数字信号处理习题集大题及答案
- 格式:doc
- 大小:707.00 KB
- 文档页数:21
《数字信号处理》习题集一. 填空题1、一线性时不变系统,输入为 x〔n〕时,输出为y〔n〕;则输入为2x〔n〕时,输出为;输入为x〔n-3〕时,输出为。
2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真复原,采样频率fs与信号最高频率f max关系为:。
3、已知一个长度为N的序列x(n),它的离散时间傅立叶变换为X〔e jw〕,它的N点离散傅立叶变换X〔K〕是关于X〔e jw〕的点等间隔。
4、有限长序列x(n)的8点DFT为X〔K〕,则X〔K〕= 。
5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的所产生的现象。
6、δ(n)的z变换是。
7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较,阻带衰减比较。
8、用双线性变法进行IIR数字滤波器的设计,从s平面向z平面转换的关系为s= 。
9、假设正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 。
10、序列x1〔n〕的长度为4,序列x2〔n〕的长度为3,则它们线性卷积的长度是,5点圆周卷积的长度是。
11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列的,而周期序列可以看成有限长序列的。
12.对长度为N的序列x(n)圆周移位m位得到的序列用x m(n)表示,其数学表达式为x m(n)= 。
13、无限长单位冲激响应〔IIR〕滤波器的结构是型的。
14.线性移不变系统的性质有、和分配律。
15.用DFT近似分析模拟信号的频谱时,可能出现的问题有、和。
16.无限长单位冲激响应滤波器的基本结构有型,型和。
17.如果通用电脑的速度为平均每次复数乘需要5μs,每次复数加需要1μs,则在此电脑上计算210点的基2 FFT需要级蝶形运算,总的运算时间是______μs。
18.用窗函数设计FIR滤波器时,滤波器频谱波动由什么决定 _____________,滤波器频谱过渡带由什么决定_______________。
DSP习题答案DSP 技术及应⽤综合训练1.DSP全称有哪两个含义?全称分别是什么?答:1、Digital Signal Processing,数字信号处理,指的是⼀门学科2、Digital Signal Processor,数字信号处理器,实现数字信号处理算法的处理器.平常所说的DSP⼀般指后者。
2.TI公司DSP主要分为哪⼏种⼦列?分别⽤于哪些场合答:C2000、C5000和C6000三⼤主流,其中C2000系列属于控制型,相当于⾼端单⽚机;C5000系列属于低成本、低功耗、⾼效率型;C6000系列属于⾼性能的类型,其性能是C5000系列的数⼗倍。
如果你处理的算法不是很复杂的话,建议使⽤C5000系列(如C5509、C5510等);如果算法之类的特别复杂,可以考虑C6000系列。
3.VC5509A硬件结构主要有哪些组成?答:CPU、存储器、⽚上外设。
(⽚上外设:●两个20位的定时器。
●⼀个看门狗定时器。
●l6通道直接存储器存取控制器(DMA),DMA控制器在不需要CPU⼲预的情况下可以提供6路独⽴的通道⽤于数据传输,并且可达每周期两个16位数据的吞吐量。
l外部存储器接⼝(EMIF),它提供与异步存储器如EPROM、SRAM及⾼密度存储器如同步DRAM的⽆缝连接。
l 三个串⼝⽀持最多三个多通道缓冲串⼝(McBSP)或最多两个多媒体/安全数字卡接⼝。
三个全双⼯多通道缓冲串⼝(McBSP)提供了与各种⼯业级串⾏设备的⽆缝接⼝,其多通道通信最多可以实现128个独⽴通道。
增强型主机接⼝(EHPI)是⼀个16位的并⾏接⼝,主机能够提供HPI接⼝访问5509A上的32KB⽚上存储器。
●可编程锁相环(DPLL)时钟发⽣器。
●USB全速(12Mbps)从端⼝。
●I2C主从接⼝。
●⼀个实时时钟。
)4.在CMD⽂件中,Mermory命令的主要作⽤是什么?答:⽤来指定⽬标存储器结构5.在CMD⽂件中,SECTION命令的主要作⽤是什么?答:⽤来控制段的构成与地址分配6.C55X处理器软件开发流程是什么?答:7.利⽤C语⾔与汇编语⾔混合编程优什么优点?答:可以充分地控制处理器的功能,为⼈⼯映射算法构成最有效的程序编码,效率⾼、可维护性和移植性好。
P1.已知两序列[]0.8{[][5]}n x n u n u n =--,[]{1,1,1,1,1}h n =计算两序列的卷积并绘制其波形。
解:for i=1:5x(i)=0.8^(i-1);endh=[1 1 1 1 1];y=conv(x,h)m=[0 1 2 3 4 5 6 7 8];stem(m,y,'filled')P2.已知复指数序列(1.52)[] 1.2j n x n e +=,绘制20点该序列的实部和虚部。
解:(1.52) 1.52 1.5 1.5 1.5[] 1.2 1.2 1.2(cos 2sin 2) 1.2cos 2 1.2sin 2j n n j n n n n x n e e e e n j n e n j e n +===+=+ 所以 1.5 1.5Re([]) 1.2cos 2,Im([]) 1.2sin 2n n x n e n x n e n ==for n=1:20Re(n)=1.2*exp(1.5*(n-1))*cos(2*(n-1));Im(n)=1.2*exp(1.5*(n-1))*sin(2*(n-1));endfor i=1:20x(i)=i-1;endsubplot(2,1,1)stem(x,Re,'filled');lab1='\rightarrowRe(x[n])';text(14,1.2e+12,lab1,'Fontsize',18);subplot(2,1,2)stem(x,Im,'filled');lab2='\rightarrowIm(x[n])';text(14,4e+11,lab2,'Fontsize',18);P3.编写长度为5的中值滤波器程序。
原始未受干扰的序列为:s[n]=3[n(0.5) ]n,加性噪声信号d[n]为随机序列,幅度0.4,分别绘制长度为40的受干扰序列,以及中值滤波器的输出。
第五章 数字滤波器一、数字滤波器结构填空题:1.FIR 滤波器是否一定为线性相位系统?( ).解:不一定计算题:2.设某FIR 数字滤波器的冲激响应,,3)6()1(,1)7()0(====h h h h6)4()3(,5)5()2(====h h h h ,其他n 值时0)(=n h 。
试求)(ωj e H 的幅频响应和相频响应的表示式,并画出该滤波器流图的线性相位结构形式。
解: {}70,1,3,5,6,6,5,3,1)(≤≤=n n h ∑-=-=10)()(N n nj j e n h e H ωω⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+=+++++++=---------------ωωωωωωωωωωωωωωωωωωω2121272323272525272727277654326533566531j j j j j j j j j j j j j j j j j j j e e e e e e e e e e e ee e e e e e e )(27)(27cos 225cos 623cos 102cos 12ωφωωωωωωj j e H e=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=- 所以)(ωj e H 的幅频响应为ωωωωωω2727cos 225cos 623cos 102cos 12)(j eH -⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛= )(ωj e H 的相频响应为ωωφ27)(-=作图题:3.有人设计了一只数字滤波器,得到其系统函数为:2112113699.00691.111455.11428.26949.02971.114466.02871.0)(------+-+-++--=z z z z z z z H 2112570.09972.016303.08557.1---+--+z z z请采用并联型结构实现该系统。
西安电子 ( 高西全丁美玉第三版 ) 数字信号处理课后答案1.2 教材第一章习题解答1. 用单位脉冲序列 (n) 及其加权和表示 题 1 图所示的序列。
解:x( n)(n4) 2 (n 2) ( n 1)2 (n)(n 1) 2 (n 2) 4 ( n 3)0.5(n 4)2 (n 6)2n 5, 4 n 12. 给定信号: x( n)6,0n 40, 其它(1)画出 x( n) 序列的波形,标上各序列的值; (2)试用延迟单位脉冲序列及其加权和表示 x(n) 序列;(3)令 x 1( n) 2x(n 2) ,试画出 x 1( n) 波形;(4)令 x 2 (n) 2x(n 2) ,试画出 x 2 (n) 波形;(5)令 x 3 (n) 2x(2 n) ,试画出 x 3 (n) 波形。
解:( 1) x(n) 的波形如 题 2 解图(一) 所示。
( 2)x(n)3 ( n 4)(n 3) (n 2) 3 ( n 1) 6 (n) 6 (n 1)6 ( n 2)6(n 3) 6 (n 4)( 3) x 1 (n) 的波形是 x(n) 的波形右移 2 位,在乘以 2,画出图形如 题 2 解图(二) 所示。
( 4) x 2 (n) 的波形是 x(n) 的波形左移 2 位,在乘以 2,画出图形如 题 2 解图(三) 所示。
( 5)画 x 3 (n) 时,先画 x(-n) 的波形,然后再右移2 位, x3 ( n) 波形如 题 2 解图(四) 所示。
3. 判断下面的序列是否是周期的,若是周期的,确定其周期。
(1) x( n)Acos(3n) ,A 是常数;78(2)x(n)j ( 1n)e 8。
解:(1)w 3214T=14 ;7,,这是有理数,因此是周期序列,周期是w3(2)w 1 , 216 ,这是无理数,因此是非周期序列。
8w5. 设系统分别用下面的差分方程描述,x(n) 与 y(n) 分别表示系统输入和输出,判断系统是否是线性非时变的。
数字信号处理复习题1. 若⼀线性移不变系统当输⼊为x(n)=δ(n)时,输出为y(n)=R 3(n),计算当输⼊为u(n)-u(n -4)-R 2(n -1)时,输出为()A 、R 3(n)+R 2(n+3)B 、R 3(n)+R 2(n -3)C 、R 3(n)+R 3(n+3)D 、R 3(n)+R 3(n -3)2. 连续信号抽样序列在()上的Z 变换等于其理想抽样信号的傅⾥叶变换。
A 、单位圆B 、实轴C 、正虚轴D 、负虚轴 3. 序列)(0n n x -是)(n x 的移位序列,当00>n 时,)(0n n x -称为)(n x 的()A 、延时序列B 、周期序列C 、超前序列D 、翻转序列 4. ⼀个线性移不变系统稳定的充分必要条件是其系统函数的收敛域包含()A 、单位圆B 、原点C 、实轴D 、虚轴5. 已知x(n)=δ(n),7点的DFT [x(n)]=X(k),则X(5) =()A 、NB 、1C 、0D 、-N解:()()()221001N j kn j kn N N n n X k n e n e ππδδ---=====∑ 6. 已知DFT [x(n)]=X(k),下⾯说法中正确的是( ) A 、若x(n)为实数偶对称函数,则X(k)为虚数奇对称函数 B 、若x(n)为实数奇对称函数,则X(k)为虚数奇对称函数 C 、若x(n)为虚数偶对称函数,则X(k)为虚数奇对称函数 D 、若x(n)为虚数奇对称函数,则X(k)为虚数奇对称函数7. 在对连续信号均匀采样时,要从离散采样值不失真恢复原信号,则采样频率f s 与信号最⾼截⽌频率f c 应满⾜关系()A 、f s ≥ 2f cB 、f s ≥ f cC 、f s ≤ f cD 、f s ≤ 2f c8. 如图所⽰的运算流图符号是()基2-FFT 算法的蝶形运算流图符号。
A 、按频率抽取B 、按时间抽取C 、两者都是D 、两者都不是9.设[]()()j X e DTFT x n ω=,则[]0()DTFTx n n -=()A 、)e (j ωXB 、)e (e j ωn j ω0XC 、)e (e j ωn -j ω0X D 、)e (j ω0X n10.直接计算N 点DFT 所需的复数乘法次数与()成正⽐。
1设序列x(n)={4,3,2,1} , 另一序列h(n) ={1,1,1,1},n=0,1,2,3 (1)试求线性卷积 y(n)=x(n)*h(n) (2)试求6点圆周卷积。
(3)试求8点圆周卷积。
解:1.y(n)=x(n)*h(n)={4,7,9,10,6,3,1}2.6点圆周卷积={5,7,9,10,6,3}3.8点圆周卷积={4,7,9,10,6,3,1,0}2二.数字序列 x(n)如图所示. 画出下列每个序列时域序列: (1) x(n-2); (2)x(3-n); (3)x[((n-1))6],(0≤n ≤5); (4)x[((-n-1))6],(0≤n ≤5);n12340.543210-1-2-3x(3-n)x[((n-1))6]n54321043210.5n12340.5543210x[((-n-1))6]3.已知一稳定的LTI 系统的H(z)为)21)(5.01()1(2)(111------=z z z z H试确定该系统H(z)的收敛域和脉冲响应h[n]。
解:0.52ReIm系统有两个极点,其收敛域可能有三种形式,|z|<0.5, 0.5<|z|<2, |z|>2 因为稳定,收敛域应包含单位圆,则系统收敛域为:0.5<|z|<211111213/25.013/4)21)(5.01()1(2)(--------=---=z z z z z z H )1(232)()5.0(34)(--+=n u n u n h n n4.设x(n)是一个10点的有限序列x (n )={ 2,3,1,4,-3,-1,1,1,0,6},不计算DFT ,试确定下列表达式的值。
(1) X(0), (2) X(5), (3)∑=9)(k k X,(4)∑=-95/2)(k k j k X eπ解:(1) (2)(3)(4)5. x(n)和h(n)是如下给定的有限序列 x(n)={5, 2, 4, -1, 2}, h(n)={-3, 2, -1 }(1) 计算x(n)和h(n)的线性卷积y(n)= x(n)* h(n); (2) 计算x(n)和h(n)的6 点循环卷积y 1(n)= x(n)⑥h (n); (3) 计算x(n)和h(n)的8 点循环卷积y 2(n)= x(n)⑧h (n); 比较以上结果,有何结论?14][]0[19===∑=n N n x X W 12][][]5[119180510-=-===⎩⎨⎧-=∑∑====奇偶奇数偶数n n n n n n x n x X n n W20]0[*10][][101]0[99===∑∑==x k X k X x k k 0]8[*10][][101]))210[((][]))[((2)10/2(92)10/2(9010)/2(===-⇔--=-=-∑∑x k X ek X ex k X e m n x k j k k j k m N k j N πππ解:(1)5 2 4 -1 2-3 2 15 2 4 -1 210 4 8 -2 4-15 -6 -12 3 -6-15 4 -3 13 -4 3 2y(n)= x(n)* h(n)={-15,4,-3,13,-4,3,2}(2)5 2 4 -1 2-3 2 15 2 4 -1 210 4 8 -2 4-15 -6 -12 3 -6-15 4 -3 13 -4 3 22-13 4 -3 13 -4 3 2y1(n)= x(n)⑥h(n)= {-13,4,-3,13,-4,3}(3)因为8>(5+3-1),所以y3(n)= x(n)⑧h(n)={-15,4,-3,13,-4,3,2,0}y3(n)与y(n)非零部分相同。
==============================绪论==============================1。
A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n) 表示y (n )={2,7,19,28,29,15}2。
①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列.③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3。
加法 乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n )波形,画出x(-n)的波形图。
②尺度变换:已知x (n )波形,画出x(2n)及x (n/2)波形图。
卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤= }23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (—m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。
数字信号处理复习题一、选择题1、某系统 y(n) g( n) x(n), g( n) 有界,则该系统(A )。
A. 因果稳定B.非因果稳定C.因果不稳定D. 非因果不稳定2、一个离散系统(D)。
A. 若因果必稳定B. 若稳定必因果C.因果与稳定有关D. 因果与稳定无关3、某系统 y(n) nx(n), 则该系统(A )。
A. 线性时变B. 线性非时变C. 非线性非时变D. 非线性时变 4.因果稳定系统的系统函数 H ( z) 的收敛域是( D)。
A. z 0.9B. z 1.1C. z1.1D.z 0.95. x 1 (n) 3sin(0.5 n) 的周期( A)。
A.4B.3C.2D.16.某系统的单位脉冲响应h(n) ( 1) nu(n), 则该系统(C )。
2A. 因果不稳定B.非因果稳定C.因果稳定D. 非因果不稳定7.某系统 y(n) x(n) 5 ,则该系统(B )。
A. 因果稳定B.非因果稳定C.因果不稳定D. 非因果不稳定8.序列 x(n) a n u( n 1), 在 X ( z) 的收敛域为( A)。
A. z aB. zaC.z a D. z a9.序列 x(n)(1) nu(n) ( 1)n u( n 1), 则 X (z) 的收敛域为( D )。
1 3 12 1 1 1B. zC. z zA. z3 2 D. 223 10.关于序列 x( n) 的 DTFT X (ej) ,下列说法正确的是(C )。
A. 非周期连续函数B.非周期离散函数C.周期连续函数,周期为 2D.周期离散函数,周期为211.以下序列中( D )的周期为 5。
A. x( n)cos( 3n)B. x(n)sin( 3 n)5 588C. x( n) e j ( 2n)x(n)j (2n) 58D. e 5812. x(n)ej (n)3 6,该序列是( A )。
A. 非周期序列B.周期 N6C.周期 N6D.周期N 213. ((4)) 4 ________ 。
文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.1文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.1设序列x(n)={4,3,2,1} , 另一序列h(n) ={1,1,1,1},n=0,1,2,3 (1)试求线性卷积 y(n)=x(n)*h(n) (2)试求6点圆周卷积。
(3)试求8点圆周卷积。
解:1.y(n)=x(n)*h(n)={4,7,9,10,6,3,1}2.6点圆周卷积={5,7,9,10,6,3} 3.8点圆周卷积={4,7,9,10,6,3,1,0} 2二.数字序列 x(n)如图所示. 画出下列每个序列时域序列: (1) x(n-2); (2)x(3-n); (3)x[((n-1))6],(0≤n ≤5);(4)x[((-n-1))6],(0≤n ≤5);3.已知一稳定的LTI 系统的H(z)为)21)(5.01()1(2)(111------=z z z z H试确定该系统H(z)的收敛域和脉冲响应h[n]。
解系统有两个极点,其收敛域可能有三种形式,|z|<0.5, 0.5<|z|<2, |z|>2 因为稳定,收敛域应包含单位圆,则系统收敛域为:0.5<|z|<24.设x(n)是一个10点的有限序列x (n )={ 2,3,1,4,-3,-1,1,1,0,6},不计算DFT ,试确定下列表达式的值。
(1) X(0), (2) X(5), (3) ∑=90)(k k X,(4)∑=-95/2)(k k j k X eπ解:(1) (2)(3) (4) 5. x(n)和h(n)是如下给定的有限序列 x(n)={5, 2, 4, -1, 2}, h(n)={-3, 2, -1 } (1) 计算x(n)和h(n)的线性卷积y(n)= x(n)* h(n);(2) 计算x(n)和h(n)的6 点循环卷积y 1(n)= x(n)⑥h (n); (3) 计算x(n)和h(n)的8 点循环卷积y 2(n)= x(n)⑧h (n); 比较以上结果,有何结论? 解:(1)y(n)= x(n)* h(n)={-15,4,-3,13,-4,3,2} (2)y 1(n)= x(n)⑥h (n)= {-13,4,-3,13,-4,3} (3)因为8>(5+3-1),所以y 3(n)= x(n)⑧h (n)={-15,4,-3,13,-4,3,2,0} y 3(n)与y(n)非零部分相同。
数字信号处理习题一、选择题1. 序列x(n)=Re(ejn π/12)+Im(ejn π/18),周期为( B )。
A. 18πB. 72C. 18πD. 362. 对于x(n)=n 21⎪⎭⎫ ⎝⎛u(n)的Z 变换,( B )。
A. 零点为z=21,极点为z=0 B. 零点为z=0,极点为z=21C. 零点为z=21,极点为z=1D. 零点为z=21,极点为z=23、)()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足( B )A.16>NB.16=NC.16<ND.16≠N4. 设系统的单位抽样响应为h(n)=δ(n)+2δ(n-1)+5δ(n-2),其频率响应为( B )。
A. H(ej ω)=ej ω+ej2ω+ej5ωB. H(ej ω)=1+2e-j ω+5e-j2ωC. H(ej ω)=e-j ω+e-j2ω+e-j5ωD. H(ej ω)=1+21e-j ω+51e-j2ω5. 设序列x(n)=2δ(n+1)+δ(n)-δ(n-1),则X(ej ω)|ω=0的值为( B )。
A. 1B. 2C. 4D. 1/26. 设有限长序列为x(n),N1≤n ≤N2,当N1<0,N2>0,Z 变换的收敛域为( A )。
A. 0<|z|<∞B. |z|>0C. |z|<∞D. |z|≤∞7.在对连续信号均匀采样时,要从离散采样值不失真恢复原信号,则采样角频率Ωs 与信号最高截止频率Ωc 应满足关系(A )A. Ωs>2ΩcB. Ωs>ΩcC. Ωs<ΩcD. |Ωs<2Ωc8.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( D )A.y(n)=y(n-1)x(n)B.y(n)=x(n)/x(n+1)C.y(n)=x(n)+1D.y(n)=x(n)-x(n-1)9.已知某序列Z 变换的收敛域为5>|z|>3,则该序列为(D )A.有限长序列B.右边序列C.左边序列D.双边序列10.已知x(n)=δ(n),其N 点的DFT [x(n)]=X(k),则X(N-1)=(B )A.N-1B.1C.0D.-N+111.设两有限长序列的长度分别是M 与N ,欲通过计算两者的圆周卷积来得到两者的线性卷积,则圆周卷积的点数至少应取(B )A.M+NB.M+N-1C.M+N+1D.2(M+N)12.下列各种滤波器的结构中哪种不是IIR 滤波器的基本结构?(C )A.直接型B.级联型C.频率抽样型D.并联型13.下列关于FIR 滤波器的说法中正确的是( A )A.FIR 滤波器容易设计成线性相位特性B.FIR 滤波器的脉冲响应长度是无限的C.FIR 滤波器的脉冲响应长度是确定的D.对于相同的幅频特性要求,用FIR 滤波器实现要比用IIR 滤波器实现阶数低14.以下单位冲激响应所代表的线性移不变系统中因果稳定的是( C )。
《数字信号处理(第四版)》部分课后习题解答一、简答题1. 什么是数字信号处理?数字信号处理(DSP)是指对数字信号进行处理和分析的一种技术。
它使用数学和算法处理模拟信号,从而实现信号的采样、量化、编码、存储和重构等过程。
DSP广泛应用于通信、音频处理、图像处理和控制系统中。
2. 数字信号处理的主要特点有哪些?•数字信号处理能够处理和分析具有广泛频谱范围的信号。
•数字信号处理能够实现高精度的信号处理和复杂的算法运算。
•数字信号处理能够实现信号的存储、传输和复原等功能。
•数字信号处理可以利用计算机等处理硬件进行实时处理和系统集成。
3. 数字信号处理的基本原理是什么?数字信号处理的基本原理是将连续时间的模拟信号转换成离散时间的数字信号,然后通过一系列的算法对数字信号进行处理和分析。
该过程主要涉及信号的采样、量化和编码等环节。
4. 什么是离散时间信号?离散时间信号是指信号的取样点在时间上呈现离散的情况。
在离散时间信号中,只能在离散时间点上获取信号的取样值,而无法观测到连续时间上的信号变化。
5. 描述离散时间信号的功率和能量的计算方法。
对于离散时间信号,其功率和能量的计算方法如下:•功率:对于离散时间信号x(n),其功率可以通过求平方和的平均值来计算,即功率P = lim(T->∞) [1/T *∑|x(n)|^2],其中T表示信号x(n)的观测时间。
•能量:对于离散时间信号x(n),其能量可以通过求平方和来计算,即能量E = ∑|x(n)|^2。
二、计算题1. 设有一个离散时间周期序列x(n) = [2, 3, -1, 4, 0, -2],求其周期N。
由于x(n)是一个周期序列,我们可以通过观察序列来确定其周期。
根据观察x(n)的取值,我们可以发现序列在n=1和n=5两个位置上取得了相同的数值。
因此,序列x(n)的周期为N = 5 - 1 = 4。
2. 设有一个信号x(t) = 2sin(3t + π/4),请将其离散化为离散时间信号x(n)。
数字信号处理习题集一、单项选择题1.数字信号的特征是()A.时间离散、幅值连续C.时间连续、幅值量化B.时间离散、幅值量化D.时间连续、幅值连续2.若一线性移不变系统当输入为某(n)=δ(n)时,输出为y(n)=R2(n),则当输入为u(n)-u(n-2)时,输出为()A.R2(n)-R2(n-2)B.R2(n)+R2(n-2)C.R2(n)-R2(n-1)3.下列序列中z 变换收敛域包括|z|=∞的是()A.u(n+1)-u(n)B.u(n)-u(n-1)C.u(n)-u(n+1)D.u(n)+u(n+1)4.下列对离散傅里叶变换(DFT)的性质论述中错误的是()A.DFT是一种线性变换B.DFT具有隐含周期性C.DFT可以看作是序列z变换在单位圆上的抽样D.利用DFT可以对连续信号频谱进行精确分析5.若序列的长度为M,要能够由频域抽样信号某(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是()A.N≥MB.N≤MC.N≥M/26.基-2FFT算法的基本运算单元为()A.蝶形运算B.卷积运算C.相关运算D.延时运算7.以下对有限长单位冲激响应(FIR)滤波器特点的论述中错误的是()A.FIR滤波器容易设计成线性相位特性B.FIR滤波器的单位冲激抽样响应h(n)在有限个n值处不为零C.系统函数H(z)的极点都在z=0处D.实现结构只能是非递归结构8.下列结构中不属于IIR滤波器基本结构的是()A.直接型B.级联型C.并联型D.频率抽样型9.下列关于用冲激响应不变法设计IIR滤波器的说法中错误的是()A.数字频率与模拟频率之间呈线性关系B.能将稳定的模拟滤波器映射为一个稳定的数字滤波器C.使用的变换是平面到z平面的多值映射D.可以用于设计低通、高通和带阻等各类滤波器310.离散时间序列某(n)=co(n-)的周期是()78A.7B.14/3C.14D.非周期D.N≤M/2D.R2(n)+R2(n-1)11.下列系统(其中y(n)是输出序列,某(n)是输入序列)中______属于线性系统。
数字信号处理习题集数字信号处理习题集第⼀章习题1、已知⼀个5点有限长序列,如图所⽰,h (n )=R 5(n )。
(1)⽤写出的()n δ()x n 函数表达式;(2)求线性卷积*。
()y n =()x n ()hn 2、已知x (n )=(2n +1)[u (n +2)-u (n -4)],画出x (n )的波形,并画出x (-n )和x (2n )的波形。
3、判断信号是否为周期信号,若是求它的周期。
3()sin 73x n n ππ??=+4、判断下列系统是否为线性的,时不变的,因果的,稳定的?(1),(2)2()(3)y n x n =-0()()cos()y n x n n ω=5、已知连续信号。
()2sin(2),3002a x t ft f Hz ππ=+=(1)求信号的周期。
()a x t (2)⽤采样间隔T=0.001s 对进⾏采样,写出采样信号的表达式。
()a x t ?()a xt (3)写出对应于的时域离散信号的表达式,并求周期。
?()a xt ()x n 6、画出模拟信号数字处理的框图,并说明其中滤波器的作⽤。
第⼆章习题1、求下列序列的傅⽴叶变换。
(1),(2)11()333nx n n ??=-≤ ?[]2()()()n x n a u n u n N =--2、已知理想低通滤波器的频率响应函数为:为整数,000(),0j n j e H e n ωωωωωωπ-?≤≤?=? <≤??cc 求所对应的单位脉冲响应h (n )。
3、已知理想⾼通滤波器的频率响应函数为:,求所对应0()1j H e ωωωωωπ≤≤=<≤??cc 的单位脉冲响应h (n )。
4、已知周期信号的周期为5,主值区间的函数值=,求该周期信号的()(1)n n δδ+-离散傅⾥叶级数和傅⾥叶变换.5、已知信号的傅⽴叶变换为,求下列信号的傅⽴叶变换。
()x n ()j X e ω(1)(2)(3)x n -*()x n -6、已知实因果信号如图所⽰,求和。
数字信号处理习题及答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统================== 1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n) 表示y (n )={2,7,19,28,29,15} 2. ①求下列周期②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(-n)的波形图。
②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。
卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15} ③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=4. 如果输入信号为,求下述系统的输出信号。
第三章 离散傅里叶变换D F TD F T 定义D F T 性质(循环移位、循环卷积)D F T 应用计算线性卷积信号谱分析1、序列X 1( n )的长度为4,序列X 2(n )的长度为3,则它们线性卷积的长度和五点循环卷积的长度分别是( )A . 5, 5B . 6, 5C . 6, 6D . 7, 52、已知序列 x (n )的为10点,系统的单位脉冲响应 为12点,若要用循环卷积实现线性卷积,则循环卷积的长度至少应等于( )A .20点B .21点C .22点D .23点3、序列的Z 变换和D F T 的关系是( )A .序列的N 点D F T 是x (n )在单位圆上的Z 变换B .序列的N 点D F T 是x (n )的Z 变换在单位圆上N 点采样C .序列的N 点D F T 是x (n )的Z 变换在单位圆上N 点的等间隔采样D .以上都不对。
4、下面描述中最适合离散傅立叶变换D F T 的是( )A .时域为离散序列,频域也为离散序列B .时域为离散有限长序列,频域也为离散有限长序列C .时域为离散无限长序列,频域为连续周期信号D .时域为离散周期序列,频域也为离散周期序列5、已知序列}1,3,4,5{)(-=n x ,其循环移位)())2((44n R n x -是( )A . )())2((44n R n x -B .)())2((44n R n x -C . )())2((44n R n x -D .以上答案都不对6、有限长序列x (n )的8点D F T 为X (k ),则X (k )= ;7、求序列R 3(n )和 R 5(n )长度为8的循环卷积波形 )()()(531n R n R n x ⊗= ,并说明序列)(1n x 与序列 )()()(532n R n R n x *=波形是否相同。
8、例题3.4.2与课后16题9、已知序列x (n )的32点D F T 为X (k ),则X (k )的隐含周期是( )第四章 快速傅里叶变换F F T• 直接计算N 点D F T 的运算量(复乘和复加)• 基2—F F T 快速算法的运算量• 基2—F F T 快速算法的重要结论把N 点D F T 分解成M 级蝶形运算,每一级包含N /2个蝶形 M =l o g 2N练 习 题1、根据基2F F T 算法,可将2048点的D F T 分解成 级蝶形运算,每一级包含 个蝶形;2、用基2F F T 快速算法计算1024点D F T 的复加次数是 ;复乘次数是 ;3、若直接计算N 点D F T ,需要的复乘次数和复加次数分别是 、 ;4、课后第1题5、试比较直接计算N 点D F T 与基2F F T 快速算法的运算量第五章 时域离散系统的网络结构• I I R 系统网络结构直接型、级联型、并联型• F I R 系统网络结构 直接型、频率采样结构练 习 题1、已知系统的信号流图,写出系统函数表达式3、设数字滤波器的差分方程为()()()()()2615)2(156---+-+-+=n y n y n x n x n x n y画出该滤波器的直接型、级联型和并联型结构。
1设序列x(n)={4,3,2,1} , 另一序列h(n) ={1,1,1,1},n=0,1,2,3 (1)试求线性卷积 y(n)=x(n)*h(n) (2)试求6点圆周卷积。
(3)试求8点圆周卷积。
解:1.y(n)=x(n)*h(n)={4,7,9,10,6,3,1}2.6点圆周卷积={5,7,9,10,6,3}3.8点圆周卷积={4,7,9,10,6,3,1,0}2二.数字序列 x(n)如图所示. 画出下列每个序列时域序列: (1) x(n-2); (2)x(3-n);(3)x[((n-1))6],(0≤n ≤5);(4)x[((-n-1))6],(0≤n ≤5);n12340.5x(3-n)x[((n-1))]n43210.5n12340.5x[((-n-1))6]3.已知一稳定的LTI 系统的H(z)为)21)(5.01()1(2)(111------=z z z z H试确定该系统H(z)的收敛域和脉冲响应h[n]。
解:0.52ReIm系统有两个极点,其收敛域可能有三种形式,|z|<0.5, 0.5<|z|<2, |z|>2 因为稳定,收敛域应包含单位圆,则系统收敛域为:0.5<|z|<211111213/25.013/4)21)(5.01()1(2)(--------=---=z z z z z z H)1(232)()5.0(34)(--+=n u n u n h n n4.设x(n)是一个10点的有限序列x (n )={ 2,3,1,4,-3,-1,1,1,0,6},不计算DFT ,试确定下列表达式的值。
(1) X(0), (2) X(5), (3)∑=9)(k k X ,(4)∑=-95/2)(k k j k X eπ解:(1) (2)(3)(4)5. x(n)和h(n)是如下给定的有限序列 x(n)={5, 2, 4, -1, 2}, h(n)={-3, 2, -1 }(1) 计算x(n)和h(n)的线性卷积y(n)= x(n)* h(n); (2) 计算x(n)和h(n)的6 点循环卷积y 1(n)= x(n)⑥h (n); (3) 计算x(n)和h(n)的8 点循环卷积y 2(n)= x(n)⑧h (n); 比较以上结果,有何结论? 解:(1)14][]0[190===∑=n Nn x X W 12][][]5[119180510-=-===⎩⎨⎧-=∑∑====奇偶奇数偶数n n n n n n x n x X n n W20]0[*10][][101]0[99===∑∑==x k X k X x k k 0]8[*10][][101]))210[((][]))[((2)10/2(92)10/2(9010)/2(===-⇔--=-=-∑∑x k X ek X ex k X e m n x k j k k j k m N k j N πππ5 2 4 -1 2-3 2 15 2 4 -1 210 4 8 -2 4-15 -6 -12 3 -6-15 4 -3 13 -4 3 2y(n)= x(n)* h(n)={-15,4,-3,13,-4,3,2}(2)5 2 4 -1 2-3 2 15 2 4 -1 210 4 8 -2 4-15 -6 -12 3 -6-15 4 -3 13 -4 3 22-13 4 -3 13 -4 3 2y1(n)= x(n)⑥h(n)= {-13,4,-3,13,-4,3}(3)因为8>(5+3-1),所以y3(n)= x(n)⑧h(n)={-15,4,-3,13,-4,3,2,0}y3(n)与y(n)非零部分相同。
6一个因果线性时不变离散系统,其输入为x[n]、输出为y[n],系统的差分方程如下:y(n)-0.16y(n-2)= 0.25x(n-2)+x(n)(1)求系统的系统函数H(z)=Y(z)/X(z);(2)系统稳定吗?(3)画出系统直接型II的信号流图;(4)画出系统幅频特性。
解:(1)方程两边同求Z 变换:Y(z)-0.16z -2Y(z)= 0.25z -2X(z)+X(z)2216.0125.01)()()(---+==z z z X z Y z H(2)系统的极点为:0.4和-0.4,在单位圆内,故系统稳定。
(3) (4)ImRe0.4-0.4-j0.5j0.50ω)(ωj e H 2.70.34ππ-2π-2π7.如果需要设计FIR 低通数字滤波器,其性能要求如下: (1)阻带的衰减大于35dB, (2)过渡带宽度小于/6.请选择满足上述条件的窗函数,并确定滤波器h(n)最小长度N()()0.25z x n y n -1z -10.16解:根据上表,我们应该选择汉宁窗函数,8两个有限长的复序列x [n ]和h [n ],其长度分别为N 和M ,设两序列的线性卷积为y [n ]=x [n ]*h [n ],回答下列问题:.(1) 序列y [n ]的有效长度为多长?(2) 如果我们直接利用卷积公式计算y [n ] ,那么计算全部有效y [n ]的需要多少次复数乘法?(3) 现用FFT 来计算y [n ],说明实现的原理,并给出实现时所需满足的条件,画出实现的方框图,计算该方法实现时所需要的复数乘法计算量。
解:(1) 序列y [n ]的有效长度为:N+M-1;(2) 直接利用卷积公式计算y[n], 需要MN 次复数乘法(3)4868≥≤N N ππ补零补零L点-DFTL点-DFTL点-IDFT需要L L 2log 3次复数乘法。
9用倒序输入顺序输出的基2 DIT-FFT 算法分析一长度为N 点的复序列x [n ] 的DFT ,回答下列问题:(1) 说明N 所需满足的条件,并说明如果N 不满足的话,如何处理?(2) 如果N=8, 那么在蝶形流图中,共有几级蝶形?每级有几个蝶形?确定第2级中蝶形的蝶距(d m )和第2级中不同的权系数(W N r )。
(3) 如果有两个长度为N 点的实序列y 1[n]和y 2 [n],能否只用一次N 点的上述FFT 运算来计算出y 1[n]和y 2 [n]的DFT ,如果可以的话,写出实现的原理及步骤,并计算实现时所需的复数乘法次数;如果不行,说明理由。
解(1)N 应为2的幂,即N =2m ,(m 为整数);如果N 不满足条件,可以补零。
(2)3级,4个,蝶距为2,W N 0 ,W N 2 (3) y[n]=y 1[n]+jy 2[n]]}))[((]))[(({21][][]}))[((]))[(({21][][][][*2*110N N op N N ep N n knN k Y k Y k Y k Y k Y k Y k Y k Y W n y k Y --==-+===∑-=10已知系统函数2113.025.0125.02)(---+-+=zz z z H ,求其差分方程。
解:2113.025.0125.02)(---+-+=zz z z H 2113.025.0125.02)()(---+-+=z z z z X z Y )25.02)(()3.025.01)((121---+=+-z z X z z z Y)1(25.0)(2)2(3.0)1(25.0)(-+=-+--n x n x n y n y n y11已知)1)(()81431)((121---+=+-z z X z z z Y ,画系统结构图。
解:)1)(()81431)((121---+=+-z z X z z z Y 1111121125.0155.016)25.01)(5.01(1125.075.011)()()(-----------=--+=+-+==z z z z z z z z z X z Y z H直接型I :直接型II :级联型:x [ny [n ]x [n ]y [n ]并联型:12若x (n)= {3,2,1,2,1,2 },0≤n≤5, 1) 求序列x(n)的6点DFT ,X (k)=?2) 若)()]([)(26k X W n g DFT k G k==,试确定6点序列g(n)=?3) 若y(n) =x(n)⑨x(n),求y(n)=?1) 分分分2,50]2,2,1,2,2,11[)1(232cos 23cos432222322232)()(6263626656463626656≤≤-=-+++=+++++=+++++==--=∑k k k W W W W W W W W W W W n x k X k kk k kkkk k k k n nkππ2)72}212123{)2()()()]([)()2(65266526≤≤=-====--=-=∑∑n ,,,n x W k X WWk X k X W IDFT n g kn k k nkk k ,,x [n y [n ]n ]3)90}9,8,14,20,15,16,10,16,13{)())(()()(}4,4,9,8,14,20,15,16,10,12,9{)()()(*)()(98951≤≤=-==-==∑∑==n n R m n x m x n y m n x m x n x n x n y m m13用DFT 对连续信号进行谱分析的误差问题有哪些? 答:混叠失真;截断效应(频谱泄漏);栅栏效应14画出模拟信号数字化处理框图,并简要说明框图中每一部分的功能作用。
第1部分:滤除模拟信号高频部分;第2部分:模拟信号经抽样变为离散信号;第3部分:按照预制要求对数字信号处理加工;第4部分:数字信号变为模拟信号;第5部分:滤除高频部分,平滑模拟信号。
15简述用双线性法设计IIR 数字低通滤波器设计的步骤。
答:确定数字滤波器的技术指标;将数字滤波器的技术指标转变成模拟滤波器的技术指标;按模拟滤波器的技术指标设计模拟低通滤波器;将模拟低通滤波器转换成数字低通滤波器。
16 8点序列的按时间抽取的(DIT )基-2 FFT 如何表示?17已知,求x(n)。
(6分)解:由题部分分式展开求系数得A=1/3 ,B=2/3所以(3分)收敛域z>2,故上式第一项为因果序列象函数,第二项为反因果序列象函数,则(3分)18写出差分方程表示系统的直接型和级联型结构。
(8分)..解:(8分)19计算下面序列的N点DFT。
(1)(4分)(2)(4分)解:(1)(4分)(2)(4分)20设序列x(n)={1,3,2,1;n=0,1,2,3 },另一序列h(n) ={1,2,1,2;n=0,1,2,3},(1)求两序列的线性卷积y L(n);(4分)(2)求两序列的6点循环卷积y C(n)。