∥OA,∴∠AOP=∠CPO,∴∠PCE=∠BOP+∠CPO=∠BOP+∠AOP=∠AOB=30°,又∵PC=6,∴PE等于PC的一半为3,∵∠AOP=∠BOP,PD⊥OA,∴PD=PE=3.【分析】过点P作PE⊥OB于E,根据两直线平行,内错角相等可得∠AOP=∠CPO,利用三角形的一个外角等于与它不相邻的两个内角的和得∠PCE=∠AOB=30°,再根据直角三角形30°角所对的直角边等于斜边的一半.8.如图,在Rt△AB C中,∠BCA=90°,CD是斜边AB上的高,若∠A=30°,BD=1cm,则AD=cm.【答案】3【知识点】含30°角的直角三角形【解析】【解答】解:∵在Rt△AB C中,CD是斜边AB上的高,∠A=30°,∴∠A=∠BCD=30°,∴BC=2BD,AB=2BC,∴AB=4BD,∴AD=AB﹣BD=3BD=3cm.故答案为3.【分析】要求AD的长度,需要先求得斜边AB的长度;根据“30度角所对的直角边等于斜边的一半”易求BC=2BD=2cm,AB=2BC=4cm.9.如图,在Rt△AB C中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是.【答案】2【知识点】线段垂直平分线的性质;等腰三角形的性质;含30°角的直角三角形【解析】【解答】解:∵∠ACB=90°,FD⊥AB,∴∠ECF=∠EDB=90°,∵∠AED=∠CEF,∴∠A=∠F=30°,∵AB的垂直平分线DE交AC于E,∴BE=AE,∴∠EBA=∠A=30°,∴BE=2DE=2.故答案为:2.【分析】根据等角的余角相等,得出∠A=∠F=30°,根据线段垂直平分线的性质得出BE=AE,根据等腰三角形的性质得出∠EBA=∠A=30°,根据“30度角所对的直角边是斜边的一半”,即可得出BE=2DE=2.10.如图,在Rt△AC B中,∠C=90°,BE平分∠ABC,ED垂直平分AB于D,若AC =9,则AE的值是.【答案】6【知识点】线段垂直平分线的性质;等腰三角形的性质;含30°角的直角三角形【解析】【解答】解:∵BE平分∠ABC,∴∠CBE=∠ABE,∵ED垂直平分AB于D,∴EA=EB,∴∠A=∠ABE,∴∠CBE=30°,∴BE=2EC,即AE=2EC,而AE+EC=AC=9,∴AE=6.故答案为:6【分析】在△AC B中,可求得∠CBE=∠ABE=∠A=30°,再在Rt△BCE中,∠CBE=30°可得BE=2EC,最后根据AC=9求得AE。
第2课时含30°角的直角三角形的性质<一>教学目标1.知识与技能目标:探索并理解含30°角的直角三角形的性质。
会应用含30°角的直角三角形的性质进行有关的证明和计算。
2.过程与方法目标:通过让学生探究,体会数学来源于生活。
3.情感态度与价值观目标:通过探究活动,培养学生的合作探究能力。
<二>教学重、难点1.重点:理解并掌握含30°角的直角三角形的性质定理。
2.难点:能灵活运用含30°角的直角三角形的性质定理解决有关问题。
<三>教学过程一、情境导入不知大家发现没有,我们学习用的工具——三角板都比较特殊。
都是一个含30°角的直角三角板或者是含45°的直角三角板。
能常用它们作图都肯定是有其特别的地方。
有什么特别的地方呢?今天我们就来研究含30°角的直角三角形的性质。
二、合作探究探究点:含30°角的直角三角形的性质1.请同桌之间相互合作,用两个全等的含30°的直角三角尺来拼一拼,看能拼出怎样的三角形?能拼出等边三角形吗?请说一说理由。
图一图二2.思考:借助图一这个拼图,请找一找含30°角的Rt△ABC的直角边BC与斜边AB之间的数量关系吗?3.提出猜想:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.4.请说一说猜想的条件与结论分别是什么?并结合图形请用符号语言表述出来。
5.验证猜想:证明:在△ABC 中,∵∠C =90°,∠A =30°, ∴∠B =60°.AB C DAB DC已知:如图,在Rt△ABC 中,∠C =90°,∠A =30°.求证:BC =21AB.延长BC 到D ,使BD =AB ,连接AD ,则△ABD 是等边三角形.又∵AC ⊥BD, ∴BC =21BD .∴ BC =21AB . 6.得出结论:含30°角的直角三角形的性质文字语言:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.符号语言:∵ 在Rt △ABC 中,∠C =90°,∠A =30°, ∴ BC =21AB . 三、思维发散1. 同学们还有其他方法证明吗?提示:要找两条线段之间的关系,如果能将短的一条线段转化到同一条线段上,就可以较好的研究。
含30°角的直角三角形的性质教学目标:知识与能力:理解掌握有一个角为30°的直角三角形的性质,有一个角为30°的直角三角形的性质的简单应用。
过程与方法:经历“探索——发现——猜想——证明”的过程,引导学生体会合情推理与演绎推理的相互依赖和相互补充,培养学生用规范的数学语言进行表述的习惯和能力。
情感态度与价值观:引导学生对图形的观察、发现,激发学生的好奇心和求知欲.在运用数学知识解答问题的活动中,鼓励学生积极参与数学活动,体验数学活动中的探索与创新.感受数学的严谨性。
教学重点:含30°角的直角三角形的性质的发现与应用。
教学难点:含30°角的直角三角形性质的探索与证明,引导学生全面、周到地思考问题教学设计:活动1:1,用手中的含30度角的直角三角板与小组成员配合拼成等边三角形。
(小组操作,每组选一名代表展示小组活动结果,通过教学助手同步投屏展示一名同学的操作过程。
)2,请小组讨论含30度角的直角三角形中30度所对的直角边与斜边的数量关系,引导学生用尽可能多的方法尝试找到答案(小组讨论,并分别发言)活动2:用几何画板展示1,无论含30度角的直角三角形大小如何都符合这一规律。
2、除含30度以外的任意直角三角形不符合这一规律通过操作发现只有含30度角的直角三角形才具有这个规律。
活动3:请同学用文字语言叙述这一规律。
教师总结--在直角三角形中,如果有一个锐角为30度,那么它所对的直角边等于斜边的一半。
(板书性质)对这一命题的正确性加以验证,请同学找出命题中的题设与结论。
再请请同学根据题设与结论结合图形描述一下这道题的已知与求证。
展示学生解题过程(黑板上辅助画出含30度角的直角三角形性质,完整的归纳解题过程,并通过ppt展示标准步骤)活动4:请同学小组之间合作其他的证明方法?小组讨论,用多种方法来证明这是真命题。
同时运用几何画板展示解题过程与思路。
研究含30度角的直角三角形的特殊性质,也证明了这个过程。
30度直角三角形的性质30度直角三角形是一种比较特殊的三角形,它的角度都是90度,对应的三条边长分别为a、b、c,所以我们可以将它称作“a-b-c三角形”。
30度直角三角形的性质有很多,例如它的内角和为90度,它的三边长之和为a+b+c,它的面积为S= 1/2(a*b)它的周长为P= a + b + c。
除此之外,30度直角三角形还有很多定理和公式,其中比较有代表性的有勾股定理、余弦定理和正弦定理。
先来看看勾股定理,它是指在30度直角三角形中,两条直角侧的平方和等于斜边的平方,即a的平方加b的平方等于c的平方,也就是a2 + b2 = c2 。
余弦定理是指在30度直角三角形中,任意角的余弦值等于其对边比斜边的平方和开方,即cos A =(a2 + b2) / c,cos B =(b2 + c2) / a,cos C =(a2 + c2) / b,也就是cosABC=(a2+b2+c2)/(2*a*b*c) 。
正弦定理也叫比例定理,它是指在30度直角三角形中,任意角的正弦值等于其对边比其邻边的比值,即sinA = a / c,sinB = b / c,sinC = c / a,也就是sinABC=(a*b*c)/(a2+b2+c2)。
30度直角三角形的角度和边长的比例关系也非常重要,它即是人们常说的“比例定理”,它表明了30度直角三角形中任意一边比它的对边的比例是一定的,也就是两个角的正弦值之积为用三条边构成的三角形的面积。
30度直角三角形不仅有以上几个定理和公式,它还有很多其他的定理和公式,比如黎曼定理、秦九韶定理、比利定理等。
这些定理和公式都可以用来计算30度直角三角形的角度、边长和面积等。
30度直角三角形相对于普通三角形而言,它的定理和公式多一些,更为丰富,同时它有这些特殊的性质,使它成为理论上的一个比较热门的研究课题,它的定理和公式也更为人们所熟知。
总之,30度直角三角形不仅具有丰富的性质,而且也是一个研究课题,常被人们所熟知和读过。