【数学】近似数和“四舍五入”法
- 格式:doc
- 大小:29.50 KB
- 文档页数:5
人教版数学五年级上册十三专题之四:有关近似数的问题【教法剖析】在除法中经常会出现除不尽或商的小数位数较多的情况,但在实际生活和工作中并不总是需要求出很多位小数的商,有时要根据实际情况取近似数,常用的方法有:1.四舍五入法:根据题目的具体要求,用四舍五入法求近似数。
2.进一法:在实际计算中,无论十分位上的数是几,都要向整数部分进一。
3.去尾法:在实际计算中,无论十分位上的数是几,一律去掉。
例1一列火车从济南出发到北京行驶了432.4千米,用了2.7小时,平均每小时行多少千米?(得数保留一位小数)【助教解读】求平均速度,可根据公式速度=路程÷时间,直接求出432.4÷2.7≈160.1(千米/时)。
答:平均每小时行160.1千米。
【经验总结】用四舍五入法取商的近似数方法:①看——需要保留几位小数或整数;②除——除到比需要保留的小数位数多一位;③取——用四舍五入法取商的近似数。
例2有1.3千克调和油,全部装在每个最多能盛0.4千克的瓶子里,至少需要准备几个这样的瓶子?【助教解读】求需要准备几个瓶子,结果应该取整数,3个瓶子只能装1.2千克调和油,剩下的0.1千克调和油也需要装,所以需要4个瓶子,为了保证总体的完整性,虽然商的十分位上的数是2不是5,也要把后面的尾数去掉,向整数部分进一。
1.3÷0.4=3.25(个)≈4(个)答:至少需要准备4个这样的瓶子。
【经验总结】如果问题里含有“至少”一词一般采用“进一法”。
像装东西如“至少需要几个瓶子”“至少需要几个箱子”等均采用“进一法”。
例3每套西服用布2.8米,30米布可以做多少套西服?【助教解读】根据题目的数量关系,可以这样列式:30÷2.8≈10.7(套)为了保证个体的完整性,根据实际分析一共可以做10套,因为做11套西服需用布30.8米,很显然布不够,虽然十分位上的数大于5,但无论差多少,也不可能做出完整的11套西服,所以十分位上的数无论是几都要舍去,用“去尾法”。
四舍五入法和近似数教学目标:1.结合我国部分少数民族人口数的具体事例,经历把精确数用“四舍五入”法改写成以万为单位的近似数的过程。
2.知道什么是精确数,理解“四舍五入”法的含义,会用“四舍五入”法把一个精确数改写成近似数。
3.了解近似数在现实生活中的广泛应用,感受数学与生活的密切联系。
课前准备:图片、新闻资料。
教学方案:3.交流学生改写的结果。
先让学生充分交流不同的结果,再分别说一说是怎样想的。
在师生议论的过程中,教师介绍“四舍五入”发,并板书出改写的表达式。
师:把你改写的结果汇报一下。
学生怎么说,教师怎么写。
纳西族人口可能出现不同答案:●大约27万;●大约28万。
师:说一说你是怎样做的?把纳西族人口改为哪个整万数,比较合适,为什么?学生说想法时,可能不完整,只要意思对即可。
如把纳西族的人口数改写成27万,丢掉的人太多了!师:说的有道理。
其实把一个精确数改写成一个近似数,可以用我们以前学过的四舍五入法。
也就是把一个数按要求改写成以万为单位的近似数时,要看千位上的数是否满5,如果不满5,就把万位后面的尾数都舍掉,并加上“万”字;如果满5,把万后面的尾数舍去后,要向它的前一位进1,就是向万位进1,最后加上“万”字,并用“≈”表示。
边说边板书:8602978≈860万278009≈28万师:这样,我们就可以说回族人口约860万人,纳西族人口28万约人。
4.提出试一试的要求,让学生把壮族和蒙古族人口数用近似数表示出来,并用语言描述。
师:请同学们试着把壮族和蒙古族人口数用近似数来表示。
学生改写并汇报,教师除了关注学生改的结果外,还要让学生具体说说改的方法。
最后用语言描述一下。
教学随笔:_____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________ _____________________________________________________________________。
求近似数、四舍五入法(参考教案二)导读:本文求近似数、四舍五入法(参考教案二),仅供参考,如果觉得很不错,欢迎点评和分享。
教学目标(一)通过学生熟悉的事物来认识求近似数的实用性.(二)使学生掌握四舍五入法求一个数的近似数的方法.(三)培养学生分析、判断、解决实际问题的能力.教学重点和难点重点:使学生掌握用四舍五入法求一个数的近似数的方法.难点:掌握近似数的判断方法.教学过程设计(一)复习准备教师通过启发谈话,即从学生生活贴近的事物中引出近似数.在日常生活中,描述一些事物的数量有时不一定要说出它们的准确数量,只要知道它们的大概是多少就可以了,因此不用准确数表示,而是用一个与准确数比较接近的整十、整百、整千数表示.如:我们国家的领土大约960万平方千米;我国人口大约12亿;我们学校有学生大约1200人等等.这样做比较方便、记忆容易、计算简单.(二)学习新课出示例题:同学们浇树.浇了206棵松树,浇了284棵杨树.求这两个数的近似数大约是几百?首先引导学生观察、思考:206接近哪个整百数?(接近200)206≈200用“≈”连接,“≈”叫做约等号.读作:206约等于200.讨论下面几个数的近似数大约是几百?说一说你是怎样想的?怎样求的?314≈300(十位上的1不满5)325≈300(十位上的2不满5)336≈300(十位上的3不满5)347≈300(十位上的4不满5)那么我们进一步讨论284接近哪个整百数?为什么?怎样想的?284≈300(十位上的8满5,把十位、个位上的数改写成0,向百位进1)继续进行小组讨论:395,486,573,264,358的数大约是几百?395≈400 486≈500 573≈600264≈300 358≈400根据同学讨论的情况,归纳小结:要求三位数的近似数,关键是看它十位上的数是不是满5,(也就是4或3,2,1)就把位和个位上的数去掉写成0.如果满5,(也就是5或6,7,8,9)就把十位和个位上的数改写成0,同时向百位进1.这样的方法我们称作“四舍五入”法.(三)巩固反馈1.说出下面各数的近似数.(投影)(1)386≈400 (2)247≈200579≈600 739≈700462≈500 305≈300758≈800 428≈400观察比较两组题的相同点与不同点.(小组讨论)相同点:两组题都是求三位数的近似数.不同点:第(1)组各数十位上的数都满5,(大于或等于5),所以都把十位和个位上的数改写成0,同时向百位进1.第(2)组各数十位上的数都不满5,(小于5)就把十位和个位上的数字舍掉改写成0.请同学们强调:把一个三位数改写成整百的近似数关键是什么?关键是看十位上的数是否满5,来决定四舍五入.那么,我们一起来研究一下,如何求四位数的近似数?关键要看哪一位上的数呢?出示:6250大约是几千?6250≈60006250百位上是2(小于5),就把百位后面的尾数舍掉,改写成0.2.做一做.(投影)求下面各数的近似数.(独立写在本上)3845≈4000 2489≈20005290≈5000 4562≈50002908≈3000 8397≈8000订正时请同学说一说是怎样想的?(求一个四位数的近似数,要看百位上的数是否满5,百位上的数不满5,直接把千位后面的尾数舍掉改写成0.如果百位上的数满5,把千位后面的尾数改写成0,同时还要把百位上的数向它的前一位进1)3.求下面各数的近似数.根据学生掌握情况教师总结:求万以内数的近似数,要根据要求省略这个数的十位、百位或千位后面的尾数.如果尾数的最高位不满5,就直接把尾数舍去,改写成0;如果尾数的最高位满5,把尾数改写成0后,还要向它的前一位进1.作业:看书第20、21页.小资料〔近似数和四舍五入法〕有关近似数的知识在实际生活、应用中经常遇到.在多位数读写之后,教学近似数和四舍五入法,使学生初步理解近似数的意义与截取近似数的方法,可以进一步加深学生对数的概念的理解,为以后学习小数取近似值做准备.取近似数的时候,省略哪一位后面的尾数要根据实际需要,按一定的规则进行.考虑到学生的接受能力,在小学主要讲常用的把一个多位数四舍五入到“万位”或“亿位”的方法.例如751872和754920,755830和758850,要省略万后面的尾数.751872和754920,尾数最高位千位上是1和4,不足一万的一半,把尾数舍去,改写成0.751872≈750000,754920≈750000.755830和758850,尾数最高位千位上是5和8,等于或大于一万的一半,把尾数改写成0后,要向它的前一位进1.755830≈760000,758850≈760000.省略亿位后面的尾数的方法可以依此类推.〔四舍五入法〕这是取近似数最常用的方法.具体做法是:把数按需要截取指定数位后,如果去掉的部分最高位上的数是4或者比4小,就把它舍去(称为“四舍”),这样得到的近似数值叫不足近似值;如果去掉的部分最高位上的数是5或者比5大,就在保留部分的最后一位数上加1(称为“五入”),这样得到的近似值叫过剩近似值.例如:20÷7=2.85714……用四舍五入法使得数保留三位小数,得20÷7≈2.857 (四舍)用四舍五入法使得数保留两位小数,得20÷7≈2.86 (五入)课堂教学设计说明有关近似数的概念是学生第一次接触,但又不生疏,因为在日常生活中会经常遇到,根据这一实际情况,教师就从学生身边熟悉的事物入手,通过一些实例使学生体会到用一个与准确数相接近的整十、整百、整千的数来表示一些事物的数量很方便,记忆容易,计算简单,这样学生既认识到近似数的实用性,又提高了学生的学习兴趣,使学生感到很容易就掌握了这一新知识.教学例9时,通过让学生观察思考206接近哪个整百数.由于数字比较简单学生容易说出206接近200,情绪自然很高,老师接着出示314,325,336,347这几个数让学生充分讨论.使学生自己悟出“四舍”的方法,至于“五入”学生自然是自己获取.在教师引导下,学生通过观察,分析,讨论,判断掌握了如何用“四舍五入”法求三位数的近似数的方法.学生的求知欲望激发起来了,在这个基础上再来研究如何求四位数的近似数,这是进一步巩固求一个数的近似数的关键.通过一定量的练习,使学生真正理解和掌握求近似数的方法.感谢阅读,希望能帮助您!。
教案:2.6认识近似数和用“四舍五入法”求一个数的近似数一、教学目标1. 让学生理解近似数的概念,明确近似数与准确数的区别。
2. 使学生掌握“四舍五入法”,并能正确运用该方法求一个数的近似数。
3. 培养学生估算意识,提高解决实际问题的能力。
二、教学重点1. 近似数的概念。
2. “四舍五入法”的应用。
三、教学难点1. 近似数的理解。
2. “四舍五入法”的运用。
四、教学过程1. 导入通过生活实例,让学生感受近似数在实际生活中的应用,激发学生学习兴趣。
2. 新课讲解(1)近似数的概念通过实例,引导学生理解近似数的含义,明确近似数与准确数的区别。
(2)“四舍五入法”通过实例,讲解“四舍五入法”的原理,并让学生尝试运用该方法求一个数的近似数。
3. 案例分析(1)出示案例,让学生独立思考,运用“四舍五入法”求出近似数。
(2)讨论分析,让学生充分发表自己的看法,理解“四舍五入法”在实际问题中的应用。
4. 实践操作(1)让学生分组进行实际操作,运用“四舍五入法”求出给定数的近似数。
(2)小组讨论,分享操作经验,总结“四舍五入法”的应用技巧。
5. 总结拓展(1)总结本节课所学内容,让学生明确近似数的概念及“四舍五入法”的应用。
(2)布置课后作业,让学生进一步巩固所学知识。
五、教学评价1. 课后作业完成情况。
2. 学生在实际问题中运用“四舍五入法”求近似数的能力。
六、教学反思1. 教师要关注学生在学习过程中的疑问,及时解答,确保学生掌握所学知识。
2. 教师要注重培养学生的估算意识,提高解决实际问题的能力。
3. 教师要不断调整教学策略,以提高教学效果。
通过本节课的学习,学生能理解近似数的概念,掌握“四舍五入法”,并能将其应用于实际问题中。
同时,学生的估算意识得到提高,为今后的学习打下坚实基础。
重点关注的细节是:“四舍五入法”的应用。
“四舍五入法”是求一个数的近似数的一种方法,它是数学中常用的估算方法之一。
在小学数学教学中,掌握“四舍五入法”对学生理解数的概念、提高计算速度和解决实际问题具有重要意义。
近似数及其计算方式江苏省泗阳县李口中学沈正中一、求近似数的三种方式1. 四舍五入法这是一种最经常使用的求近似数的方式,就是看确信保留数位的下一名数字,比5小的(即0、一、二、3、4),就把那个数字和后面的所有数字舍去;若是那个数字比4大(即五、六、7、八、9),就把那个数字和后面的所有数字舍去后,向前一名进一。
如,保留到万分位写为,即≈(以下类推),保留到千分位写作,保留到百分位写作,保留到十分位写作,保留到整数写作64。
由此能够看出:“四舍”时,近似数比准确值小,“五入”时,近似数比准确值大。
2. 进一法在实际生活中,有时把一个数的保留数位确信后,只要下一名数字或后面的数字有不为0的(即一、二、3、……、9),都要向前一名进一。
如:同窗们同时去划船,每只船上最多能载7个同窗,17个同窗至少需几只船?17÷7≈,确实是说17个同窗需要2只船还余3人,这3人还需一只船,因此一共需要3只船。
即17÷7=≈3 (只)。
由此可知:用进一法取得的近似数总比准确值大。
3. 去尾法在实际生活中,有时把一个数的保留数位确信后,不管下一名数字或后面的数字是几(即0、一、二、3、……、9),都不要向前一名进一。
如:用一根5m米长水管做成一批27cm长相同规格的水管,能够做成多少根?500÷27=≈18(根)由此可知:用去尾法取得的近似数总比准确数小。
二、近似数的四则混合运算1. 近似数的加减法在一样情形下,近似数相加减的和或差精准到哪一名,与已知数中精准度最低的一个相同,计算法则:(1)确信结果精准到哪个数位(与已知数中精准度最低那个数精准数位相同);(2)把已知数中的其它数,四舍五入到已知数中精准度最低那个数数位的下一名;(3)进行计算,而且把算得的数的末位数字四舍五入。
【例1】求近似数、、和56的和。
解:+++56≈+++56=≈91【例2】求近似数减的差。
解:-≈-=≈2. 近似数的乘除法在一样情形下,近似数相乘除的积或商取几个有效数字,与已知数中有效数字最少的相同,计算法则:(1)确信结果有多少个有效数字(与已知数中有效数字最少的相同);(2)把已知数中其它数,四舍五入到比已知数中有效数字最少的多一个;(3)进行计算(除法要比结果有效数字多算出一名),并把算得的数四舍五入到应该有的有效数字的个数。
2.6认识近似数和用“四舍五入法”求一个数的近似数(教案)苏教版四年级下册数学教案:2.6认识近似数和用“四舍五入法”求一个数的近似数一、教学内容本节课的教学内容来自苏教版四年级下册数学第56页。
内容包括:1. 让学生通过实例体会近似数的概念,了解近似数在实际生活中的应用。
2. 引导学生学习“四舍五入法”,并能够运用该方法求一个数的近似数。
3. 培养学生运用数学知识解决实际问题的能力。
二、教学目标1. 让学生掌握近似数的概念,了解近似数在实际生活中的运用。
2. 学会使用“四舍五入法”求一个数的近似数。
3. 培养学生的数学思维能力和解决实际问题的能力。
三、教学难点与重点1. 教学难点:理解并掌握“四舍五入法”,能够灵活运用该方法求一个数的近似数。
2. 教学重点:让学生通过实例体会近似数的概念,并能够运用“四舍五入法”求一个数的近似数。
四、教具与学具准备1. 教具:黑板、粉笔、课件。
2. 学具:练习本、铅笔、橡皮。
五、教学过程1. 实践情景引入:情境一:小明去超市买苹果,每斤苹果3元,小明想买2斤,但只有10元,请问小明能买到苹果吗?情境二:妈妈让小华去超市买牛奶,每瓶牛奶4元,小华有12元,问小华能买到几瓶牛奶?2. 近似数的概念:通过实例讲解,让学生理解近似数的概念。
近似数是对一个数进行估算,使得估算结果与实际数相差不大的数。
3. 学习“四舍五入法”:讲解“四舍五入法”的规则,并通过实例演示,让学生掌握该方法。
实例一:将3.2四舍五入到整数。
实例二:将2.8四舍五入到整数。
让学生模仿实例,进行练习。
4. 求一个数的近似数:让学生运用“四舍五入法”,求出给定数的近似数。
练习一:将5.6四舍五入到整数。
练习二:将7.2四舍五入到整数。
六、板书设计1. 近似数的概念2. “四舍五入法”的规则3. 求一个数的近似数的方法七、作业设计1. 求下列数的近似数,并说明求解过程:题目一:将2.7四舍五入到整数。
中考数学近似数和科学计数法一、近似数近似数是一种对实数进行粗略估测的方法,使用近似数可以简化计算,方便求解。
1.1、四舍五入法四舍五入是指将一个实数取整时,若该数的小数部分大于等于5,则舍去该数的小数;若小数部分小于5,则将整个数舍去小数部分;若小数部分恰好为5,则将整个数加上1,再舍去小数部分。
例如,将3.14159取精确到小数点后2位时,应该先将它舍去百分位后的位数,只保留小数点后2位,即3.14,然后根据3.14159的最后一位数字9的大小,来决定3.14向上取整还是向下取整。
因为9大于5,所以应该将3.14向上取整,即舍去小数部分,将整数部分加1,得到3.15。
1.2、估算法估算法是指一种近似计算法,通过对一个数的大小、数位、前后相邻数等情况进行分析和比较,得到一个较接近于实际数值的近似数。
例如,将17325.6近似为整数时,可以先观察末尾两位小数,6大于等于5,说明取整后应该在末尾加1,因此可以先将17325.6近似为17326,然后再观察数的范围,可以发现17326的上限应该是17350,因为17350比17326大且在17300~17400的范围内,而17326的下限应该是17300。
因此,可以得到一个比17325.6稍大一些、较接近实际的近似数17350。
1.3、计算误差近似数与实际数之间存在着一定的误差,称为计算误差。
计算误差的大小取决于估算的精度和所用的方法。
例如,将π近似为3时,实际结果与近似结果之间的误差为π-3≈0.14159。
二、科学计数法科学计数法是一种表示较大或较小数字的方法,它将一个实数表示为形如a×10^b的形式,其中a是一个范围在1~10之间的实数,b 为整数,且表示了该数在10进制下的小数点位置。
例如,将0.0000000421写成科学计数法,则需要将小数点向右移8位,得到4.21×10^-8。
相应地,将2935000写成科学计数法,则需要将小数点向左移5位,得到2.935×10^6。
四年级数学近似数知识点
一、近似数的概念
近似数是指与准确数相近的一个数。
准确数:即这个数的最原始数据,没有经过约分、化简、或者四
舍五入等任何运算之前的表达方法。
近似数:经过四舍五入、进一法或者去尾法等方法得到的一个与
原始数据相差不大的一个数。
二、四舍五入法
1. 如果尾数的最高位数字是 4 或者比 4 小,就把尾数去掉。
例如:54321 近似到万位,因为千位是 4,所以54321 ≈ 50000
2. 如果尾数的最高位数是 5 或者比 5 大,就把尾数舍去并且在它的前一位进 1。
例如:65890 近似到万位,因为千位是 5,所以65890 ≈ 70000
三、进一法
进一法是去掉多余部分的数字后,在保留部分的一个数字上加
1。
例如:一堆货物需要装 3.2 个箱子,实际需要 4 个箱子才能装完。
四、去尾法
去尾法是去掉数字的小数部分,取其整数部分。
例如:用一匹布做衣服,每件衣服用布 2.5 米,这匹布可以做 8 件衣服。
五、求近似数的应用
在实际生活中,经常会用到近似数来描述一些数量。
比如:描述城市的人口数量、统计商品的销售额等。
在计算时,要根据具体情况选择合适的方法求近似数。
小学三年级数学求近似数四舍五入教案一、教学目标1.让学生理解四舍五入的概念,掌握求一个数的近似数的方法。
2.培养学生运用四舍五入法求近似数的能力。
3.培养学生独立思考、合作交流的良好学习习惯。
二、教学重难点重点:理解四舍五入的概念,掌握求一个数的近似数的方法。
难点:灵活运用四舍五入法求近似数。
三、教学准备1.课件或黑板2.练习题四、教学过程1.导入师:同学们,我们之前学过整数和分数的比较,那么你们知道什么是近似数吗?生:近似数就是与准确数相近的数。
师:很好!那我们今天就来学习如何求一个数的近似数,这种方法叫做四舍五入。
2.讲解四舍五入的概念师:我们来了解一下四舍五入的概念。
四舍五入是一种求近似数的方法,它的原则是:如果要保留的位数的下一位数大于等于5,就向前进一位;如果小于5,就舍去。
例如:我们要保留整数10的个位数,它的下一位数是0,小于5,所以我们舍去,得到10的近似数为10。
3.演示四舍五入的过程师:下面,我给大家演示一下四舍五入的过程。
(1)保留整数10的十分位,下一位是0,小于5,舍去,得到10.0。
(2)保留整数12的个位数,下一位是2,小于5,舍去,得到12。
(3)保留整数14的十位数,下一位是4,小于5,舍去,得到10。
4.练习四舍五入师:现在,我们来练习一下四舍五入。
(1)保留整数15的个位数。
生:15的下一位是5,大于等于5,所以我们要进一位,得到20。
(2)保留整数18的十位数。
生:18的下一位是8,大于等于5,所以我们要进一位,得到20。
(3)保留整数23的百位数。
生:23的下一位是3,小于5,所以我们要舍去,得到20。
师:同学们,通过刚才的练习,你们掌握了四舍五入的规则了吗?生:是的,老师。
6.应用四舍五入解决实际问题师:我们来解决一些实际问题。
(1)小明的身高是1.45米,请用四舍五入法求出他的身高近似数。
生:保留整数1的十分位,下一位是4,小于5,舍去,得到1.4米。
近似数和“四舍五入”法什么是近似数?近似数是指一个数与真实数(精确值)非常接近的数。
由于人们在进行计算或测量时往往无法得到完全精确的结果,因此近似数的概念变得非常重要。
为什么需要近似数?在现实生活中,我们无法得到绝对准确的数值。
无论是进行测量、计算还是进行科学研究,我们往往只能得到近似的结果。
通过近似数,我们可以更好地描述和理解真实的数值,从而方便我们进行各种计算和决策。
“四舍五入”法“四舍五入”是一种常用的近似数方法。
它的基本原则是:当一个数的小数部分大于等于5时,就将该数的整数部分加1;当小数部分小于5时,保持整数部分不变。
例如,将3.8四舍五入到整数,结果为4;将3.2四舍五入到整数,结果为3。
“四舍五入”法的应用非常广泛。
在金融领域,例如计算利息和汇率时,往往需要对数值进行四舍五入。
在统计学中,对数据进行舍入是常用的数据处理方法之一。
如何进行“四舍五入”?“四舍五入”可以应用于不同精度的数值,包括整数、小数和百分数等。
下面以几种常见的例子来说明如何进行“四舍五入”。
整数的“四舍五入”当对一个整数进行四舍五入时,我们需要关注要舍入的位数。
例如,将1234四舍五入到十位的整数,则需要考虑百位的数字。
若百位数字大于等于5,则将千位的整数部分加1;若百位数字小于5,则直接舍弃百位和个位。
小数的“四舍五入”在处理小数时,我们需要根据要舍入的位数来决定舍入的规则。
例如,将3.14159四舍五入到小数点后两位,则需要关注小数点后第三位数字。
若第三位数字大于等于5,则将第二位数字加1;若第三位数字小于5,则直接舍弃第三位及之后的数字。
百分数的“四舍五入”对百分数进行四舍五入时,我们需要注意百分数的基数。
例如,将78.5%四舍五入到整数,我们需要将78.5%转换为0.785,然后按照小数的“四舍五入”规则进行处理。
“四舍五入”法的误差尽管“四舍五入”法是一种常用的近似数方法,但它并不是完全准确的。
在某些情况下,使用“四舍五入”法可能会引入一定的误差。
四年级数学近似数四舍五入嘿,小伙伴们,今天咱们来聊聊一个非常有趣的话题——四年级的数学,尤其是“近似数”和“四舍五入”。
哎呀,这可不是单纯的数字游戏哦,里面可是大有文章呢!你们知道吗,四舍五入其实就是给数字穿衣服,把它们打扮得漂漂亮亮的,让它们更容易和大家打交道。
就像我们有时候去参加派对,难免要穿上好看的衣服,数字也是一样的,嘿嘿!首先,我们得搞清楚什么是四舍五入。
简单来说,四舍五入就是把一个小数变得更简单,让它看起来更好理解。
比如说,你看到一个数字是3.7,你会想,“这个数字到底是3还是4呢?”这时候,四舍五入就像一个聪明的小精灵,告诉你:“嘿,兄弟,3.7离4更近,所以就把它变成4吧!”是不是很神奇?就像我们在生活中选择吃什么一样,有时候我们看到菜单上的菜,左挑右选,最后还是决定点那个最喜欢的,哈哈!说到这里,咱们得提提“四舍五入”的原则了。
听着别担心,原则其实很简单,根本不需要你背诵。
规则就是:小于5就舍去,大于等于5就进位。
就像你在超市里购物,看到一瓶饮料价格是4.3元,你心里想,嗯,这个价格不错,可以接受。
可是如果它是4.6元,那可就得涨价了哦,要准备好掏更多的钱了。
不过,别担心,这些小数字都是可以处理的,毕竟咱们都是聪明的小朋友,谁怕谁呀?那再来举个例子。
假设你在考试中得了88.4分,老师问你,这个分数是多少?你可能会皱皱眉头:“88.4,88.4,这个分数要怎么处理呢?”这时候,咱们可以来个四舍五入,88.4离88更近,所以答案就是88分。
听起来简单吧?但实际上,这样的小技巧能让我们在生活中更省时省力。
不过,别以为四舍五入就只有在数学题里才用到,生活中随处可见呢!比如说,买东西的时候,如果你看到一件衣服打完折是299.99元,哈哈,那你就可以想:“哎呀,299.99元,这不就是300元吗?”这样一来,心理上就觉得自己买到了个划算的 deal!说不定晚上还可以为自己做个小庆祝,哈哈!你们有没有听过“见微知著”这句话?这就是说,从小事儿里就能看出大道理。
数学教案求近似数、四舍五入各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢课题:求近似数、四舍五入教学目标1.使学生理解并掌握近似数的概念.2.使学生初步掌握用“四舍五入法”求一个数的近似数.3.能正确运用“四舍五入法”解决日常生活中的实际问题,并通过联系生活实际,激发学生学习数学的兴趣.教学重点用“四舍五入法”求一个数的近似数.教学难点归纳求万以内近似数的方法.教学步骤一、铺垫孕伏.出示卡片,进行口算练习.60×4=5720=36÷4=300×6=72÷9=30×70=23×4=25+8=二、探究新知.1.导入新课.(1)教师引导:请同学们拿出直尺测量一下教科书封面的长度是多少厘米?学生测后:20厘米多一些,接近21厘米.教师明确:如果我们不需要非常准确的结果,可以认为教科书的长大约是20厘米.(2)我们在日常生活中会经常遇到上面的情况.例如:今天早晨老师买早点,花去了元,我们可以说花去了2元左右;又如:小明家路学校495米,我们可以说小明家距学校大约500米.在这里,我们就把“2元钱”、“500米”叫做元和495米的近似数.(板书)(3)近似数在我们日常生活中运用是非常广泛的,同学们回忆一下,我们日常生活中哪些地方运用过近似数?(学生自由回答)引导学生回答:我们伟大祖国的陆地面积是多少平方千米?(大约960万平方千米)哪位同学知道我国的人口约为多少亿?(十二亿)2.教师:以上一些数据,都是一些近似数.那么,究竟怎样来一个数的近似数呢?(1)出示例9:同学们浇树,浇了206棵松树,浇了284棵杨树,求这两个数的近似数.教师根据学生回答情况,总结说明:因206与200相差6,而206与300相差94,所以206最接近200,也就是说,206的近似数是200.板书:206≈200(2)讲授约等号.教师:这里的“≈”是约等号,206≈200读作206约等于200.(3)让学生通过以上的学习,自己类推284的近似数是284≈300.3.讲授“四舍五入法”.(1)二百几十几的近似数有的是200,有的是300,讨论一下,为什么出现这种情况?根据学生讨论,教师小结:二百几十几的数,十位上的数是0、1、2、3、4时,它们都比较接近于200,因此,求它们的近似数时,都是把百位后面的尾数会去,并且把会去的数位用“0”补足.如果二百几十几的数,十位上的数是5、6、7、8、9,它们比较接近于300,因此,求它们的近似数,是把这个数百位后面的尾数改写成0,同时,向百位进一.因此,284年的近似数就是300,这种求近似值的方法叫做“四舍五入法”.(板书)(2)用“四舍五入法”求一个数的近似数,比如求几百几十几的近似数大约是几百,首先看它十位上的数.如果十位上的数是4或者比4小的数,就把百位后的尾数舍去,改写为“0”;如果十位是5或者比5大的数,就把尾数改写为0,并向百位进一.4.反馈练习.(1)694大约是几百,并说出理由.引导学生明确:先看十位上的数是不是满5,9比5大,把尾数改写成0,还要向百位进一,写作694≈700.(2)6250大约是几千?三、课堂小结.本堂课我们学习了用“四舍五入”求一个数的近似数.即根据要求省略它的尾数:如果要省略的尾数最高位不满5,就把尾数舍去,改写为0;如果要省略的尾数最高位满5,把尾数改写为0后,还要向它的前一位进1.四、随堂练习.1.求出下面各数的近似数.(省略最高位后面的尾数)89419581679288702.填空.(1)新编小学生字典有592页,大约是_______页.(2)我班有学生43人,大约有_______人.(3)今天,小明买学习用具花去大约10元钱,小明可能花去了_______元或_______元.>3.(1)下面各数大约是几百?189≈203≈451≈(2)下面各数大约是几千?1120≈5906≈3005≈五、布置作业.结合生活实际,自编5道用“四舍五入法”求近似数的题,如:我们班有72块玻璃,72≈70;奶奶今年59岁,大约60岁.板书设计近似数和“四舍五入法”各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。
【教育资料】六年级数学教案:近似数和“四舍五入”法教学目的:1.使学生初步学会四舍五入法求一个数的近似数。
2.会写、会用。
教学重点:用四舍五入法求一个数的近似数。
教学难点:归纳求万以内近似数得方法。
教学过程:一、调查汇报有关数据。
1.学生汇报调查情况。
2.根据学生的调查情况引入新课:(1)教师根据学生的调查情况进行板书。
(2)通过实例向学生说明什么是近似数。
二、自主探索,领悟新知1.教师在学生汇报的基础上,出示一组与学生或生活相关的数据、让学生直接说出它们大约是几百。
(1)教师出示数据。
(2)学生汇报说明自己的想法,教师板书:20820xx8710009279008929005175006717004394001524002.在出示几个百位上的数字相同,十位数上的数字是4、5、6的三位数,让学生讨论他们大约是几百?并说明理由。
(1)学生讨论汇报。
(2)教师根据学生汇报点拨引导。
在肯定学生的判断方法后提出问题,这种方法的确能够判断一个数比较接近哪个整百数,即它的近似数,但是这种求法太麻烦,因为看到这个数,就要进行口算,有的数并不是一眼就能看出来,启发学生根据板书看一看有没有更方便的方法求一个数的近似数?(3)学生再`次讨论,教师巡视。
(4)汇报交流,总结方法。
(5)教师小结,提炼方法。
3.学习准确数和近似数的表示方法。
教师利用板书进行引导,教学约等号的写法和读法,完善板书。
4.反馈练习,巩固方法。
做第20页的做一做三、总结交流,提炼方法(1)学生先在小组中讨论分析求万以内数的近似数的方法,然后汇报。
(2)教师总结。
(3)学生看书。
四、巩固练习,强化知识做练习五的第1题。
五、课堂作业(1)当5606000时,内取得数字可以是()。
(2)当4894000时,内取得数字可以是()。
(3)求下面各数的近似数(省略最高位后面的尾数)4851649825104093876560板书:近似数和四舍五入法20820xx871000927900892900517500671700439400152400。
小学三年级数学求近似数、四舍五入教案教学目标1.使学生明白得并把握近似数的概念.2.使学生初步把握用四舍五入法求一个数的近似数.3.能正确运用四舍五入法解决日常生活中的实际问题,并通过联系生活实际,激发学生学习数学的爱好.教学重点用四舍五入法求一个数的近似数.教学难点归纳求万以内近似数的方法.教学步骤一、铺垫孕伏.出示卡片,进行口算练习.604=57-20=364=3006=729=3070=234=25+8=二、探究新知.1.导入新课.(1)教师引导:请同学们拿出直尺测量一下教科书封面的长度是多少厘米?学生测后:20厘米多一些,接近21厘米.教师明确:假如我们不需要专门准确的结果,能够认为教科书的长大约是20厘米.(2)我们在日常生活中会经常遇到上面的情形.例如:今天早晨老师买早点,花去了2.1元,我们能够说花去了2元左右;又如:小明家路学校495米,我们能够说小明家距学校大约500米.在那个地点,我们就把2元钱、500米叫做2.1元和495米的近似数.(板书)(3)近似数在我们日常生活中运用是专门广泛的,同学们回忆一下,我们日常生活中哪些地点运用过近似数?(学生自由回答)引导学生回答:我们伟大祖国的陆地面积是多少平方千米?(大约96 0万平方千米)哪位同学明白我国的人口约为多少亿?(十二亿)2.教师:以上一些数据,差不多上一些近似数.那么,怎么说如何样来一个数的近似数呢?(1)出示例9:同学们浇树,浇了206棵松树,浇了284棵杨树,求这两个数的近似数.教师依照学生回答情形,总结说明:因206与200相差6,而206与30 0相差94,因此206最接近200,也确实是说,206的近似数是200.板书:206200(2)讲授约等号.教师:那个地点的是约等号,206200读作206约等于200.(3)让学生通过以上的学习,自己类推284的近似数是284300.3.讲授四舍五入法.(1)二百几十几的近似数有的是200,有的是300,讨论一下,什么缘故显现这种情形?依照学生讨论,教师小结:二百几十几的数,十位上的数是0、1、2、3、4时,它们都比较接近于200,因此,求它们的近似数时,差不多上把百位后面的尾数会去,同时把会去的数位用0补足.假如二百几十几的数,十位上的数是5、6、7、8、9,它们比较接近于300,因此,求它们的近似数,是把那个数百位后面的尾数改写成0,同时,向百位进一.因此,284年的近似数确实是300,这种求近似值的方法叫做四舍五入法.(板书)(2)用四舍五入法求一个数的近似数,比如求几百几十几的近似数大约是几百,第一看它十位上的数.假如十位上的数是4或者比4小的数,就把百位后的尾数舍去,改写为0;假如十位是5或者比5大的数,就把尾数改写为0,并向百位进一.4.反馈练习.(1)694大约是几百,并说出理由.引导学生明确:先看十位上的数是不是满5,9比5大,把尾数改写成0,还要向百位进一,写作694700.(2)6250大约是几千?三、课堂小结.本堂课我们学习了用四舍五入求一个数的近似数.即依照要求省略它的尾数:假如要省略的尾数最高位不满5,就把尾数舍去,改写为0;假如要省略的尾数最高位满5,把尾数改写为0后,还要向它的前一位进1.四、随堂练习.1.求出下面各数的近似数.(省略最高位后面的尾数)89 419 581 6792 88702.填空.(1)新编小学生字典有592页,大约是_______页.(2)我班有学生43人,大约有_______人.(3)今天,小明买学习用具花去大约10元钱,小明可能花去了_____ __元或_______元.3.(1)下面各数大约是几百?189 203 451(2)下面各数大约是几千?1120 5906 3005要练说,得练看。
---------------------------------------------------------------范文最新推荐------------------------------------------------------
近似数和“四舍五入”法
教学目的:
1.使学生初步学会四舍五入法求一个数的近似数。
2.会写、会用≈。
教学重点:用四舍五入法求一个数的近似数。
教学难点:归纳求万以内近似数得方法。
教学过程:
一、调查汇报有关数据。
1.学生汇报调查情况。
1 / 5
2.根据学生的调查情况引入新课:
(1)教师根据学生的调查情况进行板书。
(2)通过实例向学生说明什么是近似数。
二、自主探索,领悟新知
1.教师在学生汇报的基础上,出示一组与学生或生活相关的数据、让学生直接说出它们大约是几百。
(1)教师出示数据。
(2)学生汇报说明自己的想法,教师板书:
208 200 987 1000
927 900 892 900
517 500 671 700
439 400 152 400
---------------------------------------------------------------范文最新推荐------------------------------------------------------
2.在出示几个百位上的数字相同,十位数上的数字是4、5、6的三位数,让学生讨论他们大约是几百?并说明理由。
(1)学生讨论汇报。
(2)教师根据学生汇报点拨引导。
在肯定学生的判断方法后提出问题,这种方法的确能够判断一个数比较接近哪个整百数,即它的近似数,但是这种求法太麻烦,因为看到这个数,就要进行口算,有的数并不是一眼就能看出来,启发学生根据板书看一看有没有更方便的方法求一个数的近似数?
(3)学生再`次讨论,教师巡视。
(4)汇报交流,总结方法。
(5)教师小结,提炼方法。
3.学习准确数和近似数的表示方法。
3 / 5
教师利用板书进行引导,教学约等号的写法和读法,完善板书。
4.反馈练习,巩固方法。
做第20页的做一做
三、总结交流,提炼方法
(1)学生先在小组中讨论分析求万以内数的近似数的方法,然后汇报。
(2)教师总结。
(3)学生看书。
四、巩固练习,强化知识
做练习五的第1题。
五、课堂作业
(1)当5 60≈6000时,内取得数字可以是()。
---------------------------------------------------------------范文最新推荐------------------------------------------------------ (2)当4 89≈4000时,内取得数字可以是()。
(3)求下面各数的近似数(省略最高位后面的尾数)
485≈ 16498≈ 2510≈ 40938≈ 76560≈
5 / 5。