机加工行业中数控机床的常用系统
- 格式:docx
- 大小:397.26 KB
- 文档页数:2
数控机加工必备知识点数控机加工是一种通过计算机程序对机床进行控制,实现零件加工的自动化加工技术。
它已经成为现代制造业中不可或缺的一环。
本文将介绍数控机加工的一些必备知识点,帮助读者了解数控机加工的基本概念和流程。
一、数控机床的基本原理和结构数控机床是数控机加工的核心设备,了解其基本原理和结构是进行数控加工的第一步。
数控机床的核心是数控系统,它由硬件和软件两部分组成。
硬件包括机床本体、伺服系统、传感器等,而软件则包括编程软件、控制软件等。
了解数控机床的基本原理和结构有助于我们更好地理解数控加工的过程和原理。
二、数控编程基础知识数控编程是数控机加工的关键步骤,它决定了机床的加工路径和工艺参数。
数控编程的基础知识包括G代码和M代码的编写规范、坐标系的选择和变换、刀具半径补偿等。
掌握这些知识可以编写出高效、准确的数控程序,提高加工效率和质量。
三、数控刀具的选择和使用数控刀具是进行数控加工的重要工具,合理选择和使用数控刀具能够提高加工效率和产品质量。
数控刀具的选择需要考虑加工材料、加工工艺和加工要求等因素。
此外,了解数控刀具的结构和性能参数也是必要的,例如刀尖半径、切削速度、进给速度等。
四、数控加工中的安全措施数控加工过程中存在一定的安全风险,掌握正确的安全措施是保障操作人员安全的关键。
数控加工中的安全措施包括机床的安全操作规程、刀具的安装和调试、加工过程中的安全监控等。
遵循这些安全措施能够有效降低事故发生的概率,确保加工过程的安全性。
五、数控加工中的常见问题及解决方法在进行数控加工时,常常会遇到一些问题,如加工精度不达标、加工表面质量不理想等。
了解常见问题及其解决方法可以帮助我们快速排除故障,提高加工效率。
常见问题包括刀具磨损、加工温度过高、机床刚度不足等,解决方法则根据具体问题而定。
六、数控加工技术的发展趋势随着科技的不断进步,数控加工技术也在不断发展。
了解数控加工技术的发展趋势有助于我们把握行业动态,提前做好技术储备。
CNC工作原理CNC(Computer Numerical Control)是一种利用计算机控制的数控系统,它能够精确控制机床进行加工操作。
CNC工作原理涉及到计算机控制、传感器、执行器和编程等方面的知识。
下面将详细介绍CNC工作原理的各个方面。
一、计算机控制CNC系统的核心是计算机控制单元(CCU),它负责接收、解释和执行用户编写的程序。
CCU通过与机床的接口进行通信,将指令传递给机床的执行器,控制机床进行各种运动。
计算机控制使得CNC系统具有高度的灵便性和可编程性,能够实现复杂的加工操作。
二、传感器CNC系统中的传感器用于检测和测量机床和工件的状态和位置。
常用的传感器包括位置传感器、压力传感器、温度传感器等。
位置传感器可以精确测量机床各个轴的位置,从而实现精确的加工操作。
压力传感器和温度传感器可以监测切削过程中的刀具负载和工件温度,以保证加工质量和安全性。
三、执行器执行器是CNC系统中负责实际加工操作的部件。
常见的执行器包括机电、液压缸温和动元件等。
机电是最常用的执行器,它可以驱动机床的各个轴进行运动。
液压缸温和动元件通常用于控制机床的夹紧装置和刀具换装装置等。
四、编程CNC系统的编程是指根据加工要求编写机床加工的指令。
常见的编程语言包括G代码和M代码。
G代码用于定义机床的运动轨迹和加工参数,例如切削速度和进给速度等。
M代码用于控制机床的辅助功能,例如刀具换装和冷却液开关等。
编程可以手动输入,也可以通过CAD/CAM软件生成。
五、加工过程CNC系统的加工过程包括以下几个步骤:首先,通过CAD软件设计出要加工的零件,并将其转换为机床能够理解的G代码。
然后,将G代码输入CNC系统,并进行程序的编辑和校验。
接下来,将工件夹紧在机床上,并进行刀具的安装和调整。
最后,启动CNC系统,它会按照程序中定义的运动轨迹和加工参数,控制机床进行加工操作。
六、优势和应用CNC工作原理的优势在于高度的自动化和精度控制。
FANUC发那科系统数控车床的编程与操作实例FANUC发那科系统是一种广泛应用于机床行业的数控系统。
在数控车床的编程与操作方面,FANUC发那科系统具有强大的功能和灵活的编程方式,下面将通过一个实例来介绍FANUC发那科系统数控车床的编程与操作。
假设我们要加工一个简单的圆柱零件,直径为50mm,长度为100mm。
首先,我们需要进行准备工作,包括将工件夹紧在车床主轴上,并对刀具进行安装和调整。
在FANUC发那科系统中,我们可以通过编程实现自动化操作。
首先,我们需要设置零点。
在FANUC发那科系统中,零点可以通过编程设置或者手动设置。
在本例中,我们将使用编程设置零点的方式。
N10G54G92X0Z0N20T0101N30M06N40G96S200M03N50G01X50F0.3N60Z-5N70G01Z0N80G00X100N90M05N100M30上述代码说明如下:N10:设置工件坐标系,并将X和Z轴设置为零点。
N20:选择1号刀具,并将其装入刀套。
N30:刀套放置完毕,做正向旋转。
N40:设置主轴转速为200,同时使主轴正转。
N50:以0.3mm/min的进给速度,将刀具沿X轴移动到50mm处。
N60:将刀具沿Z轴移动到-5mm处。
N70:将刀具沿Z轴移动到0mm处。
N80:以快速移动速度,将刀具沿X轴移动到100mm处。
N90:停止主轴旋转。
N100:程序结束。
在上述程序中,G54是设置工件坐标系的指令,G92是设置零点坐标的指令;T0101是选择1号刀具,M06是刀具换向指令;G96是设定恒定切削进给的指令,S200是设定主轴转速,M03是主轴正转指令;G01是线性插补指令,F0.3是设定进给速度;G00是快速移动指令;M05是主轴停止指令;M30是程序结束指令。
有了上述程序,我们就可以进行加工操作了。
启动FANUC发那科系统,加载程序后,选择启动程序,数控车床将按照程序中的指令进行自动加工。
数控机床的基本构造及工作原理数控机床是一种利用计算机控制的自动化机械设备。
它是在传统机床的基础上发展而来,具有高精度、高效率和多功能特点。
下面将对数控机床的基本构造和工作原理进行详细介绍。
一、数控机床的基本构造1.机床主体部分:机床主体通常由床身、立柱、横梁和工作台等组成。
床身是整个机床的基础,用于安装和支撑其他各个部件。
立柱起支撑和导向作用,横梁用于支撑和传递载荷,工作台用于支撑工件。
2.传动系统:传动系统将电机产生的动力传递给刀具或工件,实现切削加工。
常见的传动方式包括电机驱动螺杆、齿轮传动和皮带传动等。
3.控制系统:控制系统是数控机床的核心部分,用于实现机床的自动化操作。
它由计算机、数控装置、伺服控制器和编码器等组成。
计算机是控制系统的主控部分,负责接收和处理指令。
数控装置将计算机的指令转化为电信号,控制伺服控制器和驱动器工作。
伺服控制器接收数控装置的信号,输出相应的电流给驱动器,驱动刀具或工件运动。
4.动力系统:动力系统提供机床的驱动力,通常由电机提供动力。
根据不同的切削工况和需求,可以采用不同类型的电机,如交流伺服电机、直流伺服电机和步进电机等。
5.刀具或工件换刀系统:刀具或工件换刀系统用于实现自动化换刀操作,提高生产效率。
根据不同的切削任务和工艺要求,可以配置不同的换刀方式,如手动换刀、自动换刀和带刀库的换刀等。
二、数控机床的工作原理1.编程:要进行数控加工,首先需要编写加工程序。
加工程序是由一系列指令组成的文本文件,用于描述切削路径、刀具换向、进给速度、切削深度等参数。
2.坐标系转换:在编写加工程序时,需要定义一个坐标系,用于描述刀具或工件的位置和运动。
通常使用直角坐标系或极坐标系。
在实际运行时,数控系统会将编程坐标转换为机床坐标,以控制机床的运动。
3.运动控制:数控系统根据加工程序生成的指令,通过伺服控制器控制电机运动,实现刀具或工件在空间中的运动。
伺服控制器接收数控装置发出的指令,输出相应的电流给驱动器,驱动电机旋转。
常用CNC编程软件数控编程同计算机编程一样也有自己的"语言",但有一点不同的是,现在电脑发展到了以微软的Windows为绝对优势占领全球市场.数控机床就不同了,它还没发展到那种相互通用的程度,也就是说,它们在硬件上的差距造就了它们的数控系统一时还不能达到相互兼容.所以,当我要对一个毛坯进行加工时,首先要以我们已经拥有的数控机床采用的是什么型号的系统。
?(1)Mastercam美国CNC公司开发的基于PC平台的CAD/CAM软件,它具有方便直观的几何造型Mastercam提供了设计零件外形所需的理想环境,其强大稳定的造型功能可设计出复杂的曲线、曲面零件。
Mastercam具有较强的曲面粗加工及的曲面精加工的功能,曲面精加工有多种选择方式,可以满足复杂零件的曲面加工要求,同时具备多轴加工功能。
由于价格低廉,性能优越,成为国内民用行业数控编程软件的首选。
?(2)UG Unigraphics 是美国Unigraphics Solution公司开发的一套集CAD、CAM、CAE 功能于一体的三维参数化软件,是当今最先进的计算机辅助设计、分析和制造的高端软件,用于航空、航天、汽车、轮船、通用机械和电子等工业领域。
UG软件在CAM领域处于领先的地位,产生于美国麦道飞机公司,是飞机零件数控加工首选编程工具。
?UG 优点1.提供可靠、精确的刀具路径2.能直接在曲面及实体上加工3.良好的使用者界面,客户也可自行化设计界面4.多样的加工方式,便于设计组合高效率的刀具路径5.完整的刀具库6.加工参数库管理功能7.包含二轴到五轴铣削、车床铣削、线切割8.大型刀具库管理9.实体模拟切削10.泛用型后处理器等功能11.高速铣功能CAM客户化模板?(3)Pro/E 是美国PTC (参数技术有限公司)开发的软件,是全世界最普及的三维CAD/CAM (计算机辅助设计与制造)系统。
广泛用于电子、机械、模具、工业设计和玩具等民用行业。
国产数控系统有哪些_国产数控系统哪个好内容来源网络,由深圳机械展收集整理!国产数控系统在国防军工的应用不仅是要实现批量化的商业价值,重要在于其对工业信息安全的贡献。
经过这些年的攻关,国产高档数控系统在功能、技术水平上与进口系统的差距不断缩小,欠缺的是技术验证的机会,直白的说也就是缺少用户的应用。
数控系统是一个软件系统,或者说是指令系统,而不是执行系统,是数控机床和其他智能装备的“大脑”和“核心”。
国内的数控系统厂家有:广州的广州数控,北京的凯恩帝、帝特马,武汉的华中数控,南京的华兴、仁和、开通、大地,成都的广泰,杭州的正嘉、深圳众为兴/GSK广州数控设备有限公司、成都广泰数控设备有限公司、北京航天数控系统有限公司、大连大森数控技术发展中心有限公司、大连光洋科技工程有限公司、南京华兴数控技术有限公司、南京大地数控科技有限公司、南京清华通用数控工程有限公司、绵阳圣维数控有限责任公司、江苏仁和新技术产业有限公司、海德盟数控技术(深圳)有限公司等等。
国产数控系统近年来在技术上有很多突破,但在工程应用和市场拓展上,仍然有些困难。
一方面国外相关产品的渗透和围剿力度不断加大,只要出现同类国产产品,国外产品就降价;如果是同样产品,国外产品就降低到成本线;品质稍高一点的国外产品,就降到和国产产品价格一致,市场竞争空前残酷。
根据数控系统厂家的技术实力、产品质量、服务品质和销售量,国产数控系统哪个好呢?国产数控系统有哪些?广州数控广州数控设备有限公司(简称:广州数控、GSK)成立于1991年,历经创业、创新、创造。
面向数控机床行业、自动化控制领域、注塑制品行业,广州数控为用户可提供机床数控系统、伺服驱动、伺服电机、数控机床连锁营销、机床数控化工程,自动化控制系统、工业机器人、精密数控注塑机、数控培训学院,为用户提供智能制造全过程解决方案。
拥有博士科研工作站、工程技术研发中心、工程实验室,拥有工程技术研发人员800多人、年投入科研经费占销售收入8%以上,年新产品收入占总销售的75%以上。
CNC系统介绍CNC系统(Computer Numerical Control System)是一种基于计算机技术、数字化控制和数值控制技术的先进控制系统,利用计算机控制机床进行自动化操作,可实现精密度高、生产效率高的机器加工。
CNC系统是现代制造业的重要组成部分,广泛应用于航空、航天、汽车、机械加工等领域。
CNC系统的发展历程CNC技术最初是在20世纪50年代初期问世的。
当时,由于机械加工需要高精度,但人工操作难以达到要求,因此需要一种更为灵活、高效、高精度的方式来控制机床。
于是,CNC 技术应运而生。
最初的CNC系统使用的是继电器逻辑控制,其制作成本较高,控制精度不高,难以满足高精度加工的需要。
随着计算机技术的发展,CNC系统逐渐采用了更加先进的数字化控制技术。
这些技术包括数值控制、图形化编程和全实时控制等,大大提高了CNC系统的控制精度、运行速度和操作简便性。
CNC系统的工作原理CNC系统通过计算机控制电机、液压、气动等部件的运动,从而控制机床加工工件的形状、尺寸和表面质量。
CNC系统的基本工作流程如下:1.设计CAD图纸首先,在计算机上设计CAD图纸,确定加工工件的形状、尺寸和表面性质。
2.编写CAM程序根据CAD图纸生成CAM程序,即将计算机中的图纸信息转化为机床可以识别的指令代码。
3.输入CNC控制系统将CAM程序传输到CNC控制系统中,通过控制系统将指令发送给机床,控制机床进行自动化加工。
4.加工工件机床按照指令自动进行加工,以达到CAD图纸中所设计的工件形状、尺寸和表面质量。
功能特点CNC系统的主要功能特点包括:1.高精度控制CNC系统采用数值控制技术,控制精度高达0.001mm,能够满足高精度加工的要求。
2.高生产效率CNC系统能够自动化控制机床运动,加速加工效率,同时减少误差和浪费。
3.灵活、可编程CNC系统可以根据需要重新编程,在不更改机床构造的情况下,实现对加工工件的形状、尺寸和表面质量的调整。
计算机数控系统之CNC系统1. 什么是CNC系统?CNC系统是计算机数控系统的简称,全称是Computer Numerical Control System,在机械加工领域中被广泛应用。
它是一种通过计算机控制机床进行加工操作的技术系统。
CNC系统基于计算机软件和硬件的配合,能够实现对机床的自动化控制。
通过输入加工图纸和参数,CNC系统能够自动计算出机床的动作轨迹,并控制机床按照要求进行加工操作,取代了传统的手工操作,大大提高了加工的精度和效率。
2. CNC系统的主要组成部分CNC系统一般由以下几个主要组成部分组成:数控设备是CNC系统的核心部分,它包括数控机床、数字伺服系统、编码器等硬件设备。
数控机床是根据加工需求来选择的,常见的数控机床包括铣床、车床、钻床等。
2.2 控制设备控制设备由计算机和控制软件组成,用于生成和执行加工程序。
计算机负责接收操作人员输入的加工图纸和参数,通过控制软件生成相应的加工程序,并将程序传输给数控设备执行。
2.3 输入设备输入设备用于向CNC系统输入加工图纸和参数。
常见的输入设备有键盘、鼠标、数控编程器等。
输出设备用于显示和打印加工结果、报表和日志等。
常见的输出设备有显示器、打印机等。
3. CNC系统的工作原理CNC系统的工作原理可以概括为以下几个步骤:3.1 加工图纸的输入操作人员使用输入设备将加工图纸和参数输入CNC系统。
加工图纸一般采用CAD/CAM软件进行设计和编制。
3.2 加工程序的生成CNC系统根据输入的加工图纸和参数,通过控制软件生成相应的加工程序。
加工程序包括切削路径、切削速度、进给速度等信息。
3.3 加工程序的传输CNC系统将生成的加工程序传输给数控设备。
传输方式可以是通过网络、U盘或其他存储介质进行传输。
3.4 加工操作的执行数控设备接收到加工程序后,根据程序指令控制机床进行加工操作。
机床的移动、进给、切削等动作均由数控设备进行控制。
3.5 加工结果的显示和输出CNC系统将加工结果通过输出设备显示或打印出来,供操作人员进行检查和记录。
数控机床的工作原理与应用一、引言数控机床作为现代制造业的重要设备之一,具备高精度、高效率、高灵活性等特点,被广泛应用于各个领域。
本文将介绍数控机床的工作原理及其在工业生产中的应用。
二、数控机床的工作原理数控机床是通过计算机控制系统来实现工作过程的自动化设备。
它主要由数控装置、执行机构、感知反馈系统和辅助设备等组成。
1. 数控装置数控装置是数控机床的核心部件,用于实现对机床运动和加工过程的控制。
它由计算机、控制电路、操纵面板和程序存储器等部分组成。
通过输入不同的程序和指令,数控装置能够精确控制机床的运动轨迹、切削速度、进给量等参数。
2. 执行机构执行机构是数控机床实现工作功能的关键部件。
它包括主轴驱动系统、进给系统和辅助系统等。
主轴驱动系统用于控制工具的旋转运动,进给系统用于控制工件和工具的相对运动,辅助系统用于辅助工作过程,如工作台的升降、夹具的固定等。
3. 感知反馈系统感知反馈系统用于实时监测机床的运动状态和加工质量,并将反馈信息传递给数控装置。
它包括位置传感器、速度传感器、力传感器等。
通过这些传感器的配合,数控机床能够精确感知自身和工件的状态,并作出相应的调整和控制。
4. 辅助设备辅助设备包括冷却系统、润滑系统、刀具库等,它们的作用是为机床提供稳定的工作环境和良好的工作条件,确保机床正常运行并获得高质量的加工结果。
三、数控机床的应用数控机床广泛应用于各个领域,包括航空航天、汽车制造、机械加工、电子设备等。
具体应用如下:1. 航空航天领域航空航天行业对于零件的精度和质量要求非常高,数控机床能够满足其高精度和高质量的加工需求。
在航空航天领域,数控机床被用于加工发动机零部件、飞机结构件等。
2. 汽车制造领域汽车制造领域对于零部件的批量生产能力要求较高,数控机床可以实现连续、高效率的生产工艺,提高生产效率和精度。
数控机床在汽车制造中的应用包括发动机零件加工、车身模具制造等。
3. 机械加工领域机械加工行业对于加工工艺的柔性要求较高,数控机床通过改变控制程序和加工参数,可以实现不同形状、不同材料的加工。
数控机床的现状与发展
一、数控机床的现状
数控机床是一种能够通过数控系统控制转子工作的机床。
它在机械加
工领域的应用越来越广泛,已经成为机械加工行业中的主流。
当前,数控
机床的发展非常迅速,它实现了自动操作,节省了大量的时间和人力,提
高了生产效率,精度高、速度快、质量好,加工费用低,还能缩短产品的
开发周期,使企业能够以更低的成本提供更多的产品。
数控机床的主要组成部分包括:夹具、数值控制系统、主轴驱动装置、传动系统、机械结构、伺服系统、液压系统等。
其中,数值控制系统是数
控机床的核心部分,它可以控制转子的速度和位置。
传动系统是数控机床
实现加工任务的主要部件,它能够将自动操作系统控制的输入力转换为转
子的运动任务。
伺服系统可以实现各种复杂的加工任务,有助于提高加工
精度和效率,从而满足制造业的特殊需求。
同时,不同类型的数控机床还
具有各自特有的优势,比如,纵轴数控机床的精度高,适合加工间隙小的
零件;横轴数控机床加工精度也高,但侧重于加工大型零件;圆盘式数控
机床则具有快速、精确的加工能力。
二、数控机床的发展
随着计算机技术、机械控制技术、传动技术的发展。
数控机床控制系统设计数控机床是一种高级自动化设备,主要应用于加工领域,具有高精度、高效率、高质量的特点,因此受到越来越多行业的追捧。
而数控机床控制系统也是数控机床能够完成高水平自动化加工的关键之一。
因此,数控机床控制系统的设计十分重要。
数控机床控制系统主要由数控系统、驱动系统和运动控制系统三部分组成。
其中,数控系统是数控机床控制系统的核心,包括数控芯片、显示屏等,用于控制机床的动作和加工工件的轮廓。
驱动系统用于驱动机床各轴运动部件,辅助数控系统的运动控制。
运动控制系统用于对加工工件的轮廓进行跟踪和调整,实现轨迹控制。
在进行数控机床控制系统设计时,需要考虑以下几个方面:1. 控制算法数控机床的控制算法决定了加工的精度和效率。
在设计数控机床控制系统时,需要根据机床的加工特点和要求,选择合适的控制算法,如PID控制算法、自适应控制算法等。
2. 控制器选择控制器是实现数控机床控制的主要设备之一,它包括数控系统、驱动系统和运动控制系统。
在选择控制器时,需要考虑可靠性、性能、可扩展性等。
3. 动力装置数控机床控制系统的动力装置是保障机床稳定运行的重要组成部分,包括伺服电机、伺服减速器等。
在进行动力装置的设计时,需要考虑能够稳定运行,快速响应和高精度的要求。
4. 通讯协议数控机床控制系统需要与上位计算机或其他设备进行通讯,因此需要使用通讯协议进行数据交互。
常用的通信协议有RS232C、RS422、RS485等,需要考虑通讯速率、数据可靠性和兼容性等。
综上所述,数控机床控制系统设计是一项复杂的工程,需要综合考虑机床加工特点、控制算法、控制器选择、动力装置和通讯协议等多方面因素。
只有设计出优秀的数控机床控制系统,才能够为机床的高精度加工提供良好的支持和保障。
数控系统的原理及应用1. 数控系统的基本概念数控系统是利用数控设备,通过数字化信息控制工具或工件进行加工和操作的一种自动控制系统。
其核心是数控设备和数控编程指令,可以实现高精度、高效率的加工。
2. 数控系统的基本工作原理•数控系统通过数控设备接收数控编程指令,并将其转化为电信号或脉冲信号,控制各个轴的运动。
•数控系统通过数控编程指令来控制工具在空间内的运动轨迹,包括直线、圆弧等复杂运动方式。
•数控系统可以实时监测加工状态和工件质量,通过传感器和测量装置反馈数据给数控设备,从而实现自动控制。
3. 数控系统的主要组成部分数控系统由以下几个主要组成部分构成:3.1 数控设备数控设备是实现数控系统功能的硬件设备,包括数控主机、伺服驱动器、控制面板等。
数控设备负责接收指令,控制机床或工作台的运动。
3.2 数控编程指令数控编程指令是指通过数控编程语言编写的一系列指令,用于控制数控系统的运行和加工过程。
常见的数控编程语言有G代码和M代码。
3.3 数控传感器和测量装置数控传感器和测量装置用于监测加工状态和工件质量,通过传感器获取相应的数据,并将其反馈给数控设备进行控制。
3.4 数控机床或工作台数控机床或工作台是完成加工任务的设备,根据数控编程指令控制工具进行加工。
常见的数控机床包括铣床、车床、钻床等。
4. 数控系统的应用领域数控系统广泛应用于各个领域的加工和制造过程,具有以下几个主要应用领域:4.1 机械加工数控系统可以实现对各种材料的高精度、高效率加工,例如金属零件、塑料制品等。
在机械加工行业中,数控系统已经成为主流。
4.2 航空航天在航空航天领域,数控系统被广泛应用于飞机部件制造、发动机加工等领域,可以提高零部件的精度和质量。
4.3 汽车制造汽车制造行业是数控系统的重要应用领域。
数控系统可以用于汽车零部件的加工、车身焊接等环节,提高生产效率和产品质量。
4.4 电子制造在电子制造领域,数控系统可以实现对电子零部件的精密加工,例如印刷电路板、晶体管等。
加工中心数控车床工作原理
数控车床是一种自动化加工设备,通过计算机程序控制工作进程。
其工作原理包括以下几个方面:
1. 数控编程:首先,程序员使用专门的数控编程语言(如G 代码和M代码)编写加工程序。
这些程序描述了刀具的运动路径、进给速度和切削参数等信息。
2. CPU控制:加工程序被加载到数控控制系统的中央处理器(CPU)中。
CPU根据程序的指令逐步执行,并将相应的控制信号发送给伺服电机和液压系统等部件。
3. 运动控制:伺服电机通过实时控制系统接收到的控制信号,按照程序中指定的路径和速度进行运动。
这种控制方式能够实现高精度和高速度的刀具运动。
4. 工件夹持:工件被夹持在主轴上,并旋转以实现切削加工。
数控车床通常配有多种夹具和夹具系统,以适应不同形状和尺寸的工件。
5. 自动刀具切换:数控车床通常配备多个刀具,以满足不同工艺要求。
通过自动刀具切换系统,可以根据加工程序的要求,自动选择和更换刀具。
6. 检测和监控:数控车床还配备了各种传感器和测量仪器,用于检测切削力、位置误差和工件尺寸等信息。
这些数据可以被实时监控和记录,以保证加工的准确性和质量。
总的来说,数控车床通过计算机程序控制刀具和工件的运动,实现精确和高效的加工过程。
它具有自动化、高精度、高效率和灵活性等优点,广泛应用于各种精密零部件的加工领域。
1.2 数控机床的组成及基本工作原理一、数控机床组成数控机床由:程序、输人/输出装置、CNC单元、伺服系统、位置反馈系统、机床本体组成。
1、程序的存储介质,又称程序载体1)穿孔纸带(过时、淘汰);2)盒式磁带(过时、淘汰);3)软盘、磁盘、U盘;4)通信。
2、输人/输出装置1)对于穿孔纸带,配用光电阅读机;(过时、淘汰);2)对于盒式磁带,配用录放机;(过时、淘汰);3)对于软磁盘,配用软盘驱动器和驱动卡;4)现代数控机床,还可以通过手动方式(MDI方式);5)DNC网络通讯、RS232串口通讯。
3、CNC单元CNC单元是数控机床的核心,CNC单元由信息的输入、处理和输出三个部分组成。
CNC单元接受数字化信息,经过数控装置的控制软件和逻辑电路进行译码、插补、逻辑处理后,将各种指令信息输出给伺服系统,伺服系统驱动执行部件作进给运动。
其它的还有主运动部件的变速、换向和启停信号;选择和交换刀具的刀具指令信号,冷却、润滑的启停、工件和机床部件松开、夹紧、分度台转位等辅助指令信号等。
准备功能:G00,G01,G02,G03,辅助功能:M03,M04刀具、进给速度、主轴:T,F,S4、伺服系统由驱动器、驱动电机组成,并与机床上的执行部件和机械传动部件组成数控机床的进给系统。
它的作用是把来自数控装置的脉冲信号转换成机床移动部件的运动。
对于步进电机来说,每一个脉冲信号使电机转过一个角度,进而带动机床移动部件移动一个微小距离。
每个进给运动的执行部件都有相应的伺服驱动系统,整个机床的性能主要取决于伺服系统。
如三轴联动的机床就有三套驱动系统。
脉冲当量:每一个脉冲信号使机床移动部件移动的位移量。
常用的脉冲当量为0.001mm/脉冲。
5、位置反馈系统(检测反馈系统)伺服电动机的转角位移的反馈、数控机床执行机构(工作台)的位移反馈。
包括光栅、旋转编码器、激光测距仪、磁栅等。
(作业:让同学们网上查找反馈元件,下节课用5分钟自述所查内容)反馈装置把检测结果转化为电信号反馈给数控装置,通过比较,计算实际位置与指令位置之间的偏差,并发出偏差指令控制执行部件的进给运动。
机床数控技术及应用1. 概述机床数控技术是一种通过计算机控制机床进行加工的技术。
通过将加工工艺程序化,并通过电脑对机床进行控制,机床数控技术可以实现高精度、高效率的加工过程。
本文将介绍机床数控技术的基本原理、主要分类以及在各个领域的应用。
2. 机床数控技术的基本原理机床数控技术的基本原理包括计算机控制系统、数控器、伺服系统和传感器等四个方面。
2.1 计算机控制系统计算机控制系统是机床数控技术的核心。
它由硬件和软件组成。
硬件包括计算机、外围设备和控制器等,而软件则包括操作系统和加工工艺程序等。
计算机控制系统负责将加工工艺程序翻译成机床可以理解和执行的指令,控制机床的运动、速度和加工参数等。
数控器是机床中的一个重要部件,它主要负责接收计算机控制系统发送的指令,并将指令转化成电信号,通过各个伺服系统控制机床的运动。
数控器具有高速、高精度、可靠性强等特点。
2.3 伺服系统伺服系统是机床数控技术中的关键部分。
它包括伺服电机、伺服放大器和位置反馈装置等。
伺服系统通过接收数控器发送的电信号,控制伺服电机的运动,从而实现机床的准确定位和运动。
传感器主要用于检测工件和机床的状态,如位置、速度、力度等。
通过将传感器的信号反馈给数控系统,可以实现机床的自动控制和监测。
3. 机床数控技术的分类机床数控技术主要有数控刀具机床、数控钻床、数控磨床和数控车床等几个主要分类。
3.1 数控刀具机床数控刀具机床是一种利用多轴控制的数控机床,主要用于加工复杂形状的工件。
它可以通过切削、划削和切割等方式进行加工,广泛应用于航空、航天、汽车和模具等行业。
3.2 数控钻床数控钻床是一种利用旋转刀具进行钻孔操作的数控机床。
它通过数控系统控制钻头的运动轨迹和进给速度等参数,可以实现精确、高效的钻孔操作。
数控钻床广泛应用于金属加工、船舶制造、石油钻探和建筑等领域。
3.3 数控磨床数控磨床是一种利用磨粒对工件进行磨削操作的数控机床。
它通过数控系统控制磨盘的运动轨迹和磨削参数,可以实现高精度的表面磨削效果。
数控机床工作原理简述
数控机床工作原理主要包括控制系统、执行系统和输入输出系统。
控制系统是数控机床的大脑,它负责接收用户输入的加工程序,并将其转换为机床能够理解和执行的指令。
控制系统通常由电脑、数控器和伺服系统等组成。
用户可通过电脑编写加工程序,并将其传输到数控机床的数控器上。
数控器解析程序指令,并生成相应的控制信号发送给伺服系统。
执行系统是控制系统传送过来的信号在机床上的具体执行部件。
主要包括主轴驱动、进给驱动和各种控制继电器等。
主轴驱动负责控制主轴的转速,进给驱动负责控制工件和刀具的进给速度。
控制继电器负责控制各种执行部件的开关状态,如刀具的进给和返回、工作台的移动等。
输入输出系统负责将机床的工作状态反馈给控制系统,并接收外部输入的指令。
通常包括编码器、传感器和人机界面等。
编码器用于检测机床的位置和运动状态,传感器用于测量加工过程中的工件尺寸和刀具状态等。
人机界面提供给操作员可视化的界面,方便其监控和控制机床的运行。
总结起来,数控机床工作原理是通过控制系统接收和解析加工程序指令,将其转化为控制信号发送给执行系统,由执行系统控制机床上各个部件的运动和状态,同时将机床的工作状态反馈给控制系统和操作员。
数控加工技术学习的必备工具与资源推荐随着工业技术的不断发展,数控加工技术在制造业中扮演着重要的角色。
数控加工技术的学习对于想要从事相关行业的人员来说是必不可少的。
在学习数控加工技术的过程中,合适的工具和资源对于提高学习效果起着至关重要的作用。
本文将介绍一些数控加工技术学习的必备工具与资源推荐。
一、数控编程软件数控编程软件是学习数控加工技术的基础工具之一。
它可以帮助学习者将设计图纸转化为机床可以识别和执行的指令代码。
在市场上,有许多种数控编程软件可供选择,如Mastercam、PowerMill等。
这些软件界面友好,操作简便,适合初学者使用。
此外,还有一些开源的数控编程软件,如LinuxCNC、FreeCAD等,可以免费下载和使用,适合对经济有限的学习者。
二、数控机床仿真软件数控机床仿真软件是学习数控加工技术的重要辅助工具。
它可以模拟数控机床的运行过程,帮助学习者理解和掌握数控加工的原理和操作。
通过仿真软件,学习者可以在虚拟环境中进行编程和操作,提前发现和解决问题,减少实际加工过程中的错误和损失。
常见的数控机床仿真软件有Vericut、NCSimul等,它们提供了丰富的功能和模拟场景,适合学习者进行实践操作和调试。
三、数控加工教材与视频教程数控加工教材和视频教程是学习数控加工技术的重要学习资源。
教材可以提供系统的理论知识,帮助学习者了解数控加工的原理、工艺和应用。
视频教程则通过图文并茂的方式,展示了具体的操作步骤和技巧,有助于学习者快速掌握数控编程和加工操作。
在选择教材和视频教程时,应尽量选择权威、实用的资料,可以向相关行业的专业人士咨询或在学习平台上查找评价较好的资源。
四、数控加工实训平台数控加工实训平台是学习数控加工技术的重要实践环节。
它可以提供真实的数控机床和工件,让学习者进行实际的编程和加工操作。
通过实训平台,学习者可以将理论知识应用到实际生产中,提高自己的实践能力和技术水平。
一些高等院校和职业培训机构设有数控加工实训室,供学生使用。
cnc加工中心有哪些系统一台加工中心的系统当然不只有数控系统,还有很多其他很重要的系统用以辅助加工中心加工,比如还有伺服系统、润滑系统、冷却系统等。
每一个系统的功能作用都不一样,加工中心除了整机的机械机构,就只能靠这些系统来组建成完整的循环。
这些系统功能各异,而且也可以细分为很多不同的选择,例如冷却系统有主轴油冷却系统和主轴中心出水系统的选择。
接下来就由台诚数控带大家一起去了解一下这些加工中心的系统都有什么用。
之所以叫做CNC加工中心,全因一个数控系统,只有配有数控系统才能称得上是CNC加工中心。
没有数控系统的加工中心只能被称作一台机床。
说到底,数控系统就是CNC加工中心的核心,所有指令都是通过数控系统下达,再由数控系统控制各个部件开始工作。
国内可见的数控系统不少,有国产的,也有进口的。
但是最为常见的数控系统一只手就能数完。
每个数控系统都有差异,只有做的比较出色的数控系统才会被选择,所以出现这种情况也不足为奇。
cnc加工中心系统(数控系统)数控系统是数字控制系统简称,英文名称为Numerical Control System,早期是与计算机并行发展演化的,用于控制自动化加工设备的,由电子管和继电器等硬件构成具有计算能力的专用控制器的称为硬件数控(Hard NC)。
20世纪70年代以后,分离的硬件电子元件逐步由集成度更高的计算机处理器代替,称为计算机数控系统。
计算机数控(Computerized numericalcontrol,简称CNC)系统是用计算机控制加工功能,实现数值控制的系统。
CNC系统根据计算机存储器中存储的控制程序,执行部分或全部数值控制功能,并配有接口电路和伺服驱动装置,用于控制自动化加工设备的专用计算机系统。
CNC系统由数控程序存储装置(从早期的纸带到磁环,到磁带、磁盘到目前计算机通用的硬盘)、计算机控制主机(从专用计算机进化到PC体系结构的计算机)、可编程逻辑控制器(PLC)、主轴驱动装置和进给(伺服)驱动装置(包括检测装置)等组成。
数控机床之所以加工精度好、生产效率高,其主要决定因素是编程的准确性。
编程需要依靠系统来完成。
现在机加工行业中,数控机床比较常用的系统主要有这几家:日本FANUC 数控系统、德国西门子数控系统、日本三菱数控系统、德国海德汉数控系统等等。
下面我们就来针对这些厂家具体对数控机床系统进行介绍。
1、日本FANUC数控系统
FANUC公司是世界上领先的数控系统科研、设计、制造公司,规模庞大。
FANUC研发的数控系统具有以下优势:
(1)PowerMate 0系列以其高可靠性在业内十分出名,主要用于两轴小型机床,很好的取代了步进电动机的伺服系统,画面清晰、操作简便。
(2)车床加工大多使用的是普及型CNC 0-D系列 0-TD,铣床及小型加工中心可以使用0-MD,圆柱磨床使用的是0-GCD,平面磨床使用的是0-GSD。
(3)0-C系列是全动能型的:0-TC用于车床,0-MC用于钻床、铣床、加工中心。
2、德国西门子数控系统
西门子公司是德国老牌电气工程领域企业,其业务涉及广泛,遍布于工业、能源、医疗以及基础设施领域。
并以其不断创新、良好的品质以及超高可靠性被人们所认可。
SIEMENS 公司的数控系统,主要采用的是模块化的结构设计,经济性好,在一种标准的硬件上,配置多种软件,满足各种加工工艺以及各种机床需求。
伴随着电子技术的发展,大规模的集成电路的出现,让新的数控机床系统结构变得更加简便、紧凑、性能更强,价格更低。
SIEMENS公司CNC装置主要系列有SINUMERIK3/8/810/820/850/880/805/802/840系列。
3、日本三菱数控系统
日本三菱电机主要生产配电用的机械器具,电加工产品,变频调速器、伺服系统机器、数控装置及其零部件。
在生产中,常用到的三菱数控系统有:M700V系列;M70V系列;M70系列;M60S 系列;E68系列;E60系列;C6系列;C64系列;C70系列。
M700V系列作为高端系列,主要用于高精加工,支持五轴联动。
4、德国海德汉数控系统
海德汉主要对生产光栅尺、角度编码器、旋转编码器、数显装置和数控系统进行研发。
其产品被广泛应用于机床、自动化机器以及半导体和电子制造业等领域。
对于铣床、加工中心主要使用的是Heidenhain的iTNC 530控制系统,这个系统属于高端数控系统,比TNC系列产品快很多,而且可以更快的插入和编辑信息程序段。