单一同态同构映射
- 格式:ppt
- 大小:367.00 KB
- 文档页数:13
线性空间的同构与同态线性空间是很多高阶数学领域所需要用到的基本概念,因此在线性代数的学习中,我们不得不对线性空间基本的性质、定义、等价性、基础定理等有一个深刻的理解。
当然,线性空间的同构与同态作为线性变换的代名词,也是我们学习线性空间理论时,需要重点关注的。
一、线性空间同构同构,是数学中一个十分重要的概念。
它指的是两个结构相同、具有相同性质的数学对象。
更准确地说,如果两个集合之间存在一一对应,且它们之间的映射不仅是单射还是满射,那么这两个集合就是同构的。
对于线性空间,它满足向量的加法和数量的乘法这两个运算规则,因此,我们可以要求用以下方式定义两个线性空间的同构:定义:若存在双射映射$f:V\to W$,并满足:1. $\forall u,v\in V$,有$f(u+v)=f(u)+f(v)$。
2. $\forall u\in V$和$c\in F$,有$f(cu)=cf(u)$。
则称线性空间$V$和$W$之间存在同构,称$f$为同构映射。
其中,$F$是一个数域,它是一个固定的标量(标量乘法满足分配律、结合律、单位元和逆元等基本性质)。
同构可以理解为两个向量空间“外形”相同,尽管它们之间的标量乘法、向量加法的具体运算方式可能不同。
关于线性空间同构,我们有如下三个重要结论:(1)同构是一种双射关系,即两个线性空间同构当且仅当它们的维度相等。
(2)两个线性空间同构,则它们必须同构于数域$F$上的$n$维线性空间$F^n$。
(3)两个线性空间同构,当且仅当它们的基底个数相等。
通过上述结论,我们可以发现,实际上同构所关注的是两个线性空间的向量基。
只有当两个线性空间的维度相等、同构映射满足条件时,它们才是同构的。
因此,为了构造同构映射,我们通常需要找到两个向量空间之间的一个映射,满足一一对应、线性、满射的性质,这样才能实现同构。
二、线性空间同态同态是另一个重要的概念。
它们也是线性代数中常用的术语,他们主要与线性空间中的变换相关。
§6.8 线性空间的同构一、同构映射的定义一、同构映射的定义二、同构的有关结论我们知道,在数域P 上的n 维线性空间V 中取定一组基后,V 中每一个向量有唯一确定的坐标向量的坐标是P 上的n 元数组,因此属于P n . 这样一来,取定了V 的一组基对于V 中每一个向量,令在这组基下的坐标与对应,就得到V 到P n 的一个单射反过来,对于P n 中的任一元素是V 中唯一确定的元素,并且即也是满射.因此,是V 到P n 的一一对应.引入12(,,,),n a a a L α12,,,,n εεεL αα12(,,,)n a a a L α12:,(,,,)n n V P a a a σα→a L 12(,,,),n a a a L 1122n na a a αεεε=+++L 12()(,,,),n a a a σα=L σσ这个对应的重要必性表现在它与运算的关系上.任取设,,V αβ∈12()(,,,)n b b b σβ=L 1122,n n a a a αεεε=+++L 1122n n b b b βεεε=+++L 12()(,,),n a a a σα=L 则1122()(,,)n n a b a b a b σαβ+=+++L 12()(,,)n k ka ka ka k Pσα=∀∈L 归结为它们的坐标的运算.这就是说,向量用坐标表示后,它们的运算可以1212(,,)(,,,)()()n n a a a b b b σασβ=+=+L L 12(,,)(),n k a a a k σα==L 从而一、同构映射的定义设都是数域P 上的线性空间,如果映射,V V ′具有以下性质:V V σ′→:则称的一个同构映射,并称线性空间V V σ′是到同构,记作V V ′与.V V ′≅ii) ()()(),,V σαβσασβαβ+=+∀∈iii) ()(),,k k k P V σασαα=∀∈∀∈i) 为双射σ为V 的一组基,则前面V 到P n 的一一对应例1 V 为数域P 上的n 维线性空间,12,,,n εεεL :,nV P σ→12(,,,)n a a a αa L V α∀∈这里为在基下的坐标,α12(,,,)n a a a L 12,,,n εεεL 就是一个V 到P n 的同构映射,所以.nV P ≅1 数域P 上任一n 维线性空间都与P n 同构.二、同构的有关结论同构映射,则有()()()00,.σσασα=−=−1)2 设是数域P 上的线性空间,的V V σ′是到,V V ′2)1122()r r k k k σααα+++L 1122()()(),r r k k k σασασα=+++L ,,1,2,,.i i V k P i r α∈∈=L线性相关(线性无关).3)V 中向量组线性相关(线性无关)12,,,r αααL 的充要条件是它们的象12(),(),,()r σασασαL 4)dim dim .V V ′=5)的逆映射为的同构映射.V V σ′→:1σ−V V ′到是的子空间,且V ′dim dim ().W W σ=(){()}W W σσαα=∈6)若W 是V 的子空间,则W 在下的象集σ中分别取即得01,k k ==−与()()()00,σσασα=−=−证:1)在同构映射定义的条件iii)()()k k σασα=2)这是同构映射定义中条件ii)与iii)结合的结果.3)因为由11220r r k k k ααα+++=L 可得1122()()()0r r k k k σασασα+++=L 反过来,由1122()()()0r r k k k σασασα+++=L 可得1122()0.r r k k k σααα+++=L而是一一对应,只有σ(0)0.σ=所以可得11220.r r k k k ααα+++=L 因此,线性相关(线性无关)12,,,r αααL 12(),(),,()r σασασα⇔L 线性相关(线性无关).4)设为V 中任意一组基.12,d ,,im ,n V n εεε=L 由2)3)知,为的一组基.σ12(),(),,()n σεσεσεL 所以dim dim .V n V ′==11(())()σσαβσσαβαβ−−′′′′′′+=+=+o 任取,,V αβ′′′∈11,,V V I I σσσσ−−′==o o I 为恒等变换.1111()()(())(())σσασσβσσασσβ−−−−′′′′=+=+o o 11(()())σσασβ−−′′=+5)首先是1-1对应,并且1:V V σ−′→同理,有11()(),,k k V k P σασαα−−′′′′=∀∈∀∈所以,为的同构映射.1σ−V V ′到σ再由是单射,有111()()()σαβσασβ−−−′′′′+=+σ6)首先,()()W V V σσ′⊆=()()(),W W σσσ∈∴≠∅Q 且0=0其次,对有W 中的向量(),,W αβσ′′∀∈,αβ使()(),.σαασββ′′==于是有()()()αβσασβσαβ′′+=+=+()(),k k k k Pασασα′==∀∈由于W 为子空间,所以,.W k W αβα+∈∈从而有()(),.W k W αβσασ′′′+∈∈由2可知,同构映射保持零元、负元、线性组合dim dim ().W W σ=故所以是的子空间.V ′()W σ()W W σ≅显然,也为W 到的同构映射,即()W σσ注及线性相关性,并且同构映射把子空间映成子空间.证:设为线性空间的同构,:V V V V στ′′′′→→:3 两个同构映射的乘积还是同构映射.()()()()τσαβτσασβ+=+o ()()()()()()τσατσβτσατσβ=+=+o o ()()()()()k k k τσατσατσα==o ()()()k k τσατσα==o 任取,,V k P αβ∈∈,有映射,则乘积是的1-1对应.V V ′′到τσo 所以,乘积是的同构映射.V V ′′到τσo同构关系具有:反身性:对称性:传递性:注,V V V V V V σττσ′′′′′′≅≅⇒≅o VI V V≅1V V V Vσσ−′′≅⇒≅4 数域P 上的两个有限维线性空间同构12,V V 12dim dim .V V ⇔=证:""⇒""⇐若由性质2之4)即得12,V V ≅12dim dim .V V =(法一)若12dim dim ,V V =12.V V ∴≅由性质1,有12,n nV P V P ≅≅设分别为V 1,V 2的一组基.1221,,;,,n n e e e εεεL L 定义使12:,V V σ→11221,n n a a a V αεεε∀=+++∈L 1122()n na e a e a e σα=+++L 则就是V 1到V 2的一个映射.σ(法二:构造同构映射)""⇐又任取设11,,n ni i i i i i a b αεβε====∑∑1,,V αβ∈1,2,,,i n =L 从而,所以是单射..αβ=σ若即则()(),σασβ=11,n n i i i i i i a e b e ===∑∑,i i a b =任取设2,V α′∈1,ni i i a e α=′=∑所以是满射.σ再由的定义,有σ(),1,2,,i i e i n σε==L ()()(),σαβσασβ+=+()(),k k σασα=易证,对有1,,k P V αβ∀∀∈∈12.V V ≅所以是V 1到V 2的一个同构映射,故σ则有使11,n i i i a V αε==∈∑().σαα′=例2 把复数域看成实数域R 上的线性空间,证法一:证维数相等证明:2C R ≅首先,可表成1,,x a bi a b R =+∈,x C x ∀∈其次,若则0.a bi ab =1+=0,=所以,1,i 为C 的一组基,dim 2.C =又,2dim 2R =2dim dim .C R =所以,12.V V ≅故,证法二构造同构映射则为C 到R 2的一个同构映射.σ作对应()()2:,,.C R a bi a b σσ→+=作成实数域R 上的线性空间.把实数域R 看成是自身上的线性空间.,ka b ab k a a⊕==o 例3 全体正实数R +关于加法⊕与数量乘法:o 证明:并写出一个同构映射. ,R R +≅证作对应():,ln ,R R a a a R σσ++→=∀∈易证为的1-1对应.σR R +到且对有,,,a b R k R +∀∈∀∈()()()()ln ln ln a b ab ab a b a b σσσσ⊕===+=+()()()ln ln kk k a a a k a k a σσσ====o 所以,为的同构映射.σR R +到故.R R +≅方法二作对应():,,x R R x e x R ττ+→=∀∈易证:为的1-1对应,而且也为同构映射.R R +到τ事实上,为的逆同构映射.τσ2)证明:复数域C 看成R 上的线性空间与W 同构,设集合(){},a b W a b R b a =∈−练习1)证明:W 为的子空间,并求出W 的维数22R×与一组基.并写出一个同构映射.。
§6.8 线性空间的同构一、同构映射的定义一、同构映射的定义二、同构的有关结论我们知道,在数域P 上的n 维线性空间V 中取定一组基后,V 中每一个向量有唯一确定的坐标向量的坐标是P 上的n 元数组,因此属于P n . 这样一来,取定了V 的一组基对于V 中每一个向量,令在这组基下的坐标与对应,就得到V 到P n 的一个单射反过来,对于P n 中的任一元素是V 中唯一确定的元素,并且即也是满射.因此,是V 到P n 的一一对应.引入12(,,,),n a a a L α12,,,,n εεεL αα12(,,,)n a a a L α12:,(,,,)n n V P a a a σα→a L 12(,,,),n a a a L 1122n na a a αεεε=+++L 12()(,,,),n a a a σα=L σσ这个对应的重要必性表现在它与运算的关系上.任取设,,V αβ∈12()(,,,)n b b b σβ=L 1122,n n a a a αεεε=+++L 1122n n b b b βεεε=+++L 12()(,,),n a a a σα=L 则1122()(,,)n n a b a b a b σαβ+=+++L 12()(,,)n k ka ka ka k Pσα=∀∈L 归结为它们的坐标的运算.这就是说,向量用坐标表示后,它们的运算可以1212(,,)(,,,)()()n n a a a b b b σασβ=+=+L L 12(,,)(),n k a a a k σα==L 从而一、同构映射的定义设都是数域P 上的线性空间,如果映射,V V ′具有以下性质:V V σ′→:则称的一个同构映射,并称线性空间V V σ′是到同构,记作V V ′与.V V ′≅ii) ()()(),,V σαβσασβαβ+=+∀∈iii) ()(),,k k k P V σασαα=∀∈∀∈i) 为双射σ为V 的一组基,则前面V 到P n 的一一对应例1 V 为数域P 上的n 维线性空间,12,,,n εεεL :,nV P σ→12(,,,)n a a a αa L V α∀∈这里为在基下的坐标,α12(,,,)n a a a L 12,,,n εεεL 就是一个V 到P n 的同构映射,所以.nV P ≅1 数域P 上任一n 维线性空间都与P n 同构.二、同构的有关结论同构映射,则有()()()00,.σσασα=−=−1)2 设是数域P 上的线性空间,的V V σ′是到,V V ′2)1122()r r k k k σααα+++L 1122()()(),r r k k k σασασα=+++L ,,1,2,,.i i V k P i r α∈∈=L线性相关(线性无关).3)V 中向量组线性相关(线性无关)12,,,r αααL 的充要条件是它们的象12(),(),,()r σασασαL 4)dim dim .V V ′=5)的逆映射为的同构映射.V V σ′→:1σ−V V ′到是的子空间,且V ′dim dim ().W W σ=(){()}W W σσαα=∈6)若W 是V 的子空间,则W 在下的象集σ中分别取即得01,k k ==−与()()()00,σσασα=−=−证:1)在同构映射定义的条件iii)()()k k σασα=2)这是同构映射定义中条件ii)与iii)结合的结果.3)因为由11220r r k k k ααα+++=L 可得1122()()()0r r k k k σασασα+++=L 反过来,由1122()()()0r r k k k σασασα+++=L 可得1122()0.r r k k k σααα+++=L而是一一对应,只有σ(0)0.σ=所以可得11220.r r k k k ααα+++=L 因此,线性相关(线性无关)12,,,r αααL 12(),(),,()r σασασα⇔L 线性相关(线性无关).4)设为V 中任意一组基.12,d ,,im ,n V n εεε=L 由2)3)知,为的一组基.σ12(),(),,()n σεσεσεL 所以dim dim .V n V ′==11(())()σσαβσσαβαβ−−′′′′′′+=+=+o 任取,,V αβ′′′∈11,,V V I I σσσσ−−′==o o I 为恒等变换.1111()()(())(())σσασσβσσασσβ−−−−′′′′=+=+o o 11(()())σσασβ−−′′=+5)首先是1-1对应,并且1:V V σ−′→同理,有11()(),,k k V k P σασαα−−′′′′=∀∈∀∈所以,为的同构映射.1σ−V V ′到σ再由是单射,有111()()()σαβσασβ−−−′′′′+=+σ6)首先,()()W V V σσ′⊆=()()(),W W σσσ∈∴≠∅Q 且0=0其次,对有W 中的向量(),,W αβσ′′∀∈,αβ使()(),.σαασββ′′==于是有()()()αβσασβσαβ′′+=+=+()(),k k k k Pασασα′==∀∈由于W 为子空间,所以,.W k W αβα+∈∈从而有()(),.W k W αβσασ′′′+∈∈由2可知,同构映射保持零元、负元、线性组合dim dim ().W W σ=故所以是的子空间.V ′()W σ()W W σ≅显然,也为W 到的同构映射,即()W σσ注及线性相关性,并且同构映射把子空间映成子空间.证:设为线性空间的同构,:V V V V στ′′′′→→:3 两个同构映射的乘积还是同构映射.()()()()τσαβτσασβ+=+o ()()()()()()τσατσβτσατσβ=+=+o o ()()()()()k k k τσατσατσα==o ()()()k k τσατσα==o 任取,,V k P αβ∈∈,有映射,则乘积是的1-1对应.V V ′′到τσo 所以,乘积是的同构映射.V V ′′到τσo同构关系具有:反身性:对称性:传递性:注,V V V V V V σττσ′′′′′′≅≅⇒≅o VI V V≅1V V V Vσσ−′′≅⇒≅4 数域P 上的两个有限维线性空间同构12,V V 12dim dim .V V ⇔=证:""⇒""⇐若由性质2之4)即得12,V V ≅12dim dim .V V =(法一)若12dim dim ,V V =12.V V ∴≅由性质1,有12,n nV P V P ≅≅设分别为V 1,V 2的一组基.1221,,;,,n n e e e εεεL L 定义使12:,V V σ→11221,n n a a a V αεεε∀=+++∈L 1122()n na e a e a e σα=+++L 则就是V 1到V 2的一个映射.σ(法二:构造同构映射)""⇐又任取设11,,n ni i i i i i a b αεβε====∑∑1,,V αβ∈1,2,,,i n =L 从而,所以是单射..αβ=σ若即则()(),σασβ=11,n n i i i i i i a e b e ===∑∑,i i a b =任取设2,V α′∈1,ni i i a e α=′=∑所以是满射.σ再由的定义,有σ(),1,2,,i i e i n σε==L ()()(),σαβσασβ+=+()(),k k σασα=易证,对有1,,k P V αβ∀∀∈∈12.V V ≅所以是V 1到V 2的一个同构映射,故σ则有使11,n i i i a V αε==∈∑().σαα′=例2 把复数域看成实数域R 上的线性空间,证法一:证维数相等证明:2C R ≅首先,可表成1,,x a bi a b R =+∈,x C x ∀∈其次,若则0.a bi ab =1+=0,=所以,1,i 为C 的一组基,dim 2.C =又,2dim 2R =2dim dim .C R =所以,12.V V ≅故,证法二构造同构映射则为C 到R 2的一个同构映射.σ作对应()()2:,,.C R a bi a b σσ→+=作成实数域R 上的线性空间.把实数域R 看成是自身上的线性空间.,ka b ab k a a⊕==o 例3 全体正实数R +关于加法⊕与数量乘法:o 证明:并写出一个同构映射. ,R R +≅证作对应():,ln ,R R a a a R σσ++→=∀∈易证为的1-1对应.σR R +到且对有,,,a b R k R +∀∈∀∈()()()()ln ln ln a b ab ab a b a b σσσσ⊕===+=+()()()ln ln kk k a a a k a k a σσσ====o 所以,为的同构映射.σR R +到故.R R +≅方法二作对应():,,x R R x e x R ττ+→=∀∈易证:为的1-1对应,而且也为同构映射.R R +到τ事实上,为的逆同构映射.τσ2)证明:复数域C 看成R 上的线性空间与W 同构,设集合(){},a b W a b R b a =∈−练习1)证明:W 为的子空间,并求出W 的维数22R×与一组基.并写出一个同构映射.。
同构映射的定义同构映射的定义§6.8 线性空间的同构一、同构映射的定义一、同构映射的定义二、同构的有关结论我们知道,在数域P 上的n 维线性空间V 中取定一组基后,V 中每一个向量有唯一确定的坐标向量的坐标是P 上的n 元数组,因此属于P n . 这样一来,取定了V 的一组基对于V 中每一个向量,令在这组基下的坐标与对应,就得到V 到P n 的一个单射反过来,对于P n 中的任一元素是V 中唯一确定的元素,并且即也是满射.因此,是V 到P n 的一一对应.引入12(,,,),n a a a L α12,,,,n εεεL αα12(,,,)n a a a L α12:,(,,,)n n V P a a a σα→a L 12(,,,),n a a a L 1122n na a a αεεε=+++L 12()(,,,),n a a a σα=L σσ这个对应的重要必性表现在它与运算的关系上.任取设,,V αβ∈12()(,,,)n b b b σβ=L 1122,n n a a a αεεε=+++L 1122n n b b b βεεε=+++L 12()(,,),n a a a σα=L 则1122()(,,)n n a b a b a b σαβ+=+++L 12()(,,)n k ka ka ka k Pσα=?∈L 归结为它们的坐标的运算.这就是说,向量用坐标表示后,它们的运算可以1212(,,)(,,,)()()n n a a a b b b σασβ=+=+L L 12(,,)(),n k a a a k σα==L 从而一、同构映射的定义设都是数域P 上的线性空间,如果映射,V V ′具有以下性质:V V σ′→:则称的一个同构映射,并称线性空间V V σ′是到同构,记作V V ′与.V V ′?ii) ()()(),,V σαβσασβαβ+=+?∈iii) ()(),,k k k P Vσασαα=?∈?∈i) 为双射σ为V 的一组基,则前面V 到P n 的一一对应例1 V 为数域P 上的n 维线性空间,12,,,n εεεL :,nV P σ→12(,,,)n a a a αa L V α?∈这里为在基下的坐标,α12(,,,)n a a a L 12,,,n εεεL 就是一个V 到P n 的同构映射,所以.nV P ?1 数域P 上任一n 维线性空间都与P n 同构.二、同构的有关结论同构映射,则有()()()00,.σσασα=?=?1)2 设是数域P 上的线性空间,的V V σ′是到,V V ′2)1122()r r k k k σααα+++L 1122()()(),r r k k k σασασα=+++L ,,1,2,,.i i V k P i r α∈∈=L线性相关(线性无关).3)V 中向量组线性相关(线性无关)12,,,r αααL 的充要条件是它们的象12(),(),,()r σασασαL 4)dim dim .V V ′=5)的逆映射为的同构映射.V V σ′→:1σ?V V ′到是的子空间,且V ′dim dim ().W W σ=(){()}W W σσαα=∈6)若W 是V 的子空间,则W 在下的象集σ中分别取即得01,k k ==?与()()()00,σσασα=?=?证:1)在同构映射定义的条件iii)()()k k σασα=2)这是同构映射定义中条件ii)与iii)结合的结果.3)因为由11220r r k k k ααα+++=L 可得1122()()()0r r k k k σασασα+++=L 反过来,由1122()()()0r r k k k σασασα+++=L 可得1122()0.r r k k k σααα+++=L而是一一对应,只有σ(0)0.σ=所以可得11220.r r k k k ααα+++=L 因此,线性相关(线性无关)12,,,r αααL 12(),(),,()r σασασα?L 线性相关(线性无关).4)设为V 中任意一组基.12,d ,,im ,n V n εεε=L 由2)3)知,为的一组基.σ12(),(),,()n σεσεσεL 所以dim dim .V n V ′==11(())()σσαβσσαβαβ??′′′′′′+=+=+o 任取,,V αβ′′′∈11,,V V I I σσσσ??′==o o I 为恒等变换.1111()()(())(())σσασσβσσασσβ′′′′=+=+o o 11(()())σσασβ??′′=+5)首先是1-1对应,并且1:V V σ?′→同理,有11()(),,k k V k Pσασαα??′′′′=?∈?∈所以,为的同构映射.1σ?V V ′到σ再由是单射,有111()()()σαβσασβ′′′′+=+σ6)首先,()()W V V σσ′=()()(),W W σσσ∈∴≠?Q 且0=0其次,对有W 中的向量(),,W αβσ′′?∈,αβ使()(),.σαασββ′′==于是有()()()αβσασβσαβ′′+=+=+()(),k k k k Pασασα′==?∈由于W 为子空间,所以,.W k W αβα+∈∈从而有()(),.W k W αβσασ′′′+∈∈由2可知,同构映射保持零元、负元、线性组合dim dim ().W W σ=故所以是的子空间.V ′()W σ()W W σ?显然,也为W 到的同构映射,即()W σσ注及线性相关性,并且同构映射把子空间映成子空间.证:设为线性空间的同构,:V V V V στ′′′′→→:3 两个同构映射的乘积还是同构映射.()()()()τσαβτσασβ+=+o ()()()()()()τσατσβτσατσβ=+=+o o ()()()()() k k k τσατσατσα==o ()()()k k τσατσα==o 任取,,V k P αβ∈∈,有映射,则乘积是的1-1对应.V V ′′到τσo 所以,乘积是的同构映射.V V ′′到τσo同构关系具有:反身性:对称性:传递性:注,V V V V V V σττσ′′′′′′o VI V V1V V V Vσσ?′′4 数域P 上的两个有限维线性空间同构12,V V 12dim dim .V V ?=证:""?""?若由性质2之4)即得12,V V ?12dim dim .V V =(法一)若12dim dim ,V V =12.V V ∴?由性质1,有12,n nV P V P ??设分别为V 1,V 2的一组基.1221,,;,,n n e e e εεεL L 定义使12:,V V σ→11221,n n a a a V αεεε?=+++∈L 1122()n na e a e a e σα=+++L 则就是V 1到V 2的一个映射.σ(法二:构造同构映射)""?又任取设11,,n ni i i i i i a b αεβε====∑∑1,,V αβ∈1,2,,,i n =L 从而,所以是单射..αβ=σ若即则()(),σασβ=11,n n i i i i i i a e b e ===∑∑,i i a b =任取设2,V α′∈1,ni i i a e α=′=∑所以是满射.σ再由的定义,有σ(),1,2,,i i e i n σε==L ()()(),σαβσασβ+=+()(),k k σασα=易证,对有1,,k P V αβ??∈∈12.V V ?所以是V 1到V 2的一个同构映射,故σ则有使11,n i i i a V αε==∈∑().σαα′=例2 把复数域看成实数域R 上的线性空间,证法一:证维数相等证明:2C R ?首先,可表成1,,x a bi a b R =+∈,x C x ?∈其次,若则0.a bi ab =1+=0,=所以,1,i 为C 的一组基,dim 2.C =又,2dim 2R =2dim dim .C R =所以,12.V V ?故,证法二构造同构映射则为C 到R 2的一个同构映射.σ作对应()()2:,,.C R a bi a b σσ→+=作成实数域R 上的线性空间. 把实数域R 看成是自身上的线性空间.,ka b ab k a a⊕==o 例3 全体正实数R +关于加法⊕与数量乘法:o 证明:并写出一个同构映射. ,R R +?。
同构及同态在代数中的应用摘要:在近世代数的主要内容是研究所谓代数系统,即带有运算的集合,而在近世代数中同态与同构又是其一等重要的概念,在近世代数中有重要的作用。
在不同的代数系统中同态成为同构的条件不同,本文给出了同态成为同构的条件,论述了同构在不同代数系统上的一些应用,从中说明了同态与同构的重要性。
关键词:同态;同构;群;环1 代数系统的同态与同构1.1同态映射及同态的定义一个A 到A 的映射φ,叫做一个对于代数运算 和 来说的,A 到A 的同态映射,假如,在φ之下,不管a 和b 是A 的哪两个元,只要a a →,b b →就有 a b a b →定义1:假如对于代数运算 和 来说,就有一个A 到A 的满射的同态映射存在,我们就说,这个映射是一个同态满射,并说,对于代数运算 和 来说,A 与A 同态。
定义2: 我们说,一个A 与A 间的一一映射φ是一个对于代数运算 与 来说的,A 与A 间的同构映射(简称同构),假如在φ之下,不管a ,b 是A 的哪两个元,只要a a →,b b →就有 a b a b →1.2同态与同构的联系1)从定义上看2)一个无限集可以与它的子集同态或同构,但一个有限集只能与它的子集同态而不能同构关于代数系统的同态有以下定理:定理1 :假定,对于代数运算 和 来说,A 与A 同态。
那么,(1)若 适合结合律, 也适合结合律;(2)若 适合交换律, 也适合交换律。
定理2:假定,⊗,⊕都是集合A 的代数运算,⊗,⊕都是集合A 的代数运算,并且存在一个A 到A 的满射φ,使得A 与A 对于代数运算⊗,⊗来说同态,对于代数运算⊕,⊕来说也同态。
那么,(1)若⊗,⊕适合第一分配律,⊗,⊕也适合第一分配律;(2)若⊗,⊕适合第二分配律,⊗,⊕也适合第二分配律。
2群的同态与同构2.1群的同态与同构定义定义3: 给定群(),G 和群(),G ⨯称集G 到集G 的一个映射φ:G G →是群G 到群G 的一个同态映射(简称同态),如果对任意a ,b ∈G ,有()()()a b a b φφφ=⨯当φ是单(满)射时,称φ为单(满)同态;当φ是一一映射时,称φ为G 与G 间的同构映射(简称同构,记为G G ≅); 当φ是群G 到群G 得一个同态时,令ker φ={x G ∈|()x e φ'=,e '是G 的单位元},称之为φ的核。
离散结构同态与同构教学目标基本要求(1)掌握同态映射与同构映射的定义(2)掌握同态映射与同构映射的判定方法重点难点(1)同态映射的证明同态映射定义:设V1=<A,∘>和V2=<B,∗>是同类型的代数系统,f:A→B,且∀x, y∈A 有f(x∘y) = f(x)∗f(y), 则称f 是V1到V2的同态映射,简称同态.同态分类:(1) 如果f是单射,则称为单同态(2) 如果f是满射,则称为满同态,这时称V2是V1的同态像,记作V1∼ V2(3) 如果f是双射,则称为同构,也称代数系统V1同构于V2,记作V1 ≅ V2(4) 如果V1 = V2,则称作自同态实例例:设G为非0实数集R*关于普通乘法构成的代数系统,判断下述函数是否为G的自同态?如果不是,说明理由. 如果是,判别它们是否为单同态、满同态、同构.(1) f(x) = |x| +1(2) f(x) = |x|(3) f(x) = 0(4) f(x) = 2解:(1) 不是同态, 因为f(2×2)=f(4)=5, f(2)×f(2)=3×3=9(2) 是同态,不是单同态,也不是满同态,因为f(1)= f(−1), 且 ran f中没有负数.(3) 不是G 的自同态,因为f不是 G 到 G 的函数实例例:(1) 设V1=<Z,+>, V2=<Z n,⊕>.其中Z为整数集,+为普通加法;Z n={0,1,…,n−1},⊕为模n,f (x)=(x)mod n加. 令f: Z→Znf 是V1到V2的满同态.【f满射,f(x1+x2)=(x1+x2)mod n=(x1 mod n )⊕(x2 mod n)=f(x1)⊕f(x2)】(2) 设V1=<R,+>, V2=<R*,· >,其中R和R*分别为实数集与非零实数集,+ 和 · 分别表示普通加法与乘法.令f: R→R*,f (x)= e xf是V1到V2的单同态. 【f单射,f(x1+x2)=e(x1+x2)=e x1· e x2=f(x1) · f(x2)】(3) 设V=<Z,+>,其中Z为整数集,+为普通加法. ∀a∈Z,令f a : Z→Z,f a (x)=ax,f a 是V的自同态. 【f(x1+x2)=a(x1+x2)=ax1+ax2=f(x1)+f(x2)】当a=0时称f为零同态;为自同构;当a=±1时,称fa例. 证明<Z4,+4>与<X, >同构。
群论中的同态映射与同构定理解析群论是数学中的一个重要分支,研究的是代数结构中的群以及群之间的映射和关系。
在群论中,同态映射与同构定理是两个基本概念,它们在研究群的结构和性质时起到了关键作用。
本文将对群论中的同态映射与同构定理进行解析。
一、同态映射同态映射是指保持群运算结构的映射。
设有两个群G和H,若映射φ:G→H满足对于任意的g1,g2∈G,有φ(g1⋅g2)=φ(g1)⋅φ(g2),则称φ为从G到H的同态映射。
其中,⋅表示群G中的运算,⋅表示群H中的运算。
同态映射的定义表明,同态映射保持了群运算的结构。
通过同态映射,我们可以将一个群映射成另一个群,同时保持原有群的运算性质。
同态映射的性质如下:1. 同态映射将群的单位元映射为群的单位元,即φ(eG)=eH,其中eG和eH分别表示群G和H的单位元。
2. 同态映射将群的逆元映射为群的逆元,即φ(g^-1)=φ(g)^-1,其中g表示群G中的元素。
3. 同态映射保持群的运算,即对于任意的g1,g2∈G,有φ(g1⋅g2)=φ(g1)⋅φ(g2)。
二、同构定理同构是指两个群之间存在一个双射的同态映射。
设有两个群G和H,若存在一个双射的同态映射φ:G→H,则称G与H同构,记作G≅H。
同构的概念描述了两个群之间的一种特殊关系,即它们具有相同的结构和性质。
同构的性质如下:1. 同构是等价关系,即满足自反性、对称性和传递性。
对于任意的群G,有G≅G;若G≅H,则H≅G;若G≅H且H≅K,则G≅K。
2. 同构保持群的运算和结构,即对于任意的g1,g2∈G,有φ(g1⋅g2)=φ(g1)⋅φ(g2)。
3. 同构保持群的性质,如群的阶、子群、循环性等。
同构定理是群论中的重要定理,它揭示了群之间的结构和性质的关联。
常见的同构定理包括拉格朗日定理、卡莱定理和第一同构定理等。
三、应用与举例同态映射和同构定理在群论中有广泛的应用。
它们可以用来研究群的结构、性质和分类。
以整数加法群(Z,+)和模n整数加法群(Z/nZ,+)为例,可以构造一个自然同态映射φ:Z→Z/nZ,即将整数映射到模n的等价类。
群同态三大基本定理群同态三大基本定理是群论中的重要结果,包括同态基本定理、同构基本定理和同态映射定理。
这些定理对于研究群及其结构和性质具有重要意义。
本文将分别介绍和阐述这三大基本定理。
一、同态基本定理同态基本定理是群同态理论的基石,它表明了群同态的基本性质。
该定理断言,对于任意群G和H,如果存在一个由G到H的群同态φ,则G的核Ker(φ)是G的一个正规子群,且G/ Ker(φ)与φ(G)同构。
其中,核是指同态映射φ的零空间,即使得φ(g) = e_H的所有元素g构成的子集。
同态基本定理的证明思路是,首先证明Ker(φ)是G的一个正规子群,然后构造一个映射ψ: G/Ker(φ) → φ(G),通过ψ(gKer(φ)) = φ(g)将G/Ker(φ)的元素映射到φ(G)的元素,证明ψ是一个双射,并且保持群运算。
因此,G/Ker(φ)与φ(G)同构。
二、同构基本定理同构基本定理是群论中的一个重要结果,它给出了同构的判定条件。
该定理指出,如果存在一个双射φ: G → H,且满足φ(xy) = φ(x)φ(y),那么G与H是同构的。
换句话说,如果两个群之间存在一个双射,且保持群运算,那么这两个群是同构的。
同构基本定理的证明思路是,首先证明φ是一个同态映射,即φ(xy)= φ(x)φ(y)成立。
然后证明φ的逆映射存在,即存在一个映射ψ: H → G,使得ψ(φ(x)) = x和φ(ψ(y)) = y对于所有的x∈G和y∈H 成立。
最后,证明ψ也是一个同态映射,即ψ(xy) = ψ(x)ψ(y)成立。
因此,φ和ψ构成了G和H之间的同构关系。
三、同态映射定理同态映射定理是群同态理论中的一个重要结果,它给出了同态映射的性质。
该定理指出,如果φ: G → H是一个群同态,那么φ(G)是H的一个子群,且φ(G)的阶是G的核Ker(φ)的阶的整数倍。
同态映射定理的证明思路是,首先证明φ(G)是H的一个子群。
然后证明φ(G)的阶是G的核Ker(φ)的阶的整数倍。
同态映射、同态与同构之基本概念的重要性这两天我又学习了同态映射、同态和同构这三个近世代数中最为基本的概念,由于在学习的时候同态映射跟其他两个概念不是在同一时间学的,所以竟然在小小的一段时间内对三个概念产生了一些误解,尤其是认为同态是同态映射的简称可以说是犯了一个很大的错误。
刚刚我在学习同态的概念的时刻,授课的老师特别强调了这一点,我也对老师提出的这一点感到强烈的震惊,才发现自己的自我认为有时并非准确的。
再加上,老师在证明同态的两个集合之间运算的结合律的时候又指出了我差一点就犯了的一个很严重的逻辑错误,而且这个错误的发生往往是伴随着对基本概念的掌握不够好。
而且在上个学期的时候我在自学数学知识的时候已经明显地感觉到了无论研究什么首要做的事情就是要弄清楚研究对象里的基本概念才能做到有的放矢,在那个时候我也是这样去告诉我的好伙伴的,并且以如何证明两个集合相等这样的一个题目给他展示了掌握基本概念的好处。
并且我们这学期的一位任课老师要求我们在课堂上为大家谈一下我们对数字图书馆的一些认识,当时我的第一意识就告诉要借这么一个机会把理解并掌握基本概念对我们学习、工作甚至是生活的重要性来传达给大家,希望对他们的学习生活有些许帮助,虽然因为种种原因我的这个想法可能没有办法实现,但是这许许多多的事情都已经充分在表明我已经开始对基本概念有了很高的重视。
今天我写此文的目的也就是在于在弄清楚同态映射、同态和同构这三个概念以及一个定理的证明的同时来阐述体现其中基本概念的重要性,如果基本概念掌握不好就有可能会犯错,而掌握了概念做起事来就能达到事半功倍的效果。
1.基本概念1.1 同态映射对于集合A到-A映射-→AA:ϕ,以及A上的一个二元运算 和-A上的一个二元运算-,如果Aba∈∀,,都有 aba=b (即)()()(babaϕϕϕ=),那么我们称ϕ为A与-A的同态映射。
(注:-A在近世代数中只是一个普通的集合并非A的补集,对于)(xϕ我们也经常记作x即x的象,其他的映射函数也是如此。
代数结构同态与同构代数结构同态与同构是抽象代数学中的两个重要概念。
它们描述了两个代数结构之间的关系,并在代数学的研究中发挥着重要作用。
本文将介绍代数结构同态与同构的概念、定义以及性质,并讨论它们的应用和意义。
一、代数结构同态的概念与性质1. 同态的定义在抽象代数学中,如果存在两个代数结构A和B,其中A的运算是由集合和运算规则所确定的,B也是类似的,那么我们称映射f:A → B为从A到B的同态,如果对于A中的任意元素x和y,都有f(x * y) = f(x) * f(y),其中*表示A中的运算,*表示B中的运算,即f保持运算的性质。
2. 同态的性质同态具有以下性质:(1)同态保持单位元:即f(单位元A) = 单位元B;(2)同态保持逆元:即对于A中的任意元素x,有f(x的逆元A) = f(x)的逆元B;(3)同态保持运算:即对于A中的任意元素x和y,都有f(x * y) = f(x) * f(y)。
二、代数结构同构的概念与性质1. 同构的定义在抽象代数学中,如果从A到B的同态f:A → B是双射(即一一对应)且保持运算的性质,则称A与B是同构的,记作A ≅ B。
同构表示两个代数结构在结构上完全相同,可以通过一一对应的方式进行映射。
2. 同构的性质同构具有以下性质:(1)同构保持单位元;(2)同构保持逆元;(3)同构保持运算。
三、同态与同构的应用1. 结构的研究与刻画同态与同构可用于研究和刻画代数结构的结构和性质。
通过同态与同构的关系,我们可以将复杂的代数结构简化为更易于理解和研究的形式。
例如,通过同构关系,我们可以将一个群与一个矩阵代数的子群作为同构来描述,从而简化问题的分析和求解。
2. 等价关系的建立同态与同构也可用于建立代数结构之间的等价关系。
如果两个代数结构之间存在同构关系,则可以将它们看作是等价的。
这种等价关系在代数学中非常有用,可以帮助我们分类、比较甚至证明不同的代数结构。
3. 结构的构造与研究同态与同构的概念在代数结构的构造与研究中起着重要的作用。
群同态定义,单、满同态,同构群同态定义,单、满同态,同构群与关于其不变子群的商群之间有某种联系,这种联系从代数角度来说,就是它们之间有某种相互联系的代数性质,或者可以建立某种对应关系.本节将介绍群与群之间的对应关系,这种对应关系保持某种代数性质.定义1 设是两个群,如果存在映射保持代数运算,即称是到的一个同态;如果同态还是满射,称是满同态; 如果同态还是单射,称是单同态;既是满同态又是单同态的同态称为同构,这时也称群与同构,记为,需要强调这个同构映射时,可记作;当时,同态映射称为自同态,同构映射称为自同构.需要说明的是:根据同态定义,在保持运算的等式中,左边式子的“?”是按照中的运算,而右边式子中的“?”是按照中的运算. 例1 设是两个群,是的单位元,令则0是到的一个同态,称其为零同态,这个同态在任意两个群之间都存在. 例2 设是虚数单位,令则是到的同态.例3 设是虚数单位,令.则按数的乘法构成一个群,并且是到的同态,(请读者验证) 是满同态. 例4设令注意是一般线性群,是到的同态,(请读者验证) 是单同态.今后,常用表示.例5 设是群,是的一个不变子群,由上节是关于的商群.令则是到的同态,并且是满同态.这个同态称为到其商群的自然同态,这是一个非常重要的同态,今后经常用到.例6 设是所有次单位根构成的群,其中是次本原单位根,令则是到模剩余类加群的同构映射,因此.我们知道,若是集合到的映射,是到的映射,则映射合成是到的映射. 这个事实对于群也同样成立.命题1 设是群到的同态,是群到的同态,则作为映射合成的是到的同态.证明:是到的映射, 又,故是到的同态.实际上我们还有如下性质:命题2(1)设是群到的单同态,是群到的单同态,则作为映射合成的是到的单同态;(2)设是群到的满同态,是群到的满同态,则作为映射合成的是到的满同态;(3)设是群到的同构,是群到的同构,则作为映射合成的是到的同构.命题3 设是群到群的同态,则(1) 的单位元在下的像是单位元;(2) 中元素的逆元在下的像;(3) 的子群在下的像是的子群,并且如果是限制在上的映射,则是到上的满同态.证明:(1) 故.(2)所以。
群同态定义,单、满同态,同构群同态定义,单、满同态,同构群与关于其不变子群的商群之间有某种联系,这种联系从代数角度来说,就是它们之间有某种相互联系的代数性质,或者可以建立某种对应关系.本节将介绍群与群之间的对应关系,这种对应关系保持某种代数性质.定义1 设是两个群,如果存在映射保持代数运算,即称是到的一个同态;如果同态还是满射,称是满同态; 如果同态还是单射,称是单同态;既是满同态又是单同态的同态称为同构,这时也称群与同构,记为,需要强调这个同构映射时,可记作;当时,同态映射称为自同态,同构映射称为自同构.需要说明的是:根据同态定义,在保持运算的等式中,左边式子的“?”是按照中的运算,而右边式子中的“?”是按照中的运算. 例1 设是两个群,是的单位元,令则0是到的一个同态,称其为零同态,这个同态在任意两个群之间都存在. 例2 设是虚数单位,令则是到的同态.例3 设是虚数单位,令.则按数的乘法构成一个群,并且是到的同态,(请读者验证) 是满同态. 例4设令注意是一般线性群,是到的同态,(请读者验证) 是单同态.今后,常用表示.例5 设是群,是的一个不变子群,由上节是关于的商群.令则是到的同态,并且是满同态.这个同态称为到其商群的自然同态,这是一个非常重要的同态,今后经常用到.例6 设是所有次单位根构成的群,其中是次本原单位根,令则是到模剩余类加群的同构映射,因此.我们知道,若是集合到的映射,是到的映射,则映射合成是到的映射. 这个事实对于群也同样成立.命题1 设是群到的同态,是群到的同态,则作为映射合成的是到的同态.证明:是到的映射, 又,故是到的同态.实际上我们还有如下性质:命题2(1)设是群到的单同态,是群到的单同态,则作为映射合成的是到的单同态;(2)设是群到的满同态,是群到的满同态,则作为映射合成的是到的满同态;(3)设是群到的同构,是群到的同构,则作为映射合成的是到的同构.命题3 设是群到群的同态,则(1) 的单位元在下的像是单位元;(2) 中元素的逆元在下的像;(3) 的子群在下的像是的子群,并且如果是限制在上的映射,则是到上的满同态.证明:(1) 故.(2)所以。
同构映射是指两个集合之间存在一个双射,且保持运算结构的映射。
充分条件:如果存在两个集合A和B,且存在一个映射f:A→B,满足以下条件:f是一个双射,即对于A中的每个元素a,都存在唯一的元素b∈B,使得f(a) = b,且对于B中的每个元素b,都存在唯一的元素a∈A,使得f(a) = b。
f保持运算结构,即对于A中的任意两个元素a1和a2,有f(a1+a2) = f(a1) +
f(a2),对于A中的任意标量c和元素a,有。
必要条件:如果存在
两个集合A和B,且存在同构映射f:A→B,则必然满足充分条件中的条件1和条件2。
综上所述,充要条件是:存在两个集合A和B,且存在一个映射f:A→B,满足条件1和条件2。