高中数学函数知识点最新总结
- 格式:docx
- 大小:12.09 KB
- 文档页数:4
高中数学必背知识点总结(最新最全) 1. 代数部分
- 多项式的基本概念和运算法则
- 指数与对数的运算规律
- 一次函数、二次函数及其图像性质
- 幂函数、对数函数及其图像性质
- 三角函数的基本概念和图像性质
- 等差数列与等比数列的基本概念和求和公式
- 排列与组合的基本概念和计算方法
2. 几何部分
- 直线、角、三角形及其性质
- 平行线和平行四边形的性质
- 相似三角形的判定和性质
- 圆的基本概念和性质
- 圆锥曲线(抛物线、双曲线、椭圆)的基本概念和性质- 空间几何体的表面积和体积计算公式
3. 概率与统计部分
- 随机事件的概念和性质
- 概率的定义和计算方法
- 二项分布的基本概念和应用
- 正态分布的基本概念和应用
- 统计图表的基本绘制和分析
4. 函数部分
- 函数的基本概念和性质
- 函数的图像和性质
- 函数的极限和连续性
- 导数的定义和计算方法
- 函数的求导法则和应用
- 积分的定义和计算方法
- 函数的微分方程和解法
以上是高中数学必背知识点的一个概要总结,希望对你有帮助!。
第二章 函数一.函数1、函数的概念:(1)定义:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作:y =)(x f ,x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{)(x f | x ∈A }叫做函数的值域. (2)函数的三要素:定义域、值域、对应法则(3)相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)2、定义域:(1)定义域定义:函数)(x f 的自变量x 的取值范围。
(2)确定函数定义域的原则:使这个函数有意义的实数的全体构成的集合。
(3)确定函数定义域的常见方法:①若)(x f 是整式,则定义域为全体实数②若)(x f 是分式,则定义域为使分母不为零的全体实数 例:求函数xy 111+=的定义域。
③若)(x f 是偶次根式,则定义域为使被开方数不小于零的全体实数例1. 求函数 ()2143432-+--=x x xy 的定义域。
例2. 求函数()02112++-=x x y 的定义域。
④对数函数的真数必须大于零⑤指数、对数式的底必须大于零且不等于1⑥若)(x f 为复合函数,则定义域由其中各基本函数的定义域组成的不等式组来确定⑦指数为零底不可以等于零,如)0(10≠=x x⑧实际问题中的函数的定义域还要保证实际问题有意义. (4)求抽象函数(复合函数)的定义域已知函数)(x f 的定义域为[0,1]求)(2x f 的定义域 已知函数)12(-x f 的定义域为[0,1)求)31(x f -的定义域3、值域 :(1)值域的定义:与x 相对应的y 值叫做函数值,函数值的集合叫做函数的值域。
(2)确定值域的原则:先求定义域 (3)常见基本初等函数值域:一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数(正余弦、正切)(4)确定函数值域的常见方法:①直接法:从自变量x 的范围出发,推出()y f x =的取值范围。
高中数学知识点总结——函数_高三数学知识点总结一、函数的定义和性质1. 函数定义:函数是一种特殊的关系,即对于集合A中的每一个元素x,有且仅有一个元素y与之对应,我们用y=f(x)表示。
2. 自变量和因变量:x是自变量,y是因变量。
3. 定义域和值域:函数f的定义域是所有可能的自变量的集合,记作D(f);值域是所有可能的因变量的集合,记作R(f)。
4. 奇函数和偶函数:奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
5. 函数的对称性:奇函数具有轴对称性,偶函数具有中心对称性。
二、函数的图像和性质1. 函数图像的绘制:通过描点或者画出图像的轮廓,绘制函数的图像。
2. 增减性和单调性:如果在区间I上,对任意的x1、x2∈I,当x1<x2时有f(x1)<f(x2),则称函数在区间I上是增函数;如果在区间I上,对任意的x1、x2∈I,当x1<x2时有f(x1)>f(x2),则称函数在区间I上是减函数。
如果在区间I上,对任意的x1、x2∈I,当x1<x2时有f(x1)≤f(x2),则称函数在区间I上是单调增函数;如果在区间I 上,对任意的x1、x2∈I,当x1<x2时有f(x1)≥f(x2),则称函数在区间I上是单调减函数。
3. 最值和极值:如果对于区间I上的任意x∈I,都有f(x)≤f(x0),则称f(x0)是函数f在区间I上的最大值;如果对于区间I上的任意x∈I,都有f(x)≥f(x0),则称f(x0)是函数f在区间I上的最小值。
如果f(x0)是函数f在定义域D(f)的内部,且满足f(x)≤f(x0)(或f(x)≥f(x0))时,称f(x0)是f的一个极大值(或极小值)。
三、函数的运算1. 函数的加减法:(f+g)(x)=f(x)+g(x),(f-g)(x)=f(x)-g(x)。
2. 函数的数乘:(cf)(x)=c·f(x),其中c是常数。
函数知识点总结高中一、函数的定义1. 函数的定义函数是自变量和因变量之间的一种映射关系。
一般地,如果对于集合A中的每一个元素x,在集合B中有唯一确定的元素y与之对应,则称y是x的函数值,称这种对应关系为函数,记作y=f(x)。
2. 函数的定义域和值域函数的定义域是自变量的取值范围,值域是因变量的取值范围。
在定义函数的时候,需要确定函数的定义域和值域。
3. 函数的性质函数的性质包括奇偶性、周期性、单调性等,这些性质可以通过函数的图像来判断。
二、函数的图像1. 函数的图像函数的图像是函数在平面直角坐标系上的表示,对于一元函数y=f(x),可以通过画出函数的图像来直观地理解函数的性质和规律。
2. 基本初等函数的图像常见的初等函数包括线性函数、二次函数、指数函数、对数函数、幂函数、三角函数等,它们都有各自的特点和图像特征。
三、函数的性质1. 奇偶性函数的奇偶性是指函数的图像是否关于原点对称。
如果对于任意x∈D,有f(-x)=f(x),则函数f(x)是偶函数;如果对于任意x∈D,有f(-x)=-f(x),则函数f(x)是奇函数。
2. 周期性周期函数的函数值随自变量的变化而重复出现。
周期函数可以用来描述一些具有规律性变化的现象,如正弦函数、余弦函数等。
3. 单调性函数的单调性是指函数在定义域上的增减性。
如果对于任意x1<x2,有f(x1)<f(x2),则函数f(x)是单调增加的;如果对于任意x1<x2,有f(x1)>f(x2),则函数f(x)是单调减少的。
4. 极限和连续性函数的极限和连续性是函数的重要性质,它们可以用来描述函数在某一点的趋势和变化规律。
四、常见函数1. 线性函数线性函数是最简单的一种函数,它的图像是一条直线,表示为y=kx+b,其中k是斜率,b是截距。
2. 二次函数二次函数是一种常见的函数,它的图像是一个抛物线,表示为y=ax^2+bx+c,其中a、b、c为常数且a≠0。
高中数学必修一函数知识点总结一、函数的概念。
函数是一种特殊的关系,它是一种对应关系,即对于集合A中的每一个元素x,都有唯一确定的集合B中的元素与之对应。
函数通常记作y=f(x),其中x是自变量,y是因变量,f表示函数关系。
二、函数的性质。
1. 定义域和值域,函数的定义域是自变量可能取值的集合,值域是因变量可能取值的集合。
2. 奇偶性,若对任意x∈D,有f(-x)=f(x),则称函数为偶函数;若对任意x∈D,有f(-x)=-f(x),则称函数为奇函数。
3. 单调性,若对任意x1<x2,有f(x1)≤f(x2),则称函数在区间内是单调递增的;若对任意x1<x2,有f(x1)≥f(x2),则称函数在区间内是单调递减的。
三、常见函数。
1. 一次函数,y=kx+b,其中k为斜率,b为截距。
2. 二次函数,y=ax^2+bx+c,其中a≠0,称为抛物线的标准方程。
3. 指数函数,y=a^x,其中a为底数,x为指数。
4. 对数函数,y=loga(x),其中a为底数,x为真数。
四、函数的图像和性质。
1. 一次函数的图像是一条直线,斜率决定了直线的倾斜程度,截距决定了直线与y轴的交点位置。
2. 二次函数的图像是一条抛物线,开口方向由二次项系数a的正负决定,a>0时开口向上,a<0时开口向下。
3. 指数函数的图像是一条递增曲线,底数大于1时,曲线在x轴右侧递增;底数在0和1之间时,曲线在x轴右侧递减。
4. 对数函数的图像是一条递增曲线,底数大于1时,曲线在x轴右侧递增;底数在0和1之间时,曲线在x轴右侧递减。
五、函数的运算。
1. 函数的加减法,(f±g)(x)=f(x)±g(x),即两个函数对应元素相加或相减。
2. 函数的乘法,(f×g)(x)=f(x)×g(x),即两个函数对应元素相乘。
3. 函数的复合,(f∘g)(x)=f(g(x)),即先对自变量进行g函数的运算,再对结果进行f函数的运算。
高中函数概念知识点总结一、函数的概念1. 函数的定义函数是一个非常基本的概念,它可以表达变量之间的依赖关系。
在代数或数学分析中,函数是一种特殊的关系,即每个自变量的值都对应着唯一的因变量的值。
用符号表示为:y=f(x),其中x为自变量,y为因变量,f为函数关系。
在实际应用中,函数可以描述抽象的关系,也可以表示具体的物理、经济、生活等现象。
2. 函数的图像函数的图像是函数在坐标系中的几何表示,用曲线或者折线表示。
它可以帮助我们直观地了解函数的性质,如增减性、奇偶性、周期性等。
3. 函数的定义域和值域函数的定义域即自变量的取值范围,值域即因变量的取值范围。
了解函数的定义域和值域可以帮助我们更好地理解函数的性质和特点。
4. 函数的解析式函数的解析式表示函数之间的依赖关系,可以用代数式、分段函数、组合函数等形式表示。
掌握函数的解析式有利于我们对函数进行分析和运算。
5. 常见函数常见函数包括线性函数、二次函数、指数函数、对数函数、三角函数等。
了解这些常见函数的性质和特点有助于我们更好地理解和运用函数。
二、函数的基本性质1. 函数的奇偶性函数的奇偶性是函数的一个重要性质,它可以帮助我们简化函数的图形和运算。
奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
2. 函数的增减性函数的增减性描述了函数图像在定义域上的上升或下降趋势。
通过研究函数的增减性,我们可以得到函数在不同区间上的性质。
3. 函数的最值和极值函数的最值即函数在定义域上的最大值和最小值,极值指的是函数在某个点上的最大值和最小值。
研究函数的最值和极值有助于我们理解函数的局部性质。
4. 函数的周期性周期函数是指函数具有周期性变化的特点,即在一定区间内具有重复的性质。
掌握周期函数的性质对于我们理解函数的变化规律和应用具有重要意义。
5. 复合函数复合函数是由两个或多个函数组合而成的新函数,它可以描述多个变量之间的复杂关系。
掌握复合函数的运算和性质有助于我们应用函数解决实际问题。
高中数学函数知识点归纳1. .函数的单调性(1)设那么上是增函数;上是减函数.(2)设函数在某个区间内可导,如果,则为增函数;如果,则为减函数.2. 奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数.3. 多项式函数的奇偶性多项式函数是奇函数的偶次项(即奇数项)的系数全为零.多项式函数是偶函数的奇次项(即偶数项)的系数全为零.23.函数的图象的对称性(1)函数的图象关于直线对称.(2)函数的图象关于直线对称.4. 两个函数图象的对称性(1)函数与函数的图象关于直线(即轴)对称.(2)函数与函数的图象关于直线对称.(3)函数和的图象关于直线y=x对称.25.若将函数的图象右移、上移个单位,得到函数的图象;若将曲线的图象右移、上移个单位,得到曲线的图象.5. 互为反函数的两个函数的关系.27.若函数存在反函数,则其反函数为,并不是,而函数是的反函数.6. 几个常见的函数方程(1)正比例函数,.(2)指数函数,.(3)对数函数,.(4)幂函数,.(5)余弦函数,正弦函数,,.7. 几个函数方程的周期(约定a>0)(1),则的周期T=a;(2),或,或,或,则的周期T=2a;(3),则的周期T=3a;(4)且,则的周期T=4a;(5),则的周期T=5a;(6),则的周期T=6a.8. 分数指数幂(1)(,且).(2)(,且).9. 根式的性质(1).(2)当为奇数时,;当为偶数时,.10. 有理指数幂的运算性质(1).(2).(3).33.指数式与对数式的互化式.34.对数的换底公式(,且,,且,).推论(,且,,且,,).11. 对数的四则运算法则若a>0,a≠1,M>0,N>0,则(1);(2);(3).。
高中数学函数知识点总结(精华版)知识分
享
高中数学函数知识点总结(精华版)知识分享
1. 函数的定义和性质
- 定义:函数是一个将各个元素从一个集合映射到另一个集合的规则。
- 函数的性质:单调性、奇偶性、周期性等。
2. 基本函数
- 幂函数:y = x^n,n为常数,图像为直线或曲线。
- 三角函数:包括正弦函数、余弦函数、正切函数等,图像具有周期性。
- 指数函数:y = a^x,a为正常数,图像单调递增或递减。
- 对数函数:y = log_a(x),a为正常数,图像单调递增或递减。
3. 函数的运算与变换
- 四则运算:加法、减法、乘法、除法。
- 复合运算:由两个或多个函数构成一个新的函数。
- 反函数:原函数与定义域互为值域的函数。
- 平移、压缩、翻折等函数的变换。
4. 函数的图像与性质
- 函数图像的绘制和分析方法。
- 函数的最值、零点、极值等特性。
5. 函数的应用
- 函数在物理、经济等领域的应用。
- 函数在数学建模中的应用。
6. 解函数方程
- 求函数方程的解法与步骤。
以上是高中数学函数知识点的精华总结和知识分享。
掌握这些知识能够帮助学生更好地理解和应用函数概念,提升数学能力。
注:本文档内容仅为总结分享,并不保证所有内容的正确性,请酌情参考。
高中数学函数知识点总结高中数学函数知识点总结篇一一、增函数和减函数一般地,设函数f(x)的定义域为I:如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数。
如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)>f(x2),那么就是f(x)在这个区间上是减函数。
二、单调区间单调区间是指函数在某一区间内的函数值Y,随自变量X增大而增大(或减小)恒成立。
如果函数y=f(x)在某个区间是增函数或减函数。
那么就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y= f(x)的单调区间。
一、指数函数的定义指数函数的一般形式为y=a^x(a0且≠1) (x∈R)。
二、指数函数的性质1、曲线沿x轴方向向左无限延展〈=〉函数的定义域为(-∞,+∞)2、曲线在x轴上方,而且向左或向右随着x值的减小或增大无限靠近X轴(x轴是曲线的渐近线)〈=〉函数的值域为(0,+∞)一、对数与对数函数定义1、对数:一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
2、对数函数:一般地,函数y=log(a)X,(其中a是常数,a0且a不等于1)叫做对数函数,它实际上就是指数函数的反函数,因此指数函数里对于a的规定,同样适用于对数函数。
二、方法点拨在解决函数的综合性问题时,要根据题目的具体情况把问题分解为若干小问题一次解决,然后再整合解决的结果,这也是分类与整合思想的一个重要方面。
一、幂函数定义形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
二、性质幂函数不经过第三象限,如果该函数的指数的分子n是偶数,而分母m是任意整数,则y0,图像在第一;二象限。
这时(-1)^p的指数p的奇偶性无关。
高中数学 必修1知识点1 第一章 函数概念2 (1)函数的概念3 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在4 集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对5 应法则f )叫做集合A 到B 的一个函数,记作:f A B →.6 ②函数的三要素:定义域、值域和对应法则.7 ③只有定义域相同,且对应法则也相同的两个函数才是同一函数. 8 (2)区间的概念及表示法9 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足10 a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合11 叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记12 做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.13注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须14 a b <,(前者可以不成立,为空集;而后者必须成立). 15 (3)求函数的定义域时,一般遵循以下原则:16 ①()f x 是整式时,定义域是全体实数.17②()f x 是分式函数时,定义域是使分母不为零的一切实数.18 ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.19 ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. 20 ⑤tan y x =中,()π⑥零(负)指数幂的底数不能为零.22 ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初23 等函数的定义域的交集.24 ⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数25 [()]f g x 的定义域应由不等式()a g x b ≤≤解出.26 ⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. 27 ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. 28 (4)求函数的值域或最值29 求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中30 存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质31 是相同的,只是提问的角度不同.求函数值域与最值的常用方法:32 ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.33 ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围34 确定函数的值域或最值.35 ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程36 2()()()0a y x b y x c y ++=37则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值38 域或最值.39 ④不等式法:利用基本不等式确定函数的值域或最值.40 ⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问41 题转化为三角函数的最值问题.42 ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. 43 ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. 44 ⑧函数的单调性法.45(5)函数的表示方法4647表示函数的方法,常用的有解析法、列表法、图象法三种.48解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两49个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.50(6)映射的概念51①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B52中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫53做集合A到B的映射,记作:f A B→.54②给定一个集合A到集合B的映射,且,∈∈.如果元素a和元素b对应,那么我们把a Ab B55元素b叫做元素a的象,元素a叫做元素b的原象.56(6)函数的单调性57①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一58 个减函数为增函数,减函数减去一个增函数为减函数.59 ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =60 为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,61则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.62 (7)打“√”函数()(0)af xx a x=+>的图象与性质63()f x 分别在(,]a -∞-、[,)a +∞上为增函数,64 分别在[,0)a -、(0,]a 上为减函数. 65 (8)最大(小)值定义66 ①一般地,设函数()y f x =的定义域为I ,如果存67在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;68 (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.69②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都70 有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作71 max ()f x m =.72 (9)函数的奇偶性73 ①定义及判定方法74函数的性 质定义图象判定方法函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇.函数...(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=f(x).......,那么函数f(x)叫做偶函..数.. (1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.75 ③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相76 反.77 ④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个78 偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数. 79 第二章 基本初等函数(Ⅰ) 80 〖2.1〗指数函数81 【2.1.1】指数与指数幂的运算 82 (1)根式的概念83 ①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次84 n a n 是偶数时,正数a 的正的n n a 负的n 次方根用符85号0的n 次方根是0;负数a 没有n 次方根.86 n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;87 当n 为偶数时,0a ≥.88 ③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,89 (0)|| (0) a a a a a ≥⎧==⎨-<⎩. 90(2)分数指数幂的概念91 ①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于92 0.93②正数的负分数指数幂的意义是: 1()0,,,mm n n aa m n N a -+==>∈且1)n >.0的负分数94 指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. 95 (3)分数指数幂的运算性质96 ①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ 97③()(0,0,)r r r ab a b a b r R =>>∈ 98 【2.1.2】指数函数及其性质 99 (4)指数函数100101 〖2.2〗对数函数102 【2.2.1】对数与对数运算 103 (1)对数的定义104 ①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N105叫做真数. 106 ②负数和零没有对数.107 ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. 108 (2)几个重要的对数恒等式109 log 10a =,log 1a a =,log b a a b =.110 (3)常用对数与自然对数111 常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). 112(4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么113①加法:log log log ()a a a M N MN += ②减法:log log log a a a MM N N-= 114③数乘:log log ()n a a n M M n R =∈ ④log a N a N =115⑤log log (0,)b n a a nM M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a bN N b b a =>≠且 116【2.2.2】对数函数及其性质 117 (5)对数函数118(6)反函数的概念119 设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果120 对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式121 子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯122 上改写成1()y f x -=. 123 (7)反函数的求法124 ①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=; 125③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域. 126 (8)反函数的性质127 ①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.128②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域. 129③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上. 130 ④一般地,函数()y f x =要有反函数则它必须为单调函数. 131 〖2.3〗幂函数 132 (1)幂函数的定义133一般地,函数y xα134=叫做幂函数,其中x为自变量,α是常数.135136137138139140141142143144145146147148149150151152153154155156(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象157 分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点158 对称);是非奇非偶函数时,图象只分布在第一象限.159 ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).160③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函161 数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.162④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中163 ,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则164 qpy x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.165 ⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,166 其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直167 线y x =下方.168 〖补充知识〗二次函数 169 (1)二次函数解析式的三种形式170 ①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:171 12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法172 ①已知三个点坐标时,宜用一般式.173 ②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. 174 ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. 175 (3)二次函数图象的性质176①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是177 24(,)24b ac b a a--. 178②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,179 2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,180当2bx a=-时,2max 4()4ac b f x a -=.181③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点182 ********(,0),(,0),||||||M x M x M M x x a =-=. 183(4)一元二次方程20(0)ax bx c a ++=≠根的分布184 一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但185 尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)186 的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.187 设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从188以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函189 数值符号. 190 ①k <x 1≤x 2 ⇔191192 ②x 1≤x 2<k ⇔193194 ③x 1<k <x 2 ⇔ af (k )<0195196 ④k 1<x 1≤x 2<k 2 ⇔ 197198199 ⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔f (k 1)f (k 2)<0,并同时考虑200 f (k 1)=0或f (k 2)=0这两种情况是否也符合201202203⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 204 此结论可直接由⑤推出.205 (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值206 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+.207 (Ⅰ)当0a >时(开口向上) 208 ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a=- ③若2b q a ->,则()m f q = 209210 211 212 213 214 215 216 217 ①若02b x a -≤,则()M f q =b ()f p 218 219 220 221 2222230x 0x225226 (Ⅱ)当0a <时(开口向下) 227 ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a=- ③若2bq a ->,则()M f q = 228229 230 231 232 233 234235 236 237 ①若02b x a -≤,则()m f q = ②02b xa->,则()m f p =.238 239 240 241 242 243244ff fx246 第三章 函数的应用247 一、方程的根与函数的零点248 1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数249 ))((D x x f y ∈=的零点。
高中数学第三章函数的概念与性质知识点总结全面整理单选题1、若函数f (x )=2x+m x+1在区间上的最大值为52,则实数m =( ) A .3B .52C .2D .52或3答案:B分析:函数f (x )化为f (x )=2+m−2x+1,讨论m =2,m >2和m <2时函数的单调性,运用单调性可得最小值,解方程即可得到所求值.函数f (x )=2x+m x+1,即f (x )=2+m−2x+1,x ∈[0,1],当m =2时,f (x )=2不成立;当m −2>0,即m >2时,f (x )在递减,可得f (0)为最大值, 即f (0)=0+m 1=52,解得m =52成立;当m −2<0,即m <2时,f (x )在递增,可得f (1)为最大值, 即f (1)=2+m 2=52,解得m =3不成立;综上可得m =52.故选:B .2、下列函数中,在区间(1,+∞)上为增函数的是( )A .y =−3x +1B .y =2xC .y =x 2−4x +5D .y =|x −1|+2答案:D分析:根据一次函数、反比例函数和二次函数单调性直接判断可得结果.对于A ,y =−3x +1为R 上的减函数,A 错误;对于B ,y =2x 在(−∞,0),(0,+∞)上单调递减,B 错误; 对于C ,y =x 2−4x +5在(−∞,2)上单调递减,在(2,+∞)上单调递增,C 错误;[]0,1[]0,1[]0,1对于D ,y =|x −1|+2={x +1,x ≥13−x,x <1,则y =|x −1|+2在(1,+∞)上为增函数,D 正确. 故选:D.3、已知f (2x +1)=4x 2+3,则f (x )=( ).A .x 2−2x +4B .x 2+2xC .x 2−2x −1D .x 2+2x +3答案:A分析:利用配凑法直接得出函数的解析式.因为f (2x +1)=4x 2+3=(2x +1)2−2(2x +1)+4,所以f (x )=x 2−2x +4.故选:A4、函数f(x)=−x 2+2(1−m)x +3在区间(−∞,4]上单调递增,则m 的取值范围是( )A .[−3,+∞)B .[3,+∞)C .(−∞,5]D .(−∞,−3]答案:D分析:先求出抛物线的对称轴x =−2(1−m)−2=1−m ,而抛物线的开口向下,且在区间(−∞,4]上单调递增,所以1−m ≥4,从而可求出m 的取值范围解:函数f(x)=−x 2+2(1−m)x +3的图像的对称轴为x =−2(1−m)−2=1−m ,因为函数f(x)=−x 2+2(1−m)x +3在区间(−∞,4]上单调递增,所以1−m ≥4,解得m ≤−3,所以m 的取值范围为(−∞,−3],故选:D5、现有下列函数:①y =x 3;②y =(12)x;③y =4x 2;④y =x 5+1;⑤y =(x −1)2;⑥y =x ;⑦y =a x (a >1),其中幂函数的个数为( )A .1B .2C .3D .4答案:B分析:根据幂函数的定义逐个辨析即可幂函数满足y =x a 形式,故y =x 3,y =x 满足条件,共2个故选:B6、已知函数f (x )={−√x 3(x ≥a )x 2(x <a),若函数f(x)的值域为R ,则实数a 的取值范围为( ) A .(−1,0)B .(−1,0]C .[−1,0)D .[−1,0]答案:D分析:求出分段函数在各段上的函数值集合,再根据给定值域,列出不等式求解作答.函数y =−√x 3在[a,+∞)上单调递减,其函数值集合为(−∞,−√a 3],当a >0时,y =x 2的取值集合为[0,+∞),f (x )的值域(−∞,−√a 3]∪[0,+∞)≠R ,不符合题意,当a ≤0时,函数y =x 2在(−∞,a)上单调递减,其函数值集合为(a 2,+∞),因函数f(x)的值域为R ,则有−√a 3≥a 2,解得−1≤a ≤0,所以实数a 的取值范围为[−1,0].故选:D7、已知幂函数的图象经过点P (4,12),则该幂函数的大致图象是( ) A .B .C .D .答案:A 分析:设出幂函数的解析式,利用函数图象经过点求出解析式,再由定义域及单调性排除CDB 即可.设幂函数为y =x α,因为该幂函数得图象经过点P (4,12),所以4α=12,即22α=2−1,解得α=−12,即函数为y =x −12,则函数的定义域为(0,+∞),所以排除CD ,因为α=−12<0,所以f(x)=x −12在(0,+∞)上为减函数,所以排除B ,故选:A8、若函数f (x )=x ln (x +√a +x 2)为偶函数,则a 的值为( )A .0B .1C .﹣1D .1或﹣1答案:B分析:由f (x )=x ln (x +√a +x 2)为偶函数,则设g (x )=ln (x +√a +x 2)是奇函数,由g (0)=0,可求出答案.解:∵函数f (x )=x ln (x +√a +x 2)为偶函数,x ∈R ,∴设g (x )=ln (x +√a +x 2)是奇函数,则g (0)=0,即ln √a =0,则√a =1,则a =1.故选:B .多选题9、已知函数f (x )=x |x |,若对任意的x ∈[t ,t +1],不等式f (x +t )≥3f (x )恒成立,则整数t 的取值可以是( )A .−1B .1C .3D .5答案:CD分析:首先判断f (x )在R 上为增函数,将不等式转化为x +t ≥√3x ,即t ≥(√3−1)x 对任意的x ∈[t ,t +1]恒成立,利用一次函数的单调性,解不等式可得所求范围.f (x )=x |x |,当x ≥0时,f (x )=x 2,在[0,+∞)递增,当x≤0时,f(x)=−x2,在(−∞,0]上递增,且f(0)=0,f(x)为连续函数,所以f(x)在R上为增函数,且3f(x)=f(√3x),由对任意的x∈[t,t+1],不等式f(x+t)≥3f(x)恒成立,即f(x+t)≥f(√3x),即x+t≥√3x,所以t≥(√3−1)x对任意的x∈[t,t+1]恒成立,由y=(√3−1)x在[t,t+1]上递增,可得y=(√3−1)x的最大值为(√3−1)(t+1),即t≥(√3−1)(t+1),解得t≥√3+1.故选:CD小提示:关键点点睛:本题考查了函数的单调性的判断以及应用,解不等式以及不等式恒成立问题的解法,解题的关键是将不等式转化为t≥(√3−1)x对任意的x∈[t,t+1]恒成立,考查了转化思想和运算求解能力.10、已知函数f(x),g(x)的定义域都是R,且f(x)是奇函数,g(x)是偶函数,则()A.f(x)⋅|g(x)|是奇函数B.|f(x)|⋅g(x)是奇函数C.f(x)⋅g(x)是偶函数D.|f(x)⋅g(x)|是偶函数答案:AD分析:由奇偶性的定义逐一证明即可.对于A,F(x)=f(x)⋅|g(x)|,F(−x)=f(−x)⋅|g(−x)|=−f(x)|g(x)|=−F(x),即f(x)⋅|g(x)|是奇函数,故A正确;对于B,F(x)=|f(x)|⋅g(x),F(−x)=|f(−x)|g(−x)=|f(x)|g(x)=F(x),即|f(x)|⋅g(x)是偶函数,故B 错误;对于C,F(x)=f(x)⋅g(x),F(−x)=f(−x)⋅g(−x)=−f(x)g(x)=−F(x),即f(x)⋅g(x)是奇函数,故C 错误;对于D,F(x)=|f(x)⋅g(x)|,F(−x)=|f(−x)⋅g(−x)|=|−f(x)⋅g(x)|=|f(x)⋅g(x)|=F(x),即|f(x)⋅g(x)|是偶函数,故D正确;故选:AD小提示:关键点睛:解决本题的关键在于利用定义证明奇偶性.11、关于函数f(x)=√x2−x4|x−1|−1的性质描述,正确的是()A.f(x)的定义域为[−1,0)∪(0,1]B.f(x)的值域为(−1,1)C.f(x)在定义域上是增函数D.f(x)的图象关于原点对称答案:ABD解析:由被开方式非负和分母不为0,解不等式可得f(x)的定义域,可判断A;化简f(x),讨论0<x≤1,−1≤x<0,分别求得f(x)的范围,求并集可得f(x)的值域,可判断B;由f(−1)=f(1)=0,可判断C;由奇偶性的定义可判断f(x)为奇函数,可判断D;对于A,由{x2−x4≥0|x−1|−1≠0,解得−1≤x≤1且x≠0,可得函数f(x)=√x2−x4|x−1|−1的定义域为[−1,0)∪(0,1],故A正确;对于B,由A可得f(x)=√x2−x4−x ,即f(x)=|x|√1−x2−x,当0<x≤1可得f(x)=−√1−x2∈(−1,0],当−1≤x<0可得f(x)=√1−x2∈[0,1),可得函数的值域为(−1,1),故B正确;对于C,由f(−1)=f(1)=0,则f(x)在定义域上是增函数,故C 错误;对于D,由f(x)=|x|√1−x2−x的定义域为[−1,0)∪(0,1],关于原点对称,f(−x)=|x|√1−x2x=−f(x),则f(x)为奇函数,故D正确;故选:ABD小提示:本题考查了求函数的定义域、值域、奇偶性、单调性,属于中档题.12、已知函数f(x)=2x+12x−1,g(x)=2x,则下列结论正确的是()A.f(x)g(x)为奇函数B.f(x)g(x)为偶函数C.f(x)+g(x)为奇函数D.f(x)+g(x)为非奇非偶函数答案:BC解析:先判断函数f(x),g(x)的奇偶性,再利用函数奇偶性的性质判断选项正误.f(x)=2x+12x−1,其定义域为(−∞,0)∪(0,+∞),f(−x)=2−x+12−x−1=(2−x+1)⋅2x(2−x−1)⋅2x=1+2x1−2x=−f(x),故函数f(x)为奇函数,又g(x)=2x为奇函数,根据函数奇偶性的性质可知:f(x)g(x)为偶函数,f(x)+g(x)为奇函数,故选:BC.小提示:本题考查函数奇偶性的判断及其性质应用,难度不大.13、我国著名的数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微;数形结合百般好,隔裂分家万事休.在数学学习和研究中,常用函数的图象来研究函数的性质.下列函数中,在(0,+∞)上单调递增且图象关于y轴对称的是()A.f(x)=x3B.f(x)=x2C.y=x−2D.f(x)=|x|答案:BD解析:根据函数解析式,逐项判断函数的单调性与奇偶性,即可得出结果.A选项,f(x)=x3定义域为R,在(0,+∞)上显然单调递增,但f(−x)=−x3≠f(x),即f(x)=x3不是偶函数,其图象不关于y轴对称,A排除;B选项,f(x)=x2定义域为R,在(0,+∞)上显然单调递增,且f(−x)=(−x)2=x2=f(x),所以f(x)=x2是偶函数,图象关于y轴对称,即B正确;C选项,y=x−2定义域为(−∞,0)∪(0,+∞),在(0,+∞)上显然单调递减,C排除;D选项,f(x)=|x|的定义域为R,在(0,+∞)上显然单调递增,且f(−x)=|−x|=|x|=f(x),所以f(x)=|x|是偶函数,图象关于y轴对称,即D正确.故选:BD.填空题14、已知函数f(x)=x2−2ax+3在区间[2,8]是单调递增函数,则实数a的取值范围是______.答案:a≤2分析:求出二次函数的对称轴,即可得f(x)的单增区间,即可求解.函数f(x)=x2−2ax+3的对称轴是x=a,开口向上,若函数f(x)=x2−2ax+3在区间[2,8]是单调递增函数,则a≤2,所以答案是:a≤2.15、已知函数f(x)的图象为如图所示的两条线段组成,则下列关于函数f(x)的说法:①f(f(1))=3;②f(2)>f(0);③f(x)=2|x−1|−x+1,x∈[0,4];,2].④∃a>0,不等式f(x)≤a的解集为[13其中正确的说法有_________.(写出所有正确说法的序号)答案:①③解析:根据图象,可求得f(1)的值,即可判断①的正误;根据图中数据及f(x)在[1,4]上的单调性,可判断②的正误;分别讨论1≤x≤4和0≤x<1两种情况,求得f(x)解析式,检验即可判断③的正误;根据不等式f(x)≤a解集,即求f(x)=a的根,根据f(x)解析式,即可判断④的正误,即可得答案.对于①:由图象可得:f(1)=0,所以f(f(1))=f(0)=3,故①正确;对于②:f(0)=f(4)=3,且f(x)在[1,4]上为单调递增函数,所以f(2)<f(4)=3,所以f(2)<f(0),故②错误;对于③:当1≤x≤4时,f(x)=2|x−1|−x+1=2(x−1)−x+1=x−1,f(1)=0,f(4)=3,满足图象;当0≤x <1时,f(x)=2|x −1|−x +1=2(1−x)−x +1=3−3x ,f(0)=3,斜率k =−3,满足图象,故③正确;对于④:由题意得f (x )≤a 的解集为[13,2],即f (x )=a 的根为13,2,根据f (x )解析式可得f(13)=2,当1≤x ≤4时,令x −1=2,解得x =3,所以解集为[13,3],故④错误. 所以答案是:①③16、已知a >0,b >0,且a +b =1,则1a+2b−3ab 的最大值是______. 答案:32分析:利用a >0,b >0,且a +b =1,求出a 的范围,将1a+2b−3ab 消元得13a 2−4a+2,利用二次函数的最值及倒数法则即可求得1a+2b−3ab 的最大值.解:因为a >0,b >0,且a +b =1,所以a ∈(0,1),b ∈(0,1),1a +2b −3ab =11+b −3ab=11+(1−a )(1−3a ) =13a 2−4a+2,当a =23时,3a 2−4a +2取最小值23,所以13a 2−4a+2取最大值32,故1a+2b−3ab 的最大值是32. 所以答案是:32.解答题17、已知函数f (x )=√x +3+1x+2.(1)求f (x )的定义域和f (−3)的值;(2)当a >0时,求f (a ),f (a −1)的值.答案:(1)定义域为[−3,−2)∪(−2,+∞),f (−3)=−1;(2)f (a )=√a +3+1a+2,f (a −1)=√a +2+1a+1.分析:(1)由根式、分式的性质求函数定义域,将自变量代入求f (−3)即可.(2)根据a 的范围,结合(1)的定义域判断所求函数值是否有意义,再将自变量代入求值即可.(1)由{x +3≥0x +2≠0,则定义域为[−3,−2)∪(−2,+∞), 且f (−3)=√−3+3+1−3+2=−1.(2)由a >0,结合(1)知:f (a ),f (a −1)有意义.所以f (a )=√a +3+1a+2,f (a −1)=√a −1+3+1a−1+2=√a +2+1a+1. 18、已知幂函数f (x )=x −m2+4m (m ∈Z )的图象关于y 轴对称,且在区间(0,+∞)上是严格增函数.(1)求m 的值; (2)求满足不等式f (2a −1)<f (a +1)的实数a 的取值范围.答案:(1)m =2(2)0<a <2分析:(1)先利用幂函数在区间(0,+∞)上是严格增函数得到−m 2+4m >0,再验证其图象关于y 轴对称进行求值;(2)利用(1)中函数的奇偶性和单调性进行求解.(1)解:因为幂函数f (x )=x −m 2+4m 在区间(0,+∞)上是严格增函数,所以−m 2+4m >0,解得0<m <4,又因为m ∈Z ,所以m =1或m =2或m =3,当m =1或m =3时,f (x )=x 3为奇函数,图象关于原点对称(舍);当m =2时,f (x )=x 4为偶函数,图象关于y 轴对称,符合题意;综上所述,m =2.(2)解:由(1)得f (x )=x 4为偶函数,且在区间(0,+∞)上是严格增函数,则由f (2a −1)<f (a +1)得|2a −1|<|a +1|,即(2a −1)2<(a +1)2,即a 2−2a <0,解得0<a <2,所以满足f (2a −1)<f (a +1)的实数a 的取值范围为0<a <2.。
新高考数学必考知识点归纳新高考数学作为高中数学教育的重要组成部分,其必考知识点覆盖了基础数学的多个领域。
以下是对新高考数学必考知识点的归纳:一、函数与导数- 函数的定义、性质、图像- 一次函数、二次函数、幂函数、指数函数、对数函数、三角函数- 函数的单调性、奇偶性、周期性- 导数的定义、几何意义、运算法则- 基本导数公式、复合函数的求导法则- 高阶导数、隐函数求导、参数方程求导二、三角函数与解三角形- 三角函数的定义、图像、性质- 正弦定理、余弦定理、正切定理- 三角恒等变换、和差化积、积化和差- 三角函数的反函数、同角三角函数关系三、不等式与方程- 不等式的基本性质、解法- 一元一次不等式、一元二次不等式- 分式不等式、绝对值不等式- 线性方程组、非线性方程组的解法- 一元高次方程的解法四、数列- 数列的概念、分类- 等差数列、等比数列的定义、通项公式、求和公式- 数列的极限、无穷等比数列的求和- 数列的单调性、有界性五、解析几何- 点、线、面的基本性质- 直线的方程、圆的方程、椭圆、双曲线、抛物线的方程- 直线与圆的位置关系、圆与圆的位置关系- 圆锥曲线的参数方程、极坐标方程六、立体几何- 空间直线、平面的基本性质- 空间向量、向量积- 空间直线与平面的位置关系- 多面体、旋转体的体积、表面积七、概率与统计初步- 随机事件的概率、概率的加法公式、乘法公式- 条件概率、独立事件- 离散型随机变量及其分布列、期望、方差- 统计数据的收集、整理、描述八、复数- 复数的概念、复数的运算- 复数的几何意义、复平面- 复数的共轭、模、辐角九、逻辑推理与证明- 逻辑推理的基本形式、演绎推理- 直接证明、反证法、数学归纳法十、数学思想与方法- 数学建模、数学思维- 解题策略、数学方法论新高考数学的备考需要对这些知识点有深入的理解和熟练的运用能力。
通过不断的练习和总结,考生可以提高解题速度和准确率,为高考取得优异成绩打下坚实的基础。
函数一、函数的定义:1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.(1)其中,x叫做自变量,x的取值范围A叫做函数的定义域;(2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.2.函数的三要素:定义域、值域、对应法则3.函数的表示方法:(1)解析法:明确函数的定义域(2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。
(3)列表法:选取的自变量要有代表性,可以反应定义域的特征。
4、函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .(2) 画法A、描点法:B、图象变换法:平移变换;伸缩变换;对称变换,即平移。
(3)函数图像平移变换的特点:1)加左减右——————只对x2)上减下加——————只对y3)函数y=f(x) 关于X轴对称得函数y=-f(x)4)函数y=f(x) 关于Y轴对称得函数y=f(-x)5)函数y=f(x) 关于原点对称得函数y=-f(-x)6)函数y=f(x) 将x轴下面图像翻到x轴上面去,x轴上面图像不动得函数y=| f(x)|7)函数y=f(x) 先作x≥0的图像,然后作关于y轴对称的图像得函数f(|x|)二、函数的基本性质1、函数解析式子的求法(1)、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)、求函数的解析式的主要方法有:1)代入法:2)待定系数法:3)换元法:4)拼凑法:2.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
最全函数知识点总结高中一、函数的基本概念1.1 函数的定义函数是一个非常基本的数学概念。
在数学上,函数是一种对应关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
用数学符号表示就是:对于两个集合A和B,如果存在一个规则f,它使得对于A中的每个元素x,都有一个唯一的y属于B与之对应,那么我们说f是从A到B的一个函数,记作f:A→B。
其中A称为定义域,B称为值域。
1.2 函数的概念在我们的日常生活中,我们可以看到很多函数的例子。
比如,将一个数字加上3,或者乘以2,这就是两个函数的例子。
我们可以看到,函数本质上就是一种输入与输出的关系。
1.3 函数的符号表示函数一般用字母f,g,h等表示,其定义为:y=f(x),表示x是自变量,y是因变量。
1.4 函数的自变量和因变量在函数中,自变量是输入的值,它在定义域中取值;而因变量是输出的值,它在值域中取值。
1.5 函数的图象函数的图象是函数在一个坐标系中的表示,它可以帮助我们更直观地了解函数的性质和规律。
1.6 函数的性质函数有很多的性质,比如奇偶性、单调性、周期性等等。
1.7 函数的分类函数可以分为初等函数和非初等函数。
初等函数包括多项式函数、有理函数、指数函数、对数函数、三角函数和反三角函数。
非初等函数包括无穷级数、常微分方程等。
1.8 逆函数如果函数f有定义域A和值域B,对于B中的每一个y,存在一个唯一的x属于A与之对应,那么我们称这个函数有逆函数,记作f^(-1)。
1.9 复合函数如果有两个函数f和g,使得f的值域是g的定义域,那么我们可以定义一个新的函数h(x)=f(g(x)),这就是复合函数。
1.10 函数的性质与变化函数有很多的性质和变化规律,比如极值、单调性、周期性、奇偶性等等。
对于这些性质和变化,我们可以通过函数的图象和导数来进行分析。
1.11 函数的运算函数之间可以进行加减乘除的运算,还可以进行求泛函、求复合函数、求逆函数等。
二、函数的表示与运用2.1 函数的表示方法函数可以用方程的形式、图象的形式、表格的形式、文字的形式等来表示。
高中数学函数知识点总结大全1.函数的定义:函数是一种数学关系,它从一个集合中的每个元素对应到另一个集合中的唯一一个元素。
常用的表示方式有:f(x)和y。
2.定义域和值域:函数的定义域是指函数的自变量可能的取值范围,而值域是指函数的因变量可能的取值范围。
函数的图像是定义域和值域之间的对应关系。
3.函数的图像:函数的图像是函数在直角坐标系上的几何表示。
通过观察函数的图像,我们可以得到函数的一些性质,例如函数的增减性、极值、最值等。
4.函数的性质:(1)奇偶性:如果对于函数中任意一个x值,f(-x)=f(x),则函数是偶函数;如果对于函数中任意一个x值,f(-x)=-f(x),则函数是奇函数。
(2)周期性:如果存在一个正数T,使得对于函数中任意一个x值,f(x+T)=f(x),则函数是周期函数。
(3)单调性:如果对于函数中任意两个x1和x2的值,当x1<x2时有f(x1)<f(x2),则函数是增函数;如果当x1<x2时有f(x1)>f(x2),则函数是减函数。
(4)零点和根:函数的零点是指函数图像与x轴相交的点,函数的根是指函数的零点所对应的x值。
(5)映射:函数中的每一个自变量都有唯一对应的因变量,这种一对一的关系称为映射。
(6)复合函数:如果函数g的定义域包含了函数f的值域,则可以将g(f(x))表示为复合函数。
5.函数的运算:(1)四则运算:函数之间可以进行加减乘除的运算,例如:f(x)+g(x)、f(x)-g(x)、f(x)*g(x)、f(x)/g(x)。
(2)反函数:如果一个函数f的定义域为D,值域为R,并且对于R中任意一个y值,存在一个唯一的x值,使得f(x)=y,那么这个函数就有一个反函数f^(-1)(y),它的定义域是R,值域是D。
(3)复合函数:如果函数g的定义域包含了函数f的值域,则可以将g(f(x))表示为复合函数。
复合函数可以用来描述多个函数的组合方式。
高中函数必考知识点总结一、函数的概念与性质1. 函数的概念函数是一种特殊的关系,它是一个或多个自变量和因变量之间的对应关系。
在数学中,通常用f(x)表示函数,其中x为自变量,f(x)为因变量。
函数也可以用y表示,即y=f(x)。
函数的定义域为自变量能取得的值的集合,值域为函数在定义域内所有可能取得的值的集合。
2. 函数的性质(1)定义域和值域:一个函数的定义域和值域是描述这个函数在横坐标和纵坐标上的取值范围。
(2)奇函数与偶函数:奇函数的图像对称于原点,即f(-x)=-f(x);偶函数的图像对称于y 轴,即f(-x)=f(x)。
(3)周期函数:周期函数是指满足f(x+T)=f(x)的函数,其中T为函数的周期。
(4)单调性:函数在定义域上的单调性分为递增和递减两种情况。
二、函数的图像与性质1. 一次函数(1)一次函数的图像是一条直线,其表达式一般为y=kx+b,其中k为斜率,b为截距。
(2)一次函数的图像是一条直线,斜率k表示了直线的斜率,而截距b表示了直线与y 轴的交点。
2. 二次函数(1)二次函数的图像是一个抛物线,其表达式一般为y=ax^2+bx+c,其中a不为0。
(2)二次函数的顶点坐标为(-b/2a,c-b^2/4a),对称轴方程为x=-b/2a,开口向上或开口向下取决于a的正负。
3. 指数函数(1)指数函数的图像是一条过点(0,1)的递增曲线,其表达式一般为y=a^x,其中a为底数,a>0且a≠1。
(2)指数函数的性质:具有底数为正数,且大于1时函数递增;具有底数为0到1之间的数时函数递减。
(3)指数函数的图像在x轴上没有横截点,y轴上有一个横截点(0,1)。
4. 对数函数(1)对数函数的图像是一条过点(1,0)的递增曲线,其表达式一般为y=loga(x),其中a为底数,a>0且a≠1。
(2)对数函数的性质:具有底数为正数,且大于1时函数递增;具有底数为0到1之间的数时函数递减。
高中数学函数基础知识点1. 函数的基本概念-函数的定义:设在一个非空数集D上,如果存在一个法则f,使得对每一个x∈D,都有唯一确定的y与之对应,记作y=f(x),那么就称y是x的函数,记作y=f(x),其中D称为函数的定义域。
-单调性:函数在某个区间上若满足随着自变量增大,函数值也增大,则称函数在这个区间上单调递增;反之,若函数值随自变量增大而减小,则称函数在这个区间上单调递减。
-奇偶性:若对于所有定义域内的x,都有f(-x) = f(x),则称f(x)为偶函数;若f(-x) = -f(x),则称f(x)为奇函数。
2. 基本初等函数-常数函数、幂函数、指数函数、对数函数、三角函数(正弦函数、余弦函数、正切函数等)、反三角函数及其性质。
3. 函数图像与性质-函数图像的画法:列表、描点、连线。
-函数图像的平移、翻折、伸缩变换规律。
-函数零点的定义及求解方法。
4. 函数的运算-函数的四则运算:两个函数的和、差、积、商仍然是函数。
-复合函数:由两个或多个简单函数经过嵌套组合而成的函数。
5. 函数的最值问题-利用函数单调性寻找函数在指定区间上的最大值和最小值。
-利用导数工具求解闭区间上的函数最值。
6. 函数方程与函数不等式-解决函数方程,即求解满足给定条件的函数表达式。
-解函数不等式,求解满足不等式的自变量范围。
7. 分段函数-定义和表示方法,以及其连续性和单调性等问题。
以上都是高中数学函数部分的基础知识点,也是后续学习诸如导数、积分、微积分等高级数学知识的基础。
在学习过程中,需结合实例,多做题型练习,以便理解和熟练掌握函数的各种性质和运算法则。
高中数学函数知识点总结一、映射、函数、反函数1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射。
2、对于函数的概念,应注意如下几点:(1)掌握构成函数的三要素,会判断两个函数是否为同一函数。
(2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式。
(4)如果y=fu,u=gx,那么y=f[gx]叫做f和g的复合函数,其中gx为内函数,fu为外函数。
3、求函数y=fx的反函数的一般步骤:(1)确定原函数的值域,也就是反函数的定义域;(2)由y=fx的'解析式求出x=f—1y;(3)将x,y对换,得反函数的习惯表达式y=f—1x,并注明定义域。
注意:①对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起。
②熟悉的应用,求f—1x0的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算。
二、函数的解析式与定义域1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域。
求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可。
如:①分式的分母不得为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正切函数y=tanxx∈R,且k∈Z,余切函数y=cotxx∈R,x≠kπ,k∈Z等。
应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分即交集。
(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可。
已知fx的定义域是[a,b],求f[gx]的定义域是指满足a≤gx≤b的x的取值范围,而已知f[gx]的定义域[a,b]指的是x∈[a,b],此时fx的定义域,即gx的值域。
一次函数
一、定义与定义式:
自变量某和因变量y有如下关系:
y=k某+b
那么此时称y是某的一次函数。
特别地,当b=0时,y是某的正比例函数。
即:y=k某 (k为常数,k≠0)
二、一次函数的性质:
1.y的变化值与对应的某的变化值成正比例,比值为k
即:y=k某+b (k为任意不为零的实数 b取任何实数)
2.当某=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:
1.作法与图形:通过如下3个步骤
(1)列表;
(2)描点;
(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与某轴和y轴的交点)
2.性质:(1)在一次函数上的任意一点P(某,y),都满足等式:y=k某+b。
(2)一次函数与y轴交点的坐标总是(0,b),与某轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:
当k>0时,直线必通过一、三象限,y随某的增大而增大;
当k<0时,直线必通过二、四象限,y随某的增大而减小。
当b>0时,直线必通过一、二象限;
当b=0时,直线通过原点
当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
四、确定一次函数的表达式:
点A(某1,y1);B(某2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=k某+b。
(2)因为在一次函数上的任意一点P(某,y),都满足等式y=k某+b。
所以可以
列出2个方程:y1=k某1+b …… ① 和 y2=k某2+b …… ②
(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:
1.当时间t一定,距离是速度v的一次函数。
=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
设水池中
原有水量。
g=-ft。
六、常用公式:(不全,希望有人补充)
1.求函数图像的k值:(y1-y2)/(某1-某2)
2.求与某轴平行线段的中点:|某1-某2|/2
3.求与y轴平行线段的中点:|y1-y2|/2
4.求任意线段的长:√(某1-某2)^2+(y1-y2)^2 (注:根号下(某1-某2)与(y1-
y2)的平方和)
反比例函数
形如 y=k/某(k为常数且k≠0) 的函数,叫做反比例函数。
自变量某的取值范围是不等于0的一切实数。
反比例函数图像性质:反比例函数的图像为双曲线。
由于反比例函数属于奇函数,有f(-某)=-f(某),图像关于原点对称。
另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。
当K>0时,反比例函数图像经过一,三象限,是减函数
当K<0时,反比例函数图像经过二,四象限,是增函数
反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。
1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴
围成的矩形的面积为| k |。
2.对于双曲线y=k/某,假设在分母上加减任意一个实数 (即 y=k/(某±m)m为
常数),就相当于将双曲线图象向左或右平移一个单位。
(加一个数时向左平移,减
一个数时向右平移)
指数函数
(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不
大于0的情况,那么必然使得函数的定义域不存在连续的区间,因此我们不予考虑。
(2) 指数函数的值域为大于0的实数集合。
(3) 函数图形都是下凹的。
(4) a大于1,那么指数函数单调递增;a小于1大于0,那么为单调递减的。
(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不
能等于0),函数的曲线从分别接近于Y轴与某轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与某轴的负半轴的单调递增函数的位置。
其中水平
直线y=1是从递减到递增的一个过渡位置。
(6) 函数总是在某一个方向上无限趋向于某轴,永不相交。
(7) 函数总是通过(0,1)这点。
(8) 显然指数函数无界。
奇偶性
1.定义
一般地,对于函数f(某)
(1)如果对于函数定义域内的任意一个某,都有f(-某)=-f(某),那么函数f(某)
就叫做奇函数。
(2)如果对于函数定义域内的任意一个某,都有f(-某)=f(某),那么函数f(某)就叫做偶函数。
(3)如果对于函数定义域内的.任意一个某,f(-某)=-f(某)与f(-某)=f(某)同时成立,那么函数f(某)既是奇函数又是偶函数,称为既奇又偶函数。
(4)如果对于函数定义域内的任意一个某,f(-某)=-f(某)与f(-某)=f(某)都不能成立,那么函数f(某)既不是奇函数又不是偶函数,称为非奇非偶函数。
①奇、偶性是函数的整体性质,对整个定义域而言
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,那么这个函数一定不是奇(或偶)函数。
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(某)比拟得出结论)
③判断或证明函数是否具有奇偶性的根据是定义
2.奇偶函数图像的特征:
定理奇函数的图像关于原点成中心对称图表,偶函数的图象关于y轴或轴对称图形。
f(某)为奇函数《==》f(某)的图像关于原点对称
点(某,y)→(-某,-y)
奇函数在某一区间上单调递增,那么在它的对称区间上也是单调递增。
偶函数在某一区间上单调递增,那么在它的对称区间上单调递减。
3. 奇偶函数运算
(1) . 两个偶函数相加所得的和为偶函数.
(2) . 两个奇函数相加所得的和为奇函数.
(3) . 一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.
(4) . 两个偶函数相乘所得的积为偶函数.
(5) . 两个奇函数相乘所得的积为偶函数.
(6) . 一个偶函数与一个奇函数相乘所得的积为奇函数.。