王十庆-高分子流变学Introductiontopolymerrheology
- 格式:doc
- 大小:29.00 KB
- 文档页数:3
《高分子材料流变学》的课程特点与教学体会作者:王新,杨文君来源:《教育教学论坛·上旬》2011年第11期摘要:高分子学科的发展和人才需求的变化使高分子流变学知识在专业教学中的地位变得越来越重要。
本文简单介绍了青岛科学大学《高分子材料流变学》课程的发展历史,归纳了课程内容上特点和教学上应注意教学原则;结合作者的教学实践,对教学过程中采用的教学方法和手段进行了初步的探讨。
关键词:流变学;人才培养;教学;方法一、《高分子材料流变学》课程发展高分子材料流变学是一门伴随着高分子科学和行业发展而逐步建立起来的重要学科,针对高分子材料特殊的流动变形行为及其机理展开研究,起到连接高分子结构性能和高分子工程的桥梁作用。
现在,高分子科学理论研究及工艺、设备的设计优化的发展进步离不开高分子材料流变学知识的辅助,整体发展趋势要求高分子专业人才必须具备基本的高分子材料流变学知识。
青岛科技大学自1986年起开始设立《高分子材料流变学》课程,是国内最早开设该课程的高校之一,迄今已有20多年的教学历史,同时跟踪学科的发展,教学团队亦针对学科的前沿问题开展科研工作,在国际上形成了一定的学术影响力。
在长期的教学、科研实践积累和和对高分子流变学教学理解逐步深化的基础上,教学团队按照比较科学完整的体系,编写出版了《高分子材料流变学》教材,并得到国内院校的认可;另一方面,《高分子材料流变学》教学也凸现了专业特色,使学生质量有所提高。
通过引导学生开展理论联系实际、针对性强的流变理论研究与工程设计实践,所培养的学生学科专业知识全面,了解学科发展前沿,在以后的科研和工作实践中展现出较强的解决问题能力。
二、《高分子材料流变学》的特点及教学原则高分子材料流变学是随着高分子的合成、加工工程和实际应用的需要,于20世纪50年代逐步发展起来的新学科。
一方面,深入其核心需要较多的数学、物理和力学基础;另一方面,其知识体系与高分子化学、高分子物理、高分子的加工工程等有机联系。
Introduction to Polymer Rheology
Shi-Qing Wang
Department of Polymer Science, University of Akron, Ohio44325 Introduction
The missions of polymer rheology
phenomenological <Maxwell level>, linear viscoelasticity
a> characterization tools
structural <molecular level>, i.e., molecular weight, MWD,
chain architecture <branching, functional moieties>, thus
heavily model dependent and theoretically intensive
nonlinear aspects
b> a sub-field of polymer science fluid mechanics of polymers – numerically intensive
processing behavior
i. Fluid dynamics/mechanics - study flow behavior of simple <Newtonian> fluids in
complex geometries and complex flow conditions including turbulent flow and thermal convection.
ii. Polymer rheology- explore flow behavior of polymeric <viscoelastic/non-
Newtonian> fluids in simple geometries.
iii.Fluid mechanics of polymers <relevant to processing> - investigate flow behavior of viscoelastic polymeric liquidsin complex geometries
PART A RHEOLOGY AS CHARACTERIZATION METHODS
I. Phenomenological linear viscoelasticity
1. Mechanical deformations
a. Step strain
b. Startup flow
c. Small amplitude oscillatory shear <SAOS>
2. Linear responses
a. Elastic Hookean solids
b. Viscous Newtonian liquids
c. Viscoelastic Maxellian responses
3. Classical rubber elasticity
III. Rheometry
Shear - A combination of extension and rotation
1. Flow due to boundary displacement
a. Linear displacementi. Sliding parallel platesii. Co-cylinder piston
b. Rotational motioni. Parallel disksii. Cone-plateiii. Couette
2. Flow driven by pressure
a. Capillary die
b. Channel slit
Extension
1. Instron type stretcher
2. Extender at fixed length
PART B RHEOLOGY AS SCIENCE
IV. Phenomenological accounts
1. Shear thinning
2. Strain softening
3.Wave distortion
4. Extrudate swell
5. Melt fracture
V. Homogeneous flow
1. Basic principle for rheometry
2. Equivalence between controlled-rate and controlled-stress shear
3. Flow homogeneity in diffusion limit – terminal flow
4. Non-entangled and weakly entangled polymers
VI. Wall slip – a case of inhomogeneous shear
1. Spurt and flow oscillatory
2. Navier-de Gennes extrapolation length b
3. Stick-slip transition
a. capillary flow
b. drag flow
4. Theoretical accounts
a. limit of small surface coverage - Brochard-de Gennes theory
b. saturated adsorption –disentanglement picture
VII. Flow inhomogeneity – strongly entangled polymers
1. New considerations based on viscoelasticity concept
2. Cohesion of entanglement network
3. Elastic yielding
4. Scaling characteristics of stress overshoot – a moving target
5. Deformation-induced structural disintegration – yield phenomenon
6. Case studies
i. Startup shear
ii. Large amplitude oscillatory shear
7. Uniaxial extensional flow
VIII. Experimental Approaches
1. Conventional rheometry
a. Finite size effects
i. free surface at meniscus in rotational rheometryii. entry flow in capillary rheometryb. Improved setupsi. Cone-partitioned plate for shear ii. Counter-rotation drums for extension
2. Rheo-optical <in situ> methods
a. Flow birefringencei. Stress optical rule <SOR>ii.Breakdown of SOR
b. Scattering
c. Spectroscopy <NMR, fluorescence, IR, Raman, dielectric>
3. Particle tracking velocimetry。