2015--2016年八年级(上)新北师大版期末考试卷二
- 格式:doc
- 大小:346.39 KB
- 文档页数:5
北师大版八年级上期末测试卷(1)一、选择题:(每小题3分,共18分。
) 1、下列命题是真命题的是( )A;如果a 2=b 2,则a=b B:两边一角对应相等的两个三角形全等。
C ;81的算术平方根是9 D:x=2 y=1是方程2x-y=3的解。
2、414 ,226 15三个数的大小关系是( ) A: 414<`15<`226 B:226<`15<`414C: 414<`226<15 D:15< 226 <4143、以方程组{12+=+-=x y x y 的解为坐标的点在( )A 第一象限B 第二象限C 第三象限D 第四象限 4、如图,AD ⊥ BC,三角形ABD 和三角形CDE都是等腰三角形 , 且BC=17,DE=5 那么线段AC=( )A:5, B:7, C:12, D:135、在平面直角坐标系中,O 为原点,直线y=kx+b 交 X 轴于A (-2,0),交y 轴于B ,且三角形AOB 的面积为8,则k=( ) A:1 B: 2 C: -2或4, D:-4或46、某班七个合作学习小组人数如下,4, 5, 5, x , 6, 7, 8, 已知这组数据的平均数为6,则这组数据的中位数和众数是( )A :5, 5B :6, 5C :6, 5和6,D :6, 5和7二填空题(每小题3分,共24分。
)7、在△ABC 中,如果BC :AC :AB=1:3:2,则∠A :∠B :∠C=……………… 8、直线y=ax-2与直线y=bx+1的交点在x 轴上,则a:b=……………9、已知实数x y 满足y=xx 221616---+2,则x-y=…………----------10、已知A (m,-2) B (3, m-1)且AB ∥x 轴,则线段AB= ---------11、函数y=-3x+2的图象上有一点P,且P 点到x 轴的距离为3,则P 点坐标为… 12、等边△ABC 的两个顶点为A (2,0) B(-4,0)则顶点C 坐标为………13、已知直线y=mx-1上有一点P (1,n)到原点的距离为10,则直线与两轴所围成的三角形面积为………………14、在y=kx+b 中,当x=5时y=6,当x=-1时y=-2,当x=2时y=……… 三、简答题15(10分)解方程组(1) ⎩⎨⎧=-=+②①7211y x y x (2)⎩⎨⎧=+=.13y 2x 11,3y -4x .16.化简:(10分) (1)31318)62(-⨯-.(2)计算: 34827++)32)(32(-+17(6分)如图,将一副直角三角尺如图放置,已知AE ∥BC ,试求∠AFD 的度数。
2015-2016年第一学期期末考试八年级数学试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的) 1. 下列实数5,-0.1,38,3中,无理数是 A. 5B. -0.1C. 38D. 32. 下面的图形中,既是轴对称图形又是中心对称图形的是3. 平面直角坐标系中,与点(2,-3)关于y 轴对称的点是 A .(-3,2) B .(-2,3) C .(-2,-3) D .(2,3)4. 一次函数21y x =+的图象大致是5.如图是一台雷达探测器测得的结果.下列关于点A 位置的描述中,最准确的是 A .南偏西30° B .南偏东30°,距O 点3个单位长度 C .南偏东30° D .南偏西30°,距O 点3个单位长度6.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四组条件:①AB ∥CD ,AD ∥BC ;②AB =CD ,AD =BC ;③AO =CO ,BO =DO ;④AB ∥CD ,AD =BC .其中一定能判定这个四边形是平行四边形的条件有A .①②③B .①②④C .①③④D .②③④ 7. 若正比例函数的图象经过点(-1,2),则这个图象必经过点 A .(1,2) B .(-1,-2) C .(2,-1) D .(1,-2)8.在正三角形、正四边形、正六边形和正八边形中,任取两种.下列选择中,不能进行密铺的是A .正三角形和正四边形B .正三角形和正六边形C .正四边形和正八边形D .正四边形和正六边形 9. 在平面直角坐标系中,已知点A (1,3),现将点A 先向左平移5个单位,再向下平移2个单位,使点A 与点B 重合,则点B 所在的象限是A .第一象限B .第二象限C .第三象限D .第四象限10. Rt △ABC 中,已知∠C =90°,∠B =60°,点D 在边BC 上,BD.把△ABC 绕着点D 逆时针旋转m (0°<m <180°)后,如果点B 恰好落在初始Rt △ABC的边上,C. D. B.A. A .B .C .D .A(第5题图)那么m 等于A .60°B .135°C .60°或135°D . 90°或135° 二、填空题(共8小题,每小题3分,计24分) 11. 计算:2―(2―2011)0= .12. 一个多边形的每个外角都等于与它相邻的内角,这个多边形是 边形.13. 写出一个具体的y 随x 的增大而增大的一次函数解析式 . 14. 如图,△ABC 中,AD=BD ,若AC=5,CD=4,AD=3,则BC = .15. 将两个形状相同的三角板放置在一张矩形纸片上,按图示画线得到四边形ABCD ,则四边形ABCD 的形状是 .16. 如图,将长8cm ,宽4cm 的矩形纸片ABCD 折叠,使点A 与C 重合,则折痕EF 的长为 cm.17. 20个数据经统计,有5个a ,5个b ,10个c ,且a<b<c ,这20个数据的平均数是10,而a 和c 的平均数是9.5,则这20个数据的中位数是 .18. 如图,直线l 1⊥x 轴于点(1,0),直线l 2⊥x 轴于点(2,0),直线l 3⊥x 轴于点(3,0),…直线l n ⊥x 轴于点(n ,0).函数y =x 的图象与直线l 1,l 2,l 3,…l n 分别交于点A 1,A 2,A 3,…A n ;函数y =2x 的图象与直线l 1,l 2,l 3,…l n 分别交于点B 1,B 2,B 3,…B n .如果△OA 1B 1的面积记作S 1,四边形A 1A 2B 2B 1的面积记作S 2,四边形A 2A 3B 3B 2的面积记作S 3,…四边形A n -1A n B n B n -1的面积记作S n ,那么S 2011 = .三、解答题(共7小题,计66分.解答应写出过程) 19. 计算(每小题5分,计10分)(1)(3-2)(3+2) (2)5520+-120. 解下列二元一次方程组(每小题5分,计10分)(1)⎩⎨⎧==+;-42,534y x y x (2)⎩⎨⎧=+=;--1929,327y x y xA B(第14题图) (第16题图) D C BA (第15题图)(第18题图)21. (本题满分8分)西安世园会自2011年4月28日到10月22日,历时178天.预测参观人数达1200万人次.下面的统计表是此次盛会在6月上旬入园人数的统计情况.(1(2)推算世园会期间参观总人数与预测人数相差多少?22. (本题满分8分)张老师平时用慢跑和快走两种方式锻炼身体.某次锻炼时,张老师慢跑的平均速度为150米/分,快走的平均速度为100米/分,慢跑路段和快走路段共5千米,用时45分.求慢跑路段和快走路段的长度.23 (本题满分10分)某电信运营商规定,手机包月用户可以免费使用一定的上网流量,但超过该规定上网流量需再交使用费,且使用费y(元)是上网流量x(兆)的一次函数.现知小张用了60兆流量,交了使用费5元;小王用了90兆流量,交了使用费10元.(1)写出y与x之间的函数表达式;(2)包月用户最多可免费使用多少兆的上网流量?24. (本题满分12分)问题探究 如图①,△ABC 中(1),∠ACB =90°,AC =BC ,请你过C 点作CD ⊥AB ,垂足是点D ,AD 等于BD 吗?(2)如图②,梯形ABCD 中,AB ∥CD ,请你过B 点作BE ∥AC 交DC 的延长线于E 点,四边形ACEB 是平行四边形吗?问题解决(3)如图③,在平面直角坐标中,梯形OABC 是一块木板示意图,其中OA 在x 轴上,点A 坐标为(8,0),BC ∥OA ,OC =AB ,OB =OA ,BO ⊥AC 于D ,求BC 的长.2015-2016年第一学期期末考试八年级数学参考答案二、填空题(共8小题,每小题3分,计24分)A B ① (第25题图)C ②11.2―1 12. 四 13. 略 14. 515. 等腰梯形 16. 25 17. 10.5 18. 2010.5 三、解答题(共7小题,计66分.解答应写出过程) 19.计算(每小题5分,计10分)(1) 1 (2) 420.解下列二元一次方程组(每小题5分,计10分) (1)⎩⎨⎧==;1-,2y x (2)⎩⎨⎧==;5-,1-y x21. (本题满分8分) (1)7,7 (2)11200178(637589)4610-⨯⨯⨯+⨯++=-(万) 答:略. 22. (本题满分8分) (1)、(2)图略;(2)所得图案与原图案关于坐标原点中心对称. 23. (本题满分8分)慢跑路段1500米,快走路段3500米. 24. (本题满分10分) (1)y =61x -5; (2)当x =30时,y =0. 包月用户最多可免费使用30兆的上网流量. 25. (本题满分12分) (1)图略,AD 等于BD ;(2)图略,四边形ACEB 是平行四边形;(3)解:由BC ∥OA ,OC =AB , BO ⊥AC 可得△ODA 为等腰直角三角形.由A (8,0),可知OA =8,得AD=42.过B 作BN ⊥OA 于N ,易证△BNO ≌△ADO ,得AD=BN=42. 过B 点作BE ∥CA 交OA 的延长线于E 点,可得四边形ACBE 是平行四边形,BC =AE ,BE =CA , 又由梯形OABC 中,BC ∥OA ,OC =AB , BO ⊥AC 可得△OBE 为等腰直角三角形,又由于BN ⊥OA ,故BN=21OE=21(OA+AE)= 21(OA+BC)= 42, 可得BC =82-8.。
北师大版2015-2016学年八年级上期末考试数学试题及答案八年级数学一、选择题(每小题只有一个正确答案,每小题3分,共30分)1.将具有下列长度的三条线段首尾顺次相连,能组成直角三角形的是( ) A.1,2,3 B.5,12,13 C.4,5,7 D.9,10,112.在实数722-、0、3-、506、π、..101.0中,无理数的个数是 ( )A.2个B.3个C.4个D.5个 3.4的平方根是( )A . 4B .-4C . 2D . ±2 4.下列平方根中, 已经化简的是( )A. 31B. 20C. 22D. 1215.在平行四边形、菱形、矩形、正方形、圆中,既是中心对称图形又是轴对称图形的图形个数为 ( )A.1B.2C.3D.46. 点P (-1,2)关于y 轴对称的点的坐标为 ( ) A.(1,-2) B.(-1,-2) C.(1,2) D.(2,1)7. 矩形具有而菱形不一定具有的性质是 ( ) A. 对角线互相平分 B.对角线相等 C. 四条边都相等 D. 对角线互相垂直8.下列说法正确的是 ( )A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.平移和旋转的共同点是改变图形的位置C.图形可以向某个方向平移一定距离,也可以向某方向旋转一定距离D. 经过旋转,对应角相等,对应线段一定相等且平行9. 鞋厂生产不同号码的鞋,其中,生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的 ( ) A.平均数 B.众数 C.中位数 D.众数或中位数10. 一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是( )A. B. C. D.二、填空题(每小题3分,共30分)11. 在Rt △ABC 中,∠C=90°a=3,b=4,则c= 。
12. 一个菱形的两条对角线长分别是6㎝和8㎝,则菱形的面积等于 13. 在ABCD 中,若AB=3cm ,BC=4cm ,则ABCD 的周长为 。
2015-2016学年度绿塘中学八年级期末测试试卷考试范围:全书;考试时间:100分钟;命题人:萧楠题号一二三四总分得分注意事项:1.答题前填写好自己的姓名、班级等信息评卷人得分一、选择题(每题3分共30分)1.已知M(0,2)关于x轴对称的点为N,则N点坐标是()A.(0,-2) B.(0,0) C.(-2,0) D.(0,4)2.方程组324x yx+=⎧⎨=⎩的解是 ( )A.3xy=⎧⎨=⎩B.12xy=⎧⎨=⎩C.52xy=⎧⎨=-⎩D.21xy=⎧⎨=⎩3.下列各曲线中不能表示y是x的函数的是()A. B. C. D.4.已知:a>0、b<-1,则点(a,b+1)在()A、第一象限B、第二象限C、第三象限D、第四象限5.小华的爷爷每天坚持体育锻炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家.下面能反映当天小华的爷爷离家的距离y与时间x的函数关系的大致图像是()A. B. C. D.6.(2014•永州一模)如图,已知直线EF⊥MN垂足为F,且∠1=140°,则当∠2等于()时,AB∥CD.A.50°B.40°C.30°D.60°7.如图,把长方形ABCD 沿EF 对折后使两部分重合,若∠AEF=110°,则∠1=( )A .30°B .35°C .40°D .50°8.已知0a <,则化简3a -的结果是( )A .a a --B .a aC .a a -D .a a - 9.(3分)方程组2335x y x y -=⎧⎨+=⎩的解是()A.12x y =-⎧⎨=⎩ B .11x y =⎧⎨=-⎩ C .21x y =⎧⎨=⎩ D . 12x y =⎧⎨=⎩评卷人 得分二、填空题(每题5分 共20分)11.二次根式在实数范围内有意义,则x 的取值范围为 .12.已知点A (a -1,2a -3)在一次函数1y x =+的图象上,则实数a= . 13.如图,圆柱形容器高为18cm ,底面周长为24cm ,在杯内壁离杯底4cm 的点B 处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm 与蜂蜜相对的点A 处,则蚂蚁从外币A 处到达内壁B 处的最短距离为 .14.若方程3323=-+-n m y x 是关于x 、y 的二元一次方程,则=m ,=n .评卷人 得分三、计算题(每题4分共24分)15.求下列各式中x 的值 (1)03)1(2=-+x (2)20433-=+x16.计算:21227+17.解方程组: 18. 解方程组:19.计算:(﹣)2+2×3.20.计算:9+(π-3)0-|-2|+(13)-1. 评卷人 得分四、解答题(共26分)21.(本题满分4分)如图,利用关于坐标轴对称的点的坐标特点,分别作出△ABC 关于x 轴和y 轴对称的图形。
2015-2016学年八年级上学期期末数学试卷一、选择题(每小题3分,共24分)1.(3分)的算术平方根是()A.4B.2C. D.±22.(3分)在﹣2,0,3,这四个数中,最大的数是()A.﹣2 B.0C. 3 D.3.(3分)如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是()A.50°B.45°C.35°D.30°4.(3分)一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限B.第二象限C.第三象限 D.第四象限5.(3分)若方程mx+ny=6的两个解是,,则m,n的值为()A.4,2 B.2,4 C.﹣4,﹣2 D.﹣2,﹣46.(3分)为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:居民(户) 1 3 2 4月用电量(度/户) 40 50 55 60那么关于这10户居民月用电量(单位:度),下列说法错误的是()A.中位数是55 B.众数是60 C.方差是29 D.平均数是547.(3分)下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D. 1,,38.(3分)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时二、选择题(每小题3分,共21分)9.(3分)计算:(+1)(﹣1)=.10.(3分)命题“相等的角是对顶角”是命题(填“真”或“假”).11.(3分)若+(b+2)2=0,则点M(a,b)关于y轴的对称点的坐标为.12.(3分)将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.13.(3分)按如图的运算程序,请写出一组能使输出结果为3的x,y的值:.14.(3分)已知函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),则二元一次方程组的解是.15.(3分)在平面直角坐标系中,已知点A(﹣,0),B(,0),点C在坐标轴上,且AC+BC=6,写出满足条件的所有点C的坐标.三、解答题(共55分)16.(6分)证明三角形内角和定理三角形内角和定理内容:三角形三个内角和是180°.已知:求证:证明:17.(6分)在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为.18.(6分)我国古代有这样一道数学问题:“枯木一根直立地上'高二丈周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?,题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是多少尺?19.(9分)九(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表参赛同学答对题数答错题数未答题数A 19 0 1B 17 2 1C 15 2 3D 17 1 2E / / 7(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知ABCDE五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可)20.(8分)如图1,A,B,C是郑州市二七区三个垃圾存放点,点B,C分别位于点A的正北和正东方向,AC=40米.八位环卫工人分别测得的BC长度如下表:甲乙丙丁戊戌申辰BC(单位:米)84 76 78 82 70 84 86 80他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图2,图3:(1)求表中BC长度的平均数、中位数、众数;(2)求A处的垃圾量,并将图2补充完整;(3)用(1)中的作为BC的长度,要将A处的垃圾沿道路AB都运到B处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:=1.732)21.(10分)观察下列各式及其验证过程:,验证:.,验证:.(1)按照上述两个等式及其验证过程,猜想的变形结果并进行验证.(2)针对上述各式反映的规律,写出用a(a为任意自然数,且a≥2)表示的等式,并给出验证.(3)针对三次根式及n次根式(n为任意自然数,且n≥2),有无上述类似的变形?如果有,写出用a(a为任意自然数,且a≥2)表示的等式,并给出验证.22.(10分)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B两处出发,沿轨道到达C处,B在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=米/分;(2)写出d1与t的函数关系式:(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?2015-2016学年八年级上学期期末数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)的算术平方根是()A.4B.2C. D.±2考点:算术平方根.分析:先求出=2,再根据算术平方根的定义解答.解答:解:∵=2,∴的算术平方根是.故选C.点评:本题考查了算术平方根的定义,易错题,熟记概念是解题的关键.2.(3分)在﹣2,0,3,这四个数中,最大的数是()A.﹣2 B.0C. 3 D.考点:实数大小比较.专题:常规题型.分析:根据正数大于0,0大于负数,可得答案.解答:解:﹣2<0<<3,故选:C.点评:本题考查了实数比较大小,是解题关键.3.(3分)如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是()A.50°B.45°C.35°D.30°考点:平行线的性质;直角三角形的性质.专题:几何图形问题.分析:根据平行线的性质,可得∠3与∠1的关系,根据两直线垂直,可得所成的角是90°,根据角的和差,可得答案.解答:解:如图,∵直线a∥b,∴∠3=∠1=60°.∵AC⊥AB,∴∠3+∠2=90°,∴∠2=90°﹣∠3=90°﹣60°=30°,故选:D.点评:本题考查了平行线的性质,利用了平行线的性质,垂线的性质,角的和差.4.(3分)一次函数y=﹣2x+1的图象不经过下列哪个象限()A.第一象限B.第二象限C.第三象限 D.第四象限考点:一次函数图象与系数的关系.专题:数形结合.分析:先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.解答:解:∵解析式y=﹣2x+1中,k=﹣2<0,b=1>0,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C.点评:本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过第二、四象限,当b>0时,函数图象与y轴相交于正半轴.5.(3分)若方程mx+ny=6的两个解是,,则m,n的值为()A.4,2 B.2,4 C.﹣4,﹣2 D.﹣2,﹣4考点:二元一次方程的解.专题:计算题.分析:将x与y的两对值代入方程计算即可求出m与n的值.解答:解:将,分别代入mx+ny=6中,得:,①+②得:3m=12,即m=4,将m=4代入①得:n=2,故选:A点评:此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.(3分)为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:居民(户) 1 3 2 4月用电量(度/户) 40 50 55 60那么关于这10户居民月用电量(单位:度),下列说法错误的是()A.中位数是55 B.众数是60 C.方差是29 D.平均数是54考点:方差;加权平均数;中位数;众数.专题:常规题型.分析:根据中位数、众数、平均数和方差的概念分别求得这组数据的中位数、众数、平均数和方差,即可判断四个选项的正确与否.解答:解:用电量从大到小排列顺序为:60,60,60,60,55,55,50,50,50,40.A、月用电量的中位数是55度,故A正确;B、用电量的众数是60度,故B正确;C、用电量的方差是39度,故C错误;D、用电量的平均数是54度,故D正确.故选:C.点评:考查了中位数、众数、平均数和方差的概念.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.7.(3分)下列四组线段中,可以构成直角三角形的是()A.4,5,6 B.1.5,2,2.5 C.2,3,4 D. 1,,3考点:勾股定理的逆定理.专题:计算题.分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.解答:解:A、42+52=41≠62,不可以构成直角三角形,故A选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故B选项正确;C、22+32=13≠42,不可以构成直角三角形,故C选项错误;D、12+()2=3≠32,不可以构成直角三角形,故D选项错误.故选:B.点评:本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.8.(3分)图象中所反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时考点:函数的图象.专题:行程问题.分析:结合图象得出张强从家直接到体育场,故第一段函数图象所对应的y轴的最高点即为体育场离张强家的距离;进而得出锻炼时间以及整个过程所用时间.由图中可以看出,体育场离张强家2.5千米,体育场离早餐店2.5﹣1.5千米;平均速度=总路程÷总时间.解答:解:A、由函数图象可知,体育场离张强家2.5千米,故A选项正确;B、由图象可得出张强在体育场锻炼30﹣15=15(分钟),故B选项正确;C、体育场离张强家2.5千米,体育场离早餐店2.5﹣1.5=1(千米),故C选项错误;D、∵张强从早餐店回家所用时间为95﹣65=30(分钟),距离为1.5km,∴张强从早餐店回家的平均速度1.5÷0.5=3(千米/时),故D选项正确.故选:C.点评:此题主要考查了函数图象与实际问题,根据已知图象得出正确信息是解题关键.二、选择题(每小题3分,共21分)9.(3分)计算:(+1)(﹣1)=1.考点:二次根式的乘除法;平方差公式.专题:计算题.分析:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.就可以用平方差公式计算.结果是乘式中两项的平方差(相同项的平方减去相反项的平方).解答:解:(+1)(﹣1)=.故答案为:1.点评:本题应用了平方差公式,使计算比利用多项式乘法法则要简单.10.(3分)命题“相等的角是对顶角”是假命题(填“真”或“假”).考点:命题与定理.分析:对顶角相等,但相等的角不一定是对顶角,从而可得出答案.解答:解:对顶角相等,但相等的角不一定是对顶角,从而可得命题“相等的角是对顶角”是假命题.故答案为:假.点评:此题考查了命题与定理的知识,属于基础题,在判断的时候要仔细思考.11.(3分)若+(b+2)2=0,则点M(a,b)关于y轴的对称点的坐标为(﹣3,﹣2).考点:关于x轴、y轴对称的点的坐标;非负数的性质:偶次方;非负数的性质:算术平方根.专题:计算题.分析:先求出a与b的值,再根据平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数;这样就可以求出M的对称点的坐标.解答:解:∵+(b+2)2=0,∴a=3,b=﹣2;∴点M(a,b)关于y轴的对称点的坐标为(﹣3,﹣2).点评:本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系,也考查了非负数的性质.12.(3分)将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为75度.考点:三角形内角和定理;平行线的性质.专题:计算题.分析:根据三角形三内角之和等于180°求解.解答:解:如图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.故答案为:75.点评:考查三角形内角之和等于180°.13.(3分)按如图的运算程序,请写出一组能使输出结果为3的x,y的值:x=1,y=﹣1.考点:解二元一次方程.专题:图表型.分析:根据运算程序列出方程,取方程的一组正整数解即可.解答:解:根据题意得:2x﹣y=3,当x=1时,y=﹣1.故答案为:x=1,y=﹣1.点评:此题考查了解二元一次方程,弄清题中的运算程序是解本题的关键.14.(3分)已知函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),则二元一次方程组的解是.考点:一次函数与二元一次方程(组).分析:函数图象的交点坐标即是方程组的解,有几个交点,就有几组解.解答:解:∵函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),∴点P(﹣4,﹣2),满足二元一次方程组;∴方程组的解是.故答案为:.点评:本题不用解答,关键是理解两个函数图象的交点即是两个函数组成方程组的解.15.(3分)在平面直角坐标系中,已知点A(﹣,0),B(,0),点C在坐标轴上,且AC+BC=6,写出满足条件的所有点C的坐标(0,2),(0,﹣2),(﹣3,0),(3,0).考点:勾股定理;坐标与图形性质.专题:压轴题;分类讨论.分析:需要分类讨论:①当点C位于x轴上时,根据线段间的和差关系即可求得点C的坐标;②当点C位于y轴上时,根据勾股定理求点C的坐标.解答:解:如图,①当点C位于y轴上时,设C(0,b).则+=6,解得,b=2或b=﹣2,此时C(0,2),或C(0,﹣2).如图,②当点C位于x轴上时,设C(a,0).则|﹣﹣a|+|a﹣|=6,即2a=6或﹣2a=6,解得a=3或a=﹣3,此时C(﹣3,0),或C(3,0).综上所述,点C的坐标是:(0,2),(0,﹣2),(﹣3,0),(3,0).故答案是:(0,2),(0,﹣2),(﹣3,0),(3,0).点评:本题考查了勾股定理、坐标与图形的性质.解题时,要分类讨论,以防漏解.另外,当点C在y轴上时,也可以根据两点间的距离公式来求点C的坐标.三、解答题(共55分)16.(6分)证明三角形内角和定理三角形内角和定理内容:三角形三个内角和是180°.已知:求证:证明:考点:三角形内角和定理.专题:证明题.分析:先写出已知、证明,过点C作CD∥AB,点E为BC的延长线上一点,利用平行线的性质得到∠1=∠A,∠2=∠B,然后根据平角的定义进行证明.解答:已知:△ABC,如图,求证:∠A+∠B+∠C=180°,证明:过点C作CD∥AB,点E为BC的延长线上一点,如图,∵CD∥AB,∴∠1=∠A,∠2=∠B,∵∠C+∠1+∠2=180°,∴∠A+∠B+∠C=180°.点评:本题考查了三角形内角和定理:三角形内角和是180°.本题的关键时把三角形三个角的和转化为一个平角,同时注意文字题证明的步骤书写.17.(6分)在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为(﹣3,2);(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为(﹣2,3).考点:作图-平移变换;关于x轴、y轴对称的点的坐标.专题:作图题.分析:(1)根据关于y轴对称的点的横坐标互为相反数,纵坐标相等解答;(2)根据网格结构找出点A、O、B向左平移后的对应点A1、O1、B1的位置,然后顺次连接即可;(3)根据平面直角坐标系写出坐标即可.解答:解:(1)B点关于y轴的对称点坐标为(﹣3,2);(2)△A1O1B1如图所示;(3)A1的坐标为(﹣2,3).故答案为:(1)(﹣3,2);(3)(﹣2,3).点评:本题考查了利用平移变换作图,关于y轴对称点的坐标,熟练掌握网格结构准确找出对应点的位置是解题的关键.18.(6分)我国古代有这样一道数学问题:“枯木一根直立地上'高二丈周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?,题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是多少尺?考点:平面展开-最短路径问题.分析:根据题意画出图形,再根据勾股定理求解即可.解答:解:如图所示,在如图所示的直角三角形中,∵BC=20尺,AC=5×3=15尺,∴AB==25(尺).答:葛藤长为25尺.点评:本题考查的是平面展开﹣最短路径问题,此类问题应先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.19.(9分)九(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表参赛同学答对题数答错题数未答题数A 19 0 1B 17 2 1C 15 2 3D 17 1 2E / / 7(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知ABCDE五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可)考点:算术平均数;统计表.分析:(1)直接算出A,B,C,D四位同学成绩的总成绩,再进一步求得平均数即可;(2)①设E同学答对x题,答错y题,根据对错共20﹣7=13和总共得分58列出方程组成方程组即可;②根据表格分别算出每一个人的总成绩,与实际成绩对比:A为19×5=95分正确,B为17×5+2×(﹣2)=81分正确,C为15×5+2×(﹣2)=71错误,D为17×5+1×(﹣2)=83正确,E正确;所以错误的是C,多算7分,也就是答对的少一题,打错的多一题,由此得出答案即可.解答:解:(1)=[(19+17+15+17)×5+(2+2+1)×(﹣2)]=82.5(分),答:A,B,C,D四位同学成绩的平均分是82.5分;(2)①设E同学答对x题,答错y题,由题意得,解得,答:E同学答对12题,答错1题;②C同学,他实际答对14题,答错3题,未答3题.点评:此题考查加权平均数的求法,二元一次方程组的实际运用,以及有理数的混合运算等知识,注意理解题意,正确列式解答.20.(8分)如图1,A,B,C是郑州市二七区三个垃圾存放点,点B,C分别位于点A的正北和正东方向,AC=40米.八位环卫工人分别测得的BC长度如下表:甲乙丙丁戊戌申辰BC(单位:米)84 76 78 82 70 84 86 80他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图2,图3:(1)求表中BC长度的平均数、中位数、众数;(2)求A处的垃圾量,并将图2补充完整;(3)用(1)中的作为BC的长度,要将A处的垃圾沿道路AB都运到B处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:=1.732)考点:条形统计图;扇形统计图;加权平均数;中位数;众数.分析:(1)利用平均数求法进而得出答案;(2)利用扇形统计图以及条形统计图可得出C处垃圾量以及所占百分比,进而求出垃圾总量,进而得出A处垃圾量;(3)利用锐角三角函数得出AB的长,进而得出运垃圾所需的费用.解答:解:(1)==80(米),众数是:84米,中位数是:82米;(2)∵C处垃圾存放量为:320kg,在扇形统计图中所占比例为:50%,∴垃圾总量为:320÷50%=640(千克),∴A处垃圾存放量为:(1﹣50%﹣37.5%)×640=80(kg),占12.5%.补全条形图如下:(2)垃圾总量是:320÷50%=640(千克),则A处的垃圾量是:640×(1﹣50%﹣37.5%)=80(千克),(3)在直角△ABC中,AB===40=69.28(米).∵运送1千克垃圾每米的费用为0.005元,∴运垃圾所需的费用为:69.28×80×0.005≈27(元),答:运垃圾所需的费用为27元.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(10分)观察下列各式及其验证过程:,验证:.,验证:.(1)按照上述两个等式及其验证过程,猜想的变形结果并进行验证.(2)针对上述各式反映的规律,写出用a(a为任意自然数,且a≥2)表示的等式,并给出验证.(3)针对三次根式及n次根式(n为任意自然数,且n≥2),有无上述类似的变形?如果有,写出用a(a为任意自然数,且a≥2)表示的等式,并给出验证.考点:二次根式的性质与化简.专题:规律型.分析:(1)利用已知,观察.,可得的值;(2)由(1)根据二次根式的性质可以总结出一般规律;(3)利用已知可得出三次根式的类似规律,进而验证即可.解答:解:(1)=4,理由是:===4;(2)由(1)中的规律可知3=22﹣1,8=32﹣1,15=42﹣1,∴=a,验证:==a;正确;(3)=a(a为任意自然数,且a≥2),验证:===a.点评:此题主要考查二次根式的性质与化简,善于发现题目数字之间的规律,是解题的关键.22.(10分)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B两处出发,沿轨道到达C处,B在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=40米/分;(2)写出d1与t的函数关系式:(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?考点:一次函数的应用.专题:行程问题.分析:(1)根据路程与时间的关系,可得答案;(2)根据甲的速度是乙的速度的1.5倍,可得甲的速度,根据路程与时间的关系,可得a 的值,根据待定系数法,可得答案;(3)根据两车的距离,可得不等式,根据解不等式,可得答案.解答:解:(1)乙的速度v2=120÷3=40(米/分),故答案为:40;(2)v1=1.5v2=1.5×40=60(米/分),60÷60=1(分钟),a=1,d1=;(3)d2=40t,当0≤t<1时,d2+d1>10,即﹣60t+60+40t>10,解得0≤t<2.5,∵0≤t<1,∴当0≤t<1时,两遥控车的信号不会产生相互干扰;当1≤t≤3时,d2﹣d1>10,即40t﹣(60t﹣60)>10,当1≤时,两遥控车的信号不会产生相互干扰综上所述:当0≤t<2.5时,两遥控车的信号不会产生相互干扰.点评:本题考查了一次函数的应用,(1)利用了路程速度时间三者的关系,(2)分段函数分别利用待定系数法求解,(3)当0≤t<1时,d2﹣d1>10;当1≤t≤3时,d1﹣d2>10,分类讨论是解题关键.。
2015-2016学年八年级(上)期末数学试卷一、请仔细的选一选(以下每道题只有一个正确的选项,请将答题卡上的正确选项涂黑,每小题3分,共36分)1.9的平方根是()A.3 B.±3 C.﹣3 D.±2.数,3.14,,,1.732,,,,﹣O.1010010001…(相邻两个1之间的0的个数逐渐加1)中,无理数的个数为()A.1 B.2 C.3 D.43.下面能够成直角三角形三边长的是()A.5,6,7 B.5,12,13 C.1,4,9 D.5,11,124.下列语句中,是命题的为()A.延长线段AB到C B.垂线段最短C.过点O作直线a∥b D.锐角都相等吗5.众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,30,120.这组数据的众数和中位数分别是()A.120,50 B.50,20 C.50,30 D.50,506.下列各组数值是二元一次方程x﹣3y=4的解的是()A.B.C.D.7.如图,在水塔O的东北方向32m处有一抽水站A,在水塔的东南方向24m处有一建筑工地B,在AB间建一条直水管,则水管的长为()A.45m B.40m C.50m D.56m8.点P(m+1,m+3)在直角坐标系的x轴上,则点P的坐标为()A.(0,2)B.(﹣2,0)C.(4,0)D.(0,﹣2)9.下列函数中,自变量的取值范围选取错误的是()A.y=中,x取x≥2 B.y=中,x取x≠﹣1C.y=2x2中,x取全体实数D.y=中,x取x≥﹣310.下面四个数中与最接近的数是()A.2 B.3 C.4 D.511.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.12.早餐店里,李明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;王红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x元,包子每个y元,则所列二元一次方程组正确的是()A.B.C.D.二.填空题(每题3分,共12分)13.=.14.已知一组数据x1,x2,x3,x4,x5的平均数是3,方差为,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数和方差分别是,.15.已知函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),则二元一次方程组的解是.16.在平面直角坐标系中,把直线y=3x沿y轴向下平移后得到直线AB,如果点N(m,n)是直线AB上的一点,且3m﹣n=2,那么直线AB的函数表达式为.三.解答题(共52分)17.(8分)(1)(2)﹣+.18.(8分)(1)解方程组:(2)解方程组:.19.(5分)如图,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶5000米.飞机每小时飞行多少千米?20.随机抽取某城市一年(以365天计)中的30天的日平均气温状况统计如下:温度(℃)温度(℃)10 14 18 22 26 30 32天数 3 5 5 7 6 2 2请根据上述数据回答下列问题:(1)估计该城市年平均气温大约是多少?(2)写出该数据的中位数、众数;(3)计算该城市一年中约有几天的日平均气温为26℃?(4)若日平均气温在17℃~23℃为市民“满意温度”,则这组数据中达到市民“满意温度”的有几天?21.(6分)已知一次函数y=kx+b的图象经过点A(﹣4,0),B(2,6)两点.(1)求一次函数y=kx+b的表达式.(2)在直角坐标系中,画出这个函数的图象.(3)求这个一次函数与坐标轴围成的三角形面积.22.(7分)某景点的门票价格规定如表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(1)(2)两班共102人去游览该景点,其中(1)班不足50人,(2)班多于50人,如果两班都以班为单位分别购票,则一共付款1118元(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?23.(10分)如图,点C,B,E在同一条直线上,AC⊥BC,BD⊥DE,AC=BD=6,AB=10,∠A=∠DBE(1)求证:AB∥DE;(2)求CE的长;(3)求△DBC的面积.2015-2016学年八年级(上)期末数学试卷参考答案与试题解析一、请仔细的选一选(以下每道题只有一个正确的选项,请将答题卡上的正确选项涂黑,每小题3分,共36分)1.9的平方根是()A.3 B.±3 C.﹣3 D.±【考点】平方根.【分析】根据开平方的意义,可得一个数的平方根.【解答】解:9的平方根是±3,故选:B.【点评】本题考查了平方根,乘方运算是解题关键.2.数,3.14,,,1.732,,,,﹣O.1010010001…(相邻两个1之间的0的个数逐渐加1)中,无理数的个数为()A.1 B.2 C.3 D.4【考点】无理数.【分析】根据无理数的定义即可判定求解.【解答】解:数,3.14,,,1.732,,,,﹣O.1010010001…(相邻两个1之间的0的个数逐渐加1)中,根据无理数的定义可得,无理数有,3,,﹣O.1010010001…四个.故选D.【点评】此题主要考查了无理数的定义.注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.3.下面能够成直角三角形三边长的是()A.5,6,7 B.5,12,13 C.1,4,9 D.5,11,12【考点】勾股定理的逆定理.【分析】判断是否可以作为直角三角形的三边长,则判断两小边的平方和是否等于最长边的平方即可.【解答】解:A、52+62≠72,不是直角三角形,故此选项错误;B、52+122=132,是直角三角形,故此选项正确;C、12+42≠92,不是直角三角形,故此选项错误;D、52+112≠122,不是直角三角形,故此选项错误.故选:B.【点评】此题主要考查了勾股定理逆定理,关键是掌握勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.4.下列语句中,是命题的为()A.延长线段AB到C B.垂线段最短C.过点O作直线a∥b D.锐角都相等吗【考点】命题与定理.【分析】根据命题的定义对各个选项进行分析从而得到答案.【解答】解:A,不是,因为不能判断其真假,故不构成命题;B,是,因为能够判断真假,故是命题;C,不是,因为不能判断其真假,故不构成命题;D,不是,不能判定真假且不是陈述句,故不构成命题;故选B.【点评】此题主要考查学生对命题与定理的理解及掌握情况.5.众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,30,120.这组数据的众数和中位数分别是()A.120,50 B.50,20 C.50,30 D.50,50【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.【解答】解:众数是一组数据中出现次数最多的数,在这一组数据中50是出现次数最多的,故众数是50;将这组数据从小到大的顺序排列为:20,30,30,50,50,50,120,处于中间位置的那个数是50,那么由中位数的定义可知,这组数据的中位数是50.故选D.【点评】本题为统计题,考查了众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数30当作中位数,因而误选C.命题立意:本题以给地震灾区捐款为背景,考核了统计概率的相关知识.本题在考核数学知识的基础上向学生渗透爱心教育,是一道很不错的题目.6.下列各组数值是二元一次方程x﹣3y=4的解的是()A.B.C.D.【考点】二元一次方程的解.【专题】计算题.【分析】将四个选项中的x与y的值代入已知方程检验,即可得到正确的选项.【解答】解:A、将x=1,y=﹣1代入方程左边得:x﹣3y=1+3=4,右边为4,本选项正确;B、将x=2,y=1代入方程左边得:x﹣3y=2﹣3=﹣1,右边为4,本选项错误;C、将x=﹣1,y=﹣2代入方程左边得:x﹣3y=﹣1+6=5,右边为4,本选项错误;D、将x=4,y=﹣1代入方程左边得:x﹣3y=4+3=7,右边为4,本选项错误.故选A【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.7.如图,在水塔O的东北方向32m处有一抽水站A,在水塔的东南方向24m处有一建筑工地B,在AB间建一条直水管,则水管的长为()A.45m B.40m C.50m D.56m【考点】勾股定理的应用;方向角.【专题】应用题.【分析】东北方向和东南方向间刚好是一直角,利用勾股定理解图中直角三角形即可.【解答】解:∵在水塔O的东北方向32m处有一抽水站A,在水塔的东南方向24m处有一建筑工地B,∴∠AOC=∠BOC=45°,∴∠AOB=90°,∵OA=32m,OB=24m,∴AB==40m.故选:B.【点评】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.8.点P(m+1,m+3)在直角坐标系的x轴上,则点P的坐标为()A.(0,2)B.(﹣2,0)C.(4,0)D.(0,﹣2)【考点】点的坐标.【分析】根据x轴上点的纵坐标等于0,可得m值,根据有理数的加法,可得点P的坐标.【解答】解:∵点P(m+1,m+3)在直角坐标系的x轴上,∴这点的纵坐标是0,∴m+3=0,解得,m=﹣3,∴横坐标m+1=﹣2,则点P的坐标是(﹣2,0).故选:B.【点评】本题主要考查了点的坐标.坐标轴上点的坐标的特点:x轴上点的纵坐标为0,y轴上的横坐标为0.9.下列函数中,自变量的取值范围选取错误的是()A.y=中,x取x≥2 B.y=中,x取x≠﹣1C.y=2x2中,x取全体实数D.y=中,x取x≥﹣3【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:A、x﹣2≥0,则x≥2,故正确;B、x+1≠0,故x≠﹣1,故正确;C、正确;D、x+3>0,则x>﹣3,故错误.故选D.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.10.下面四个数中与最接近的数是()A.2 B.3 C.4 D.5【考点】估算无理数的大小.【分析】先根据的平方是11,距离11最近的完全平方数是9和16,通过比较可知11距离9比较近,由此即可求解.【解答】解:∵32=9,3.52=12.25,42=16∴<<<,∴与最接近的数是3,而非4.故选B.【点评】此题主要考查了无理数的估算能力,通过比较二次根式的平方的大小来比较二次根式的大小是常用的一种比较方法和估算方法.11.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.【考点】一次函数的图象;正比例函数的性质.【专题】数形结合.【分析】根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.【解答】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选:B.【点评】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).12.早餐店里,李明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;王红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x元,包子每个y元,则所列二元一次方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】根据题意可得等量关系:①5个馒头的钱+3个包子的钱=10+1元;②(8个馒头的钱+6个包子的钱)×9折=18元,根据等量关系列出方程组即可.【解答】解:若馒头每个x元,包子每个y元,由题意得:,故选:B.【点评】此题主要考查了由实际问题抽象出二元一次方程组的应用,关键是正确理解题意,根据花费列出方程.二.填空题(每题3分,共12分)13.=﹣3.【考点】立方根.【分析】根据立方根的定义即可求解.【解答】解:∵(﹣3)3=﹣27,∴=﹣3.【点评】此题主要考查了立方根的定义,注意:一个数的立方根只有一个.14.已知一组数据x1,x2,x3,x4,x5的平均数是3,方差为,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数和方差分别是7,3.【考点】方差;算术平均数.【分析】根据平均数的变化规律可得出数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是3×3﹣2;先根据数据x1,x2,x3,x4,x5的方差为,求出数据3x1,3x2,3x3,3x4,3x5的方差是×32,即可得出数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的方差.【解答】解:∵数据x1,x2,x3,x4,x5的平均数是3,∴数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是3×3﹣2=7;∵数据x1,x2,x3,x4,x5的方差为,∴数据3x1,3x2,3x3,3x4,3x5的方差是×32=3,∴数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的方差是3;故答案为:7,3.【点评】此题考查了平均数和方差,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.已知函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),则二元一次方程组的解是.【考点】一次函数与二元一次方程(组).【分析】函数图象的交点坐标即是方程组的解,有几个交点,就有几组解.【解答】解:∵函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),∴点P(﹣4,﹣2),满足二元一次方程组;∴方程组的解是.故答案为:.【点评】本题不用解答,关键是理解两个函数图象的交点即是两个函数组成方程组的解.16.在平面直角坐标系中,把直线y=3x沿y轴向下平移后得到直线AB,如果点N(m,n)是直线AB上的一点,且3m﹣n=2,那么直线AB的函数表达式为y=3x﹣2.【考点】一次函数图象与几何变换.【专题】几何变换.【分析】先设直线y=3x沿y轴向下平移a个单位后得到直线AB,则直线AB为y=3x﹣a,再把N(m,n)代入得到n=3m﹣a,由于3m﹣n=2,则可得到a=2,于是可确定直线AB的解析式.【解答】解:设直线y=3x沿y轴向下平移a个单位后得到直线AB,则直线AB为y=3x﹣a,∵N(m,n)是直线AB上的一点,∴n=3m﹣a,∵3m﹣n=2,∴a=2,∴直线AB的函数表达式为y=3x﹣2.故答案为y=3x﹣2.【点评】本题考查了一次函数图象与几何变换:直线y=kx+b(k、b为常数,k≠0)向上平移a(a>0)个单位得到直线y=kx+b+a.三.解答题(共52分)17.(8分)1)(2)﹣+.【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后把分子部分合并后进行二次根式的除法运算;(2)先把各二次根式化为最简二次根式,然后合并即可.【解答】解:(1)原式===5;(2)原式=3﹣+2=.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.18.(8分)(1)解方程组:(2)解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),①×3+②×2得:7x=15,即x=,把x=代入①得:y=,则方程组的解为;(2),②﹣①×2得:13y=65,即y=5,把y=5代入①得:x=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(5分)如图,飞机在空中水平飞行,某一时刻刚好飞到一男孩子头顶上方4000米处,过了20秒,飞机距离这个男孩头顶5000米.飞机每小时飞行多少千米?【考点】勾股定理的应用.【分析】先画出图形,构造出直角三角形,利用勾股定理解答.【解答】解:设A点为男孩头顶,C为正上方时飞机的位置,B为20s后飞机的位置,如图所示,则AB2=BC2+AC2,即BC2=AB2﹣AC2=9000000,∴BC=3000米,∴飞机的速度为3000÷20×3600=540(千米/小时),答:飞机每小时飞行540千米.【点评】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.解题时注意运用数形结合的思想方法使问题直观化.20.随机抽取某城市一年(以365天计)中的30天的日平均气温状况统计如下:温度(℃)温度(℃)10 14 18 22 26 30 32天数 3 5 5 7 6 2 2请根据上述数据回答下列问题:(1)估计该城市年平均气温大约是多少?(2)写出该数据的中位数、众数;(3)计算该城市一年中约有几天的日平均气温为26℃?(4)若日平均气温在17℃~23℃为市民“满意温度”,则这组数据中达到市民“满意温度”的有几天?【考点】加权平均数;用样本估计总体;中位数;众数.【专题】应用题.【分析】(1)先计算样本的平均数,再估计年平均气温;(2)根据中位数、众数的概念求值;(3)由图可知,一月有6天温度为26℃,则一年中日平均气温为26℃的天数为6×12天;(4)读图可知,这组数据中达到市民“满意温度”的天数为5+7.【解答】解:(1)30天的日平均气温==20.8估计该城市年平均气温大约是20.8℃;(2)将这组数据按从小到大排列为,由于有30个数,取第15、16位都是22,则中位数为22;因为22出现的次数最多,则该组数据的众数为22;(3)一年中日平均气温为26℃的天数为6×12=72天;(4)这组数据中达到市民“满意温度”的天数为5+7=12天.【点评】此题主要考查学生读图获取信息的能力,以及平均数、众数、中位数的求法.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.21.(6分)已知一次函数y=kx+b的图象经过点A(﹣4,0),B(2,6)两点.(1)求一次函数y=kx+b的表达式.(2)在直角坐标系中,画出这个函数的图象.(3)求这个一次函数与坐标轴围成的三角形面积.【考点】待定系数法求一次函数解析式;一次函数的图象.【专题】数形结合.【分析】(1)将两点代入,运用待定系数法求解;(2)两点法即可确定函数的图象.(3)求出与x轴及y轴的交点坐标,然后根据面积公式求解即可.【解答】解:(1)∵一次函数y=kx+b的图象经过两点A(﹣4,0)、B(2,6),∴,∴函数解析式为:y=x+4;(2)函数图象如图;(3)一次函数y=x+4与y轴的交点为C(0,4),∴△AOC的面积=4×4÷2=8.【点评】本题考查待定系数法求函数解析式及三角形的面积的知识,难度不大,关键是正确得出函数解析式及坐标与线段长度的转化.22.(7分)某景点的门票价格规定如表购票人数1﹣50人51﹣100人100人以上每人门票价12元10元8元某校八年(1)(2)两班共102人去游览该景点,其中(1)班不足50人,(2)班多于50人,如果两班都以班为单位分别购票,则一共付款1118元(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你的购票方法可节省多少钱?【考点】二元一次方程组的应用.【分析】(1)设一班学生x名,二班学生y名,根据题意可得等量关系:①两班共102人;②(1)班花费+(2)班花费=1118元,根据等量关系列出方程组即可;(2)计算出合并一起购团体票的花费102×8,再用1118﹣102×8即可.【解答】解:(1)设一班学生x名,二班学生y名,根据题意,解得,答一班学生49名,二班学生53名;(2)两班合并一起购团体票:1118﹣102×8=302(元)答:可节省302元.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程组.23.(10分)如图,点C,B,E在同一条直线上,AC⊥BC,BD⊥DE,AC=BD=6,AB=10,∠A=∠DBE(1)求证:AB∥DE;(2)求CE的长;(3)求△DBC的面积.【考点】全等三角形的判定与性质.【分析】(1)根据三角形全等得到内错角相等,证得AB∥DE;(2)由全等三角形的性质得到对应边相等,求得BE长度,根据勾股定理求得BC的长度,可得结论;(3)根据面积公式求得BC边上的高,再由面积公式求出结果.【解答】解;(1)证明:在△ACB与△BDE中,,∴△ACB≌△BDE,∴∠ABC=∠E,∴AB∥DE;(2)∵AC=BD=6,AB=10,由(1)知△ACB≌△BDE,∴BE=AB=10,∴BC==8,∴CE=18;(3)如图过D作DF⊥CE于F,∴DF=,∴S△DBC=××8=.【点评】本题考查了平行线的判定,勾股定理的应用,全等三角形的判定与性质,三角形的面积公式的应用,关键是证明三角形全等.。
2015新北师大版八年级数学上册期末试卷(含答案)初二数学第一学期期末考试试卷考生须知:1.本试卷共7页,共六道大题,25道小题。
2.本试卷满分100分,考试时间100分钟。
3.除作图题用铅笔,其余用蓝色或黑色签字笔作答,不允许使用修正工具。
一、选择题(本大题共10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的,把正确选项前的字母填在题后括号内)1.16的算术根是()。
A。
4B。
-4C。
±4D。
±82.若代数式(2x-3)/(x-1)有意义,则x的取值范围是()。
A。
x>1B。
x≥1C。
x≥1且x≠3/3D。
x>1且x≠2/33.下列图形不是轴对称图形的是()。
A。
线段B。
等腰三角形C。
角D。
有一个内角为60°的直角三角形4.下列事件中是不可能事件的是()。
A。
随机抛掷一枚硬币,正面向上。
B。
a是实数,a²=-a。
C。
长为1cm、2cm、3cm的三条线段为边长的三角形是直角三角形。
D。
___从古城出发乘坐地铁一号线去西单图书大厦。
5.初二年级通过学生日常德育积分评比,选出6位获“阳光少年”称号的同学。
年级组长___将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给___等6位同学。
这些奖品中3份是研究文具,2份是体育用品,1份是科技馆通票。
___同学从中随机取一份奖品,恰好取到体育用品的可能性是()。
A。
11/12B。
6/32C。
3/32D。
2/326.有一个角是36°的等腰三角形,其它两个角的度数是(。
)。
A。
36°。
108°B。
36°。
72°C。
72°。
72°D。
36°。
108°或72°。
72°7.下列四个算式正确的是()。
A。
3+3=6B。
23÷3=2C。
(-4)×(-9)=36D。
2015--2016学年度第一学期期末检测八年级数学注意事项:1.本卷共三大题,28小题。
全卷满分为120分,考试时间为90分钟。
2.答题前将密封线内的项目填写清楚,将选择题答案用2B铅笔涂在答题卡中卷I部分(选择题共45分)一、选择题:(本大题共15个小题,每题3分,共45分)1.9的平方根是()A.3B.3C.±3D.3±2.下列实数中是无理数的是()227- D.π3.下列计算正确的是( )A.16- =-4±=-44.下列各组数,能够作为直角三角形的三边长的是()A.2,3,4B.4,5,7C.0.5,1.2,1.3D.12, 36, 395.如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°6.点M( 2 ,-3)关于y轴对称的点坐标为( )A. (-2 ,3)B. (-2 ,-3)C. (-3 ,-2)D. (2 ,3)7.已知点(-6,y1 ),( 3,y2 ) 都在直线531+-=xy上,则y1与y2 的大小关系是()A.y1 >y2B.y1 =y2C.y1 <y2D.不能比较8.在等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是()A.45°B.55°C.60°D.75°9.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是()A.7, 7B.7, 7.5C.8, 7.5D.8, 6.5环数(5题图)10.已知下列语句:①内错角相等;②画两个相等的角.③两直线平行,同位角相等.④有两边和其中一边的对角对应相等的两个三角形全等;⑤邻补角的平分线互相垂直.⑥等腰三角形的两个底角相等.其中是真命题的有( ) A .2个 B .3个 C .4个 D .5个11.甲乙两人同解方程组⎩⎨⎧=-=+872y cx by ax 时,甲正确解得⎩⎨⎧-==23y x ,乙因抄错c 而得⎩⎨⎧=-=22y x ,则a 、c 的值是( )A. ⎩⎨⎧-==24c aB. ⎩⎨⎧==54c aC. ⎩⎨⎧-=-=24c aD. ⎩⎨⎧-==114c a12.100元.捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚.若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可得方程组( ).A.2732100x y x y +=⎧⎨+=⎩B.2723100x y x y +=⎧⎨+=⎩C.273266x y x y +=⎧⎨+=⎩D.272366x y x y +=⎧⎨+=⎩ 13.如图,△ABC 中,AB=AC ,点D 在AC 边上,且BD=BC=AD , 则∠A 的度数为 ( )A.50°B.45°C.36°D.30°14.如图,在Rt △ABC 中,∠C=90°,∠CAB=60°,AD 平分∠CAB ,点D 到AB 的距离DE=3.8cm ,则线段BC 的长为( ) A.3.8cm B.7.6cm C.11.4cm D.11.2cm15.已知一次函数y =-x +1的图象与x 轴、y 轴分别交于点A 点、 B 点,点M 在x 轴上,并且使以点A 、B 、M 为顶点的三角形 是等腰三角形,则这样的点M 有( ) A.3个 B.4个 C.5个 D.7个A(15题图)卷Ⅱ部分(共75分)二、填空题:(本大题共6个小题,每题3分,共18分)16.“等腰三角形的两个底角相等”的逆命题是 . 17.3-2的相反数是 . 18.若 ⎩⎨⎧-==12y x 是方程2x -ay=5的一个解,则a = .19.如图,在Rt△ABC 中,∠ABC=90°,DE 是AC 交AC 于点D ,交BC 于点E ,∠BAE=20°,则∠C= ______ .20.如图,已知函数y axb =+和y kx =的图象交于点P ,则根据图象可得,关于()x y , 的二元一次方程组y ax b y kx =+⎧⎨=⎩,的解是 .21.如图,以等腰直角△ABC 的斜边AB 为边作等边△ABD ,连结DC , 以DC 当边作等边△DCE ,B 、E 在C 、D 的同侧,若AB =2,则BE = .三、解答题:(本大题共7个题,共57分) 22.计算:(每题4分,共8分) (1)()5-13721-⨯ (2) 101252403--xb(21题图)23.解下列方程组:(每题4分,共8分)(1)⎩⎨⎧=+=-82573y x y x (2) ⎪⎩⎪⎨⎧=++=+153y -x 2y x 3153x )()(y24. (1) (3分)已知:如图,直线a ,b 被直线c 所截,且∠1+∠2=180°.求证:a ∥b .(2) (4分)如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.25.(8分)如图,已知CD=BE,DG⊥BC于点G,EF⊥BC于点F,且DG = EF.(1)求证:△DGC≌△EFB(2)OB=OC吗?请说明理由;(3)若∠B=30°,△ADO是什么三角形?OEFDG CBA26. ( 8分) 王大伯几年前承包了甲、乙两片荒山,各栽了100棵桃树,成活98%.现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的桃子,每棵的产量如折线统计图所示.(1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山桃子的产量总和;(2)试通过计算说明,哪个山上的桃子产量较稳定?27.(9分)某文具商店销售功能完全相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器超出5个的部分按原价的七折销售,设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,请分别写出y1、y2关于x的函数关系式;(3)当需要购买50个计算器时,买哪种品牌的计算器更合算?28. (9分)如图,在平面直角坐标系中,过点B (6,0)的直线AB 与直线OA 相交于点A (4,2),动点M 沿路线O →A →C 运动. (1)求直线AB 的解析式. (2)求△OAC 的面积.(3)当△OMC 的面积是△OAC 面积的41时,求出这时点M 的坐标.八年级数学期末试题参考答案与评分标准二、填空题:(16)有两个角相等的三角形是等腰三角形; (17) 2-3; (18) 1 ;(19) 35° ;(20) ⎩⎨⎧-=-=24y x ;(21) BE=1三、解答题: 22.解: (1)()5-1-3721⨯=1-7 7⨯…………………………………………………2分=7-1 ………………………………………………… 3分 =6 ……………………………………………… 4分 (2) 101252403--5102810102-510- 106=⨯= …………………………………………………3分…………………………………………………4分23.解: (1) ⎩⎨⎧=+=-②①82573y x y x①×2+②得:11x =22∴x =2……………………………………………………………………2分 把x =2代入①得:6-y =7∴y =-1…………………………………………………………………3分∴原方程组的解为⎩⎨⎧-==121x y …………………………………………4分(2) ⎪⎩⎪⎨⎧=-++⨯=+②①15)3(2)(3153y x y x yx①化简为5x +3y =15 ③………………………………………………1分 ②化简为5x -3y =15 ④………………………………………………2分 ③+④得10x =30 x =3 ③-④得6y =0 y =0∴原方程组的解为:⎩⎨⎧-==03x y ………………………………………4分24.解:(1)如图, 证明:∵∠1+∠2=180°∠1=∠3 ………………1分∴∠2+∠3=180° ………………2分 ∴a ∥b ………………3分(2) ∵EF ∥BC ,∴∠BAF+∠B =180° …………………………………………1分 ∵∠B =80°∴∠BAF =100° ………………………………………………2分 ∵AC 平分∠BAF ,∴∠CAF==∠BAF 2150° ………………………………………………3分∵EF ∥BC∴∠C=∠CAF=50°. …………………………………………… 4分 25.(1)证明:∵DG ⊥BC ,EF ⊥BG∴∠DGC=∠EFB=90° ………………………………… 1分 在Rt △DGC 和Rt △EFB 中 ∵CD=BE ,DG=EF ,∴Rt △DGC ≌Rt △EFB (HL ). ………………………………… 3分(2)答:OB=OC , ……………………………………………4分 理由:∵Rt △DGC ≌Rt △EFB∴∠B=∠C∴OB=OC …………………………………………… 6分(3)等边三角形 ……………………………………………8分 26. (1)(千克)(千克)总产量为:(千克) ……………………3分(2)∵(千克2)(千克2)……7分3∴∴乙山上的桃子产量较稳定。
八年级第一学期期末质量检测数学试题(卷)本试卷分第Ⅰ卷和第Ⅱ卷两部分。
检测时间90分钟,满分120分Ⅰ(客观卷)30分一、选择题(每小题只有一个选项符合题意,请将你认为正确的选项字母填入下表相应空格内,每小题3分,共9 1.一个多边形的内角和与外角和相等,则这个多边形是A 、四边形B 、五边形C 、六边形D 、八边形2.小华将一张如图所示的矩形纸片沿对角线剪开,他利用所得的两个直角三角形进行图形变换,构成了下列四个图形,这四个图形中不是轴对称图形的是A B C D5.把a a 42-多项式分解因式,结果正确的是A 、)4(-a aB 、)2)(2(-+a aC 、)2)(2(-+a a aD 、4)2(2--a6.已知16)3(22+--x m x 是一个完全平方式,则m 的值是 A 、7-B 、1C 、7-或1D 、7或1-7.如果把分式y x xy+中的x 和y 都扩大2倍,即分式的值A 、扩大4倍B 、扩大2倍C 、不变D 、缩小2倍8.计算222---x xx 的结果是 A 、0B 、1C 、1-D 、x9.分式方程1123-=x x 的解为 A 、1=xB 、2=xC 、3=xD 、4=x10.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车去奶奶家比乘坐公交车去奶奶家所需的时间少用了15分钟,现已知小林家距奶奶家8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x 千米,根据题意可列方程为A 、x x 5.28158=+ B 、155.288+=x x C 、xx 5.28418=+D 、415.288+=x x Ⅱ(主观卷)90分二、填空题(每小题3分,共18分)13.分解因式=+-224b a 。
14.化简=-+-÷--4122122x x x x x 。
15.分式方程1231+=x x 的解为 。
16.如图,△ABC 的周长是12,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =3,则△ABC 的面积是 。
第1页 共4页 ◎ 第2页 共4页2015年北师大版八年级数学上册期末考试满分:120分;考试时间:90分钟学校:___________姓名:___________班级:___________考号:___________一、选择题(题型注释) 1的值在( )(A) 1到2之间 (B) 2到3之间 (C) 3到4之间 (D) 4到5之间2.四个数-5 , 0 ,21, 3中为无理数的是 ( ) A .-5 B .0 C .21D .33.已知函数y=ax+b 经过(1,3),(0,﹣2),则a ﹣b=( ) A .﹣1 B .﹣3 C .3 D .74.已知方程组2625m n m n +=⎧⎨+=⎩,则m ﹣n 的值是( )A .﹣1B .0C .1D .25.一辆汽车由甲地匀速驶往相距300千米的乙地,汽车的速度是100km /h ,那么汽车距离甲地的路程s(km)与行驶时间t(h)的函数关系用图象可表示为6.如图,OA ,BA 分别表示甲、乙两名学生运动的一次函数图象,图中s 和t 分别表示运动路程和时间,根据图象判断快者的速度比慢者的速度每秒快( )A 、2.5米B 、2米C 、1.5米D 、1米7.有如下命题:①负数没有立方根;②同位角相等;③对顶角相等;④如果一个数的立方根是这个数本身,那么这个数是1或0,其中,是假命题...的有( )21 A .①②③ B .①②④ C .②④ D .①④ 8.点P (1,—2)关于轴对称点的坐标是( ) A 、 B 、(1,2) C 、(—1,2) D 、(—2,1)9.某一天的不同时刻老板把信交给秘书打字,每次都将信放在秘书信堆的最上面,秘书有时间就将信堆最上面的那封信取来打.假定共有5封信,且老板以1、2、3、4、5的顺序交来,在下列各顺序中,哪一顺序不可能是秘书打字的顺序?( ) A.12345 B.54321 C.23541 D.23514 10.(11²孝感)一艘轮船在长江航线上往返于甲、乙两地.若轮船在静水中的速度不变,轮船先从甲地顺水航行到乙地,停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t (小时),航行的路程为S (千米),则S 与t 的函数图象大致是 ( )二、填空题(题型注释)11.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过部分按每吨1.8元收费,该市某户居民5月份用水x 吨(x>10),应交水费y 元,则y 关于x 的关系式 _________。
2014-2015北师大版八年级上学期期末考试数学试题(第Ⅰ卷 57分)一、选择题(每小题3分,共36分.) 1.在,115-,51-,π,39,16.0中,无理数的个数有( ) A.2个 B.3个 C.4个 D.5个 2. 下列说法正确的是( )A 、一个数的平方等于它本身的数有:1和0B 、±2是8的立方根C 、16的算术平方根是±4D 、9的平方根是±3 3.根据下列表述,能确定位置的是( )A .某电影院6排B .济南市师范路C .北偏西40°D .东经108°,北纬30° 4.下列实数运算中正确的是( )A .6)6(33=-B .24±=C .3)3(2-=-D .9)9(2= 5.在平面直角坐标系中,点()2,3-M 关于x 轴对称的点在( )A .第一象限B .第二象限C .第三象限D .第四象限6.某商店选用每千克28元的A 型糖3千克,每千克20元的B 型糖2千克,每千克12元的C 型糖5千克混合杂拌后出售,这种杂拌糖平均每千克售价为( )A.20元B.18元C.19.6元D.18.4元7.已知三组数据:① 2,3,4;② 3,4,5;③ 1,3,2.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有( ) A .② B .①② C .①③ D .②③8.一次函数y=kx+b 的图象如右图所示,则方程kx+b=0的解为( )A .x=2B .y=2C .x=-1D .y=-19.已知⎩⎨⎧=+-=+32392n m n m 则n m +等于( )A .-1B .23-C .32- D .1 10. 如图,在△ABC 中,∠ABC 的平分线与∠ACB 的外角平分线相交于点D ,∠D=20º,则∠A 的度数是 ( ).A .20 ºB .30ºC .40ºD .50º 11.在一组数据4,6,4,3,8中,下列说法正确的是( )A .平均数小于中位数B .平均数等于中位数C .平均数大于中位数D .平均数等于众数12 若直线k x y 3+=与直线62-=x y 的交点在y 轴上,则k 等于( )A .21B .21- C .2 D .—2二、填空题(本大题共7个小题.每小题3分,共21分.)13.若042=-+++y x x ,则x y -的算术平方根是 .14. 一组数据5,7,7,x 的中位数与平均数相等,则x 的值为15.如图所示,坐标系中四边形的面积是 . 16.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________. 17.已知点A (2,0)和直线y=-12 x+3上一点P,若S △AOP =4,则点P 的坐标为_____ ____.18. 如图,在平面直角坐标系中,点A 的坐标为(0,1),点B 的坐标为(3,1),C 的坐标为(4,3),如果存在点D ,要使△ABD 与△ABC 全等,那么点D 的坐是 .19.如图,AD 是△ABC 的中线,∠ADC =60°,BC =8,把△ABC 沿直线AD 折叠,三、解答题(解答应写出文字说明,证明过程或演算步骤.) 20.(每小题5分 ,共计20分)(1) (2)2163)1526(-⨯-216316-⨯21. (1) ⎩⎨⎧=-=+39y x y x (2)⎩⎨⎧=+=-82573y x y x22、(本题7分)在解方程组+5y=15 42ax x by ⎧⎨-=-⎩时,由于粗心,甲看错了方程组中的a ,得到的解为= 31x y -⎧⎨=-⎩,乙看错了方程组中的b ,得到的解为=54x y ⎧⎨=⎩。
八年级(上册)期末考试数学试卷(北师大版)一、选择题(共10小题,每小题3分,满分30分)1.在、、、、、﹣3x中,分式的个数有( )A.2个B.3个C.4个D.5个2.下列运算中正确的是( )A.2x+3y=5xy B.x8÷x2=x4C.(x2y)3=x6y3D.2x3•x2=2x63.在平面直角坐标系xOy中,点P(﹣3,5)关于x轴的对称点的坐标是( )A.(3,5)B.(3,﹣5)C.(5,﹣3)D.(﹣3,﹣5)4.等腰三角形的顶角为80°,则它的底角是( )A.20°B.50°C.60°D.80°5.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 000 0076克,用科学记数法表示是( )A.7.6×108克B.7.6×10﹣7克C.7.6×10﹣8克D.7.6×10﹣9克6.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是( )A.3cm,4cm,8cm B.8cm,7cm,15cmC.5cm,5cm,11cm D.13cm,12cm,20cm7.计算3a•(2b)的结果是( )A.3ab B.6a C.6ab D.5ab8.下列各式中,从左到右的变形是因式分解的是( )A.3x+3y﹣5=3(x+y)﹣5 B.x2+2x+1=(x+1)2C.(x+1)(x﹣1)=x2﹣1 D.x(x﹣y)=x2﹣xy9.如图,AD平分∠BAC,AB=AC,连接BD,CD并延长交AC,AB于E,F点,则此图中全等三角形共有( )A.2对B.3对C.4对D.5对10.甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m.设甲队每天修路xm,依题意,下面所列方程正确的是( )A.=B.=C.=D.=二、填空题(共6小题,每小题3分,满分18分)11.当x≠__________时,分式有意义.12.一个正多边形的内角和是1440°,则这个多边形的边数是__________.13.分解因式:a2﹣81=__________.14.如图,在△ABC中,∠C=90°,∠A的平分线交BC于D,DC=4cm,则点D到斜边AB的距离为__________cm.15.若5x﹣3y﹣2=0,则105x÷103y=__________.16.如图,小亮从A点出发前10m,向右转15°,再前进10m,又向右转15°,…,这样一直走下去,他第一次回到出发点A时,一共走了__________m.三、解答题(共8小题,满分52分)17.计算:﹣24x2y4÷(﹣3x2y)•2y﹣3.18.分解因式:4x2y﹣4xy2+y3.19.在各个内角都相等的多边形中,一个外角等于一个内角的.求多边形的边数.20.如图,在△ADF与△CBE中,点A、E、F、C在同一直线上,已知AD∥BC,AD=CB,AE=CF.求证:DF=BE.21.先化简,再求值:,其中x=3.22.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1,B1,C1的坐标.23.某校为了丰富学生的校园生活,准备购进一批篮球和足球,其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相同,篮球与足球的单价各是多少元?24.如图(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB 于点F(1)求证:CE=CF.(2)将图(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使点E′落在BC边上,其它条件不变,如图(2)所示.试猜想:BE′与CF有怎样的数量关系?请证明你的结论.参考答案一、选择题(共10小题,每小题3分,满分30分)1.在、、、、、﹣3x中,分式的个数有( )A.2个B.3个C.4个D.5个【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:分式,共2个.故选A.【点评】本题主要考查分式的定义,注意π不是字母,是常数,则不是分式,是整式.2.下列运算中正确的是( )A.2x+3y=5xy B.x8÷x2=x4C.(x2y)3=x6y3D.2x3•x2=2x6【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】根据合并同类项、同底数幂的除法及幂的乘方与积的乘方运算法则,结合选项进行判断即可.【解答】解:A、2x和5y不是同类项,不能合并,故本选项错误;B、x8÷x2=x6,原式计算错误,故本选项错误;C、(x2y)3=x6y3,计算正确,故本选项正确;D、2x3•x2=2x5,原式计算错误,故本选项错误.故选C.【点评】本题考查了合并同类项、同底数幂的除法及幂的乘方与积的乘方等知识,掌握运算法则是解答本题的关键.3.在平面直角坐标系xOy中,点P(﹣3,5)关于x轴的对称点的坐标是( )A.(3,5)B.(3,﹣5)C.(5,﹣3)D.(﹣3,﹣5)【考点】关于x轴、y轴对称的点的坐标.【分析】关于x轴对称的两点的横坐标相等,纵坐标互为相反数.【解答】解:∵关于x轴对称的两点的横坐标相等,纵坐标互为相反数∴点P(﹣3,5)关于x轴的对称点的坐标是(﹣3,﹣5).故选:D.【点评】本题主要考查的是关于坐标轴对称点的坐标特点,明确关于x轴对称的两点的横坐标相等,纵坐标互为相反数是解题的关键.4.等腰三角形的顶角为80°,则它的底角是( )A.20°B.50°C.60°D.80°【考点】等腰三角形的性质.【分析】根据三角形内角和定理和等腰三角形的性质,可以求得其底角的度数.【解答】解:∵等腰三角形的一个顶角为80°∴底角=(180°﹣80°)÷2=50°.故选B.【点评】考查三角形内角和定理和等腰三角形的性质的运用,比较简单.5.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 000 0076克,用科学记数法表示是( )A.7.6×108克B.7.6×10﹣7克C.7.6×10﹣8克D.7.6×10﹣9克【考点】科学记数法—表示较小的数.【分析】对于绝对值小于1的数,用科学记数法表示为a×10n形式,其中1≤a<10,n是一个负整数,除符号外,数字和原数左边第一个不为0的数前面0的个数相等,根据以上内容写出即可.【解答】解:0.00 000 0076克=7.6×10﹣8克,故选C.【点评】本题考查了科学记数法表示较小的数,注意:对于绝对值小于1的数,用科学记数法表示为a×10n 形式,其中1≤a<10,n是一个负整数,除符号外,数字和原数左边第一个不为0的数前面0的个数相等.6.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是( )A.3cm,4cm,8cm B.8cm,7cm,15cmC.5cm,5cm,11cm D.13cm,12cm,20cm【考点】三角形三边关系.【分析】根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.【解答】解:A、3+4<8,故以这三根木棒不可以构成三角形,不符合题意;B、8+7=15,故以这三根木棒不能构成三角形,不符合题意;C、5+5<11,故以这三根木棒不能构成三角形,不符合题意;D、12+13>20,故以这三根木棒能构成三角形,符合题意.故选D.【点评】本题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.7.计算3a•(2b)的结果是( )A.3ab B.6a C.6ab D.5ab【考点】单项式乘单项式.【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:3a•(2b)=3×2a•b=6ab.故选C.【点评】本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.8.下列各式中,从左到右的变形是因式分解的是( )A.3x+3y﹣5=3(x+y)﹣5 B.x2+2x+1=(x+1)2C.(x+1)(x﹣1)=x2﹣1 D.x(x﹣y)=x2﹣xy【考点】因式分解的意义.【分析】判断一个式子是否是因是分解的条件是①等式的左边是一个多项式,②等式的右边是几个整式的积,③左、右两边相等,根据以上条件进行判断即可.【解答】解:A、3x+3y﹣5=3(x+y)﹣5,等式的右边不是整式的积的形式,故本选项错误;B、x2+2x+1=(x+1)2,符合因式分解的定义,故本选项正确;C、(x+1)(x﹣1)=x2﹣1是整式的乘法,故本选项错误;D、x(x﹣y)=x2﹣xy是整式的乘法,故本选项错误.故选:B.【点评】本题考查了对因式分解的定义的理解和运用,正确把握因式分解的意义是解题关键.9.如图,AD平分∠BAC,AB=AC,连接BD,CD并延长交AC,AB于E,F点,则此图中全等三角形共有( )A.2对B.3对C.4对D.5对【考点】全等三角形的判定.【分析】认真观察图形,确定已知条件在图形上的位置,结合全等三角形的判定方法,由易到难,仔细寻找.【解答】解:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ABD与△ACD中,,∴△ABD≌△ACD(SAS),∴BD=CD,∠B=∠C,∠ADB=∠ADC,又∠EDB=∠FDC,∴∠ADE=∠ADF,∴△AED≌△AFD,△BDE≌△CDF,△ABF≌△ACE.∴△AED≌△AFD,△ABD≌△ACD,△BDE≌△CDF,△ABF≌△ACE,共4对.故选C.【点评】本题考查三角形全等的判定方法和全等三角形的性质.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m.设甲队每天修路xm,依题意,下面所列方程正确的是( )A.=B.=C.=D.=【考点】由实际问题抽象出分式方程.【分析】设甲队每天修路xm,则乙队每天修(x﹣10)米,再根据关键语句“甲队修路120m与乙队修路100m 所用天数相同”可得方程=.【解答】解:设甲队每天修路x m,依题意得:=,故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.二、填空题(共6小题,每小题3分,满分18分)11.当x≠2时,分式有意义.【考点】分式有意义的条件.【专题】计算题.【分析】分式有意义的条件为x﹣2≠0.即可求得x的值.【解答】解:根据条件得:x﹣2≠0.解得:x≠2.故答案为2.【点评】此题主要考查了分式的意义,要求掌握.意义:对于任意一个分式,分母都不能为0,否则分式无意义.解此类问题,只要令分式中分母不等于0,求得x的取值范围即可.12.一个正多边形的内角和是1440°,则这个多边形的边数是10.【考点】多边形内角与外角.【专题】常规题型.【分析】根据多边形的内角和公式列式求解即可.【解答】解:设这个多边形的边数是n,则(n﹣2)•180°=1440°,解得n=10.故答案为:10.【点评】本题考查了多边形的内角和公式,熟记公式是解题的关键.13.分解因式:a2﹣81=(a+9)(a﹣9).【考点】因式分解-运用公式法.【专题】计算题;因式分解.【分析】原式利用平方差公式分解即可.【解答】解:原式=(a+9)(a﹣9).故答案为:(a+9)(a﹣9).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.14.如图,在△ABC中,∠C=90°,∠A的平分线交BC于D,DC=4cm,则点D到斜边AB的距离为4cm.【考点】角平分线的性质.【分析】由角平分线的性质可知D到AB的距离等于DC,可得出答案.【解答】解:设D到AB的距离为h,∵AD平分∠CAB,且DC⊥AC,∴h=CD=4cm,故答案为:4.【点评】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.15.若5x﹣3y﹣2=0,则105x÷103y=100.【考点】同底数幂的除法.【分析】根据同底数幂的除法法则,可将所求代数式化为:105x﹣3y,而5x﹣3y的值可由已知的方程求出,然后代数求值即可.【解答】解:∵5x﹣3y﹣2=0,∴5x﹣3y=2,∴105x÷103y=105x﹣3y=102=100.【点评】本题主要考查同底数幂的除法运算,整体代入求解是运算更加简便.16.如图,小亮从A点出发前10m,向右转15°,再前进10m,又向右转15°,…,这样一直走下去,他第一次回到出发点A时,一共走了240m.【考点】多边形内角与外角.【专题】应用题.【分析】由题意可知小亮所走的路线为正多边形,根据多边形的外角和定理即可求出答案.【解答】解:∵小亮从A点出发最后回到出发点A时正好走了一个正多边形,∴根据外角和定理可知正多边形的边数为n=360°÷15°=24,则一共走了24×10=240米.故答案为:240.【点评】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°,用外角和求正多边形的边数可直接让360°除以一个外角度数即可.三、解答题(共8小题,满分52分)17.计算:﹣24x2y4÷(﹣3x2y)•2y﹣3.【考点】整式的混合运算.【专题】计算题;整式.【分析】原式利用单项式乘除单项式法则计算即可得到结果.【解答】解:原式=8y3•=16.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.18.分解因式:4x2y﹣4xy2+y3.【考点】提公因式法与公式法的综合运用.【专题】计算题;因式分解.【分析】原式提取y,再利用完全平方公式分解即可.【解答】解:原式=y(4x2﹣4xy+y2)=y(2x﹣y)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.在各个内角都相等的多边形中,一个外角等于一个内角的.求多边形的边数.【考点】多边形内角与外角.【分析】可设多边形的一个内角是x度,根据题意表示出外角的度数.再根据各个内角和各个外角互补,列方程求解即可.【解答】解:设多边形的一个内角为x度,则一个外角为x度,依题意得:x+x=180,解得x=135,则360÷(180﹣135)=360÷45=8.答:多边形的边数是8.【点评】本题考查多边形的内角和外角的关系,利用多边形的外角和即可解决问题.20.如图,在△ADF与△CBE中,点A、E、F、C在同一直线上,已知AD∥BC,AD=CB,AE=CF.求证:DF=BE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】易证∠A=∠C和AF=CE,即可证明△ADF≌△CBE,根据全等三角形对应边相等的性质即可解题.【解答】证明:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AE+EF=CF+EF,即AF=CE,在△ADF和△CBE中,,∴△ADF≌△CBE(SAS),∴DF=BE.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ADF≌△CBE 是解题的关键.21.先化简,再求值:,其中x=3.【考点】分式的化简求值.【分析】首先将括号里面通分,进而因式分解化简求出即可.【解答】解:,=[+]×=×=,当x=3时,原式=2.【点评】此题主要考查了分式的化简求值,正确因式分解得出是解题关键.22.如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1,B1,C1的坐标.【考点】作图-轴对称变换.【分析】(1)利用长方形的面积剪去周围多余三角形的面积即可;(2)首先找出A、B、C三点关于y轴的对称点,再顺次连接即可;(3)根据坐标系写出各点坐标即可.【解答】解:(1)如图所示:△ABC的面积:3×5﹣﹣﹣=6;(2)如图所示:(3)A1(2,5),B1(1,0),C1(4,3).【点评】此题主要考查了作图﹣﹣轴对称变换,关键是找出对称点的位置,再顺次连接即可.23.某校为了丰富学生的校园生活,准备购进一批篮球和足球,其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相同,篮球与足球的单价各是多少元?【考点】分式方程的应用.【分析】设篮球的单价为x元,则足球的单价为(x﹣40)元,根据用1500元购进的篮球个数与900元购进的足球个数相同,列方程求解.【解答】解:设篮球的单价为x元,依题意得,=,解得:x=100,经检验:x=100是原分式方程的解,且符合题意,则足球的价钱为:100﹣40=60(元).答:篮球和足球的单价分别为100元,60元.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.24.如图(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB 于点F(1)求证:CE=CF.(2)将图(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使点E′落在BC边上,其它条件不变,如图(2)所示.试猜想:BE′与CF有怎样的数量关系?请证明你的结论.【考点】全等三角形的判定与性质;等腰三角形的判定与性质;平移的性质.【专题】几何综合题;压轴题.【分析】(1)根据平分线的定义可知∠CAF=∠EAD,再根据已知条件以及等量代换即可证明CE=CF,(2)根据题意作辅助线过点E作EG⊥AC于G,根据平移的性质得出D′E′=DE,再根据已知条件判断出△CEG≌△BE′D′,可知CE=BE′,再根据等量代换可知BE′=CF.【解答】(1)证明:∵AF平分∠CAB,∴∠CAF=∠EAD,∵∠ACB=90°,∴∠CAF+∠CFA=90°,∵CD⊥AB于D,∴∠EAD+∠AED=90°,∴∠CFA=∠AED,又∠AED=∠CEF,∴∠CFA=∠CEF,∴CE=CF;(2)猜想:BE′=CF.证明:如图,过点E作EG⊥AC于G,连接EE′,又∵AF平分∠CAB,ED⊥AB,EG⊥AC,∴ED=EG,由平移的性质可知:D′E′=DE,∴D′E′=GE,∵∠ACB=90°,∴∠ACD+∠DCB=90°∵CD⊥AB于D,∴∠B+∠DCB=90°,∴∠ACD=∠B,在△CEG与△BE′D′中,,∴△CEG≌△BE′D′(AAS),∴CE=BE′,由(1)可知CE=CF,∴BE′=CF.北师大版八年级(上册)期末数学试卷一、选择题(每小题3分,共30分)1.下列平面图形中,不是轴对称图形的是()A.B.C.D.2.下列运算中,正确的是()A.(x2)3=x5B.3x2÷2x=x C.x3•x3=x6D.(x+y2)2=x2+y43.已知等腰三角形一边长为4,一边的长为10,则等腰三角形的周长为()A.14 B.18 C.24 D.18或244.等于()A.B. C.D.5.如图,△ABC≌△ADE,若∠B=80°,∠C=30°,则∠EAD的度数为()A.80°B.70°C.30°D.110°6.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.97.化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x8.下列式子中是完全平方式的是()A.a2﹣ab﹣b2B.a2+2ab+3 C.a2﹣2b+b2D.a2﹣2a+19.已知,Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=32,且BD:CD=9:7,则D到AB 的距离为()A.18 B.16C.14 D.1210.小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()A.B.C.D.二、填空题(每小题3分,共18分)11.已知空气的单位体积质量为0.00124g/cm3,将它用科学记数表示为g/cm3.12.因式分解:2m2﹣8n2=.13.已知点M(x,y)与点N(﹣2,﹣3)关于x轴对称,则x+y=.14.一个等腰三角形的一腰上的高与另一腰的夹角为40°,则它的顶角为:°.15.如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为.16.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,则∠DBC=度.三、解答题(每小题10分,共15分)17.(1)解方程:=﹣3(2)计算:(2m﹣1n﹣2)﹣2•(﹣)÷(﹣)18.如图,电信部门要在公路m,n之间的S区域修建一座电视信号发射塔P.按照设计要求,发射塔P到区域S内的两个城镇A,B的距离必须相等,到两条公路m,n的距离也必须相等.发射塔P建在什么位置?在图中用尺规作图的方法作出它的位置并标出(不写作法但保留作图痕迹).四、解答题(每小题7分,共21分)19.先化简,再求值:3(a+1)2﹣(a+1)(2a﹣1),其中a=1.20.如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE.求证:(1)△ABC≌△DEF;(2)GF=GC.21.有一项工作需要在规定日期内完成,如果甲单独做,刚好如期完成;如果乙单独做,就要超过规定日期3天.现在由甲、乙两人合做2天,剩下的工作由乙单独做,刚好如期完成,问规定日期是几天?五、解答题(每小题8分,共16分)22.一个零件的形状如图所示,按规定∠A=90°,∠C=25°,∠B=25°,检验员已量得∠BDC=150°,请问:这个零件合格吗?说明理由.23.如图,△ABD中,∠BAD=90°,AB=AD,△ACE中,∠CAE=90°,AC=AE.(1)求证:DC=BE;(2)试判断∠AFD和∠AFE的大小关系,并说明理由.参考答案一、选择题(每小题3分,共30分)1.下列平面图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选:A.【点评】轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.下列运算中,正确的是()A.(x2)3=x5B.3x2÷2x=x C.x3•x3=x6D.(x+y2)2=x2+y4【考点】整式的除法;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.【分析】根据①幂的乘方,底数不变,指数相乘;②单项式除以单项式,系数除以系数,同底数幂除以同底数幂,对于只在被除式里含有的字母,则连同指数作为商的一个因式,③同底数幂相乘:底数不变,指数相加;④完全平方公式:(a±b)2=a2±2ab+b2,对每一个选项进行分析即可得到答案.【解答】解:A、(x2)3=x2×3=x6,故此选项错误;B、3x2÷2x=(3÷2)•(x2÷x)=x,故此选项错误;C、x3•x3=x3+3=x6,故此选项正确;D、(x+y2)2=x2+y4+2xy2,故此选项错误.故选:C.【点评】此题主要考查了幂的乘方,单项式除以单项式,同底数幂乘法,完全平方公式,需要同学们牢固掌握基础知识,熟练掌握计算法则.3.已知等腰三角形一边长为4,一边的长为10,则等腰三角形的周长为()A.14 B.18 C.24 D.18或24【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】由于等腰三角形的底边和腰不能确定,故应分两种情况进行讨论.【解答】解:当4为底时,其它两边都为10,10、可以构成三角形,周长为24;当4为腰时,其它两边为4和10,因为4+4=8<10,所以不能构成三角形,故舍去.故选C.【点评】本题考查的是等腰三角形的性质及三角形的三边关系,解答此题时要注意分类讨论,舍去不符合条件的情况.4.等于()A.B. C.D.【考点】整式的除法.【专题】计算题.【分析】原式利用单项式除以单项式法则计算即可得到结果.【解答】解:原式=ac.故选B.【点评】此题考查了整式的除法,熟练掌握运算法则是解本题的关键.5.如图,△ABC≌△ADE,若∠B=80°,∠C=30°,则∠EAD的度数为()A.80°B.70°C.30°D.110°【考点】全等三角形的性质;三角形内角和定理.【分析】根据全等三角形的性质求出∠D和∠E,根据三角形内角和定理求出即可.【解答】解:∵△ABC≌△ADE,∠B=80°,∠C=30°,∴∠B=∠D=80°,∠E=∠C=30°,∴∠EAD=180°﹣∠D﹣∠E=70°,故选B.【点评】本题考查了三角形内角和定理,全等三角形的性质的应用,能根据全等三角形的性质得出∠B=∠D=80°,∠E=∠C是解此题的关键,注意:全等三角形的对应边相等,对应角相等.6.若一个多边形的内角和为1080°,则这个多边形的边数为()A.6 B.7 C.8 D.9【考点】多边形内角与外角.【分析】首先设这个多边形的边数为n,由n边形的内角和等于180°(n﹣2),即可得方程180(n﹣2)=1080,解此方程即可求得答案.【解答】解:设这个多边形的边数为n,根据题意得:180(n﹣2)=1080,解得:n=8.故选C.【点评】此题考查了多边形的内角和公式.此题比较简单,注意熟记公式是准确求解此题的关键,注意方程思想的应用.7.化简的结果是()A.x+1 B.x﹣1 C.﹣x D.x【考点】分式的加减法.【专题】计算题.【分析】将分母化为同分母,通分,再将分子因式分解,约分.【解答】解:=﹣===x,故选:D.【点评】本题考查了分式的加减运算.分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.8.下列式子中是完全平方式的是()A.a2﹣ab﹣b2B.a2+2ab+3 C.a2﹣2b+b2D.a2﹣2a+1【考点】完全平方式.【分析】完全平方公式:(a±b)2=a2±2ab+b2.看哪个式子整理后符合即可.【解答】解:符合的只有a2﹣2a+1.故选D.【点评】本题考查了完全平方公式结构特点,有两项是两个数的平方,另一项是加或减去这两个数的积的2倍.9.已知,Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=32,且BD:CD=9:7,则D到AB 的距离为()A.18 B.16 C.14 D.12【考点】角平分线的性质.【分析】首先由线段的比求得CD=16,然后利用角平分线的性质可得D到边AB的距离等于CD的长.【解答】解:∵BC=32,BD:DC=9:7∴CD=14∵∠C=90°,AD平分∠BAC∴D到边AB的距离=CD=14.故选C.【点评】此题主要考查角平分线的性质:角平分线上的任意一点到角的两边距离相等.做题时要由已知中线段的比求得线段的长,这是解答本题的关键.10.小朱要到距家1500米的学校上学,一天,小朱出发10分钟后,小朱的爸爸立即去追小朱,且在距离学校60米的地方追上了他.已知爸爸比小朱的速度快100米/分,求小朱的速度.若设小朱速度是x米/分,则根据题意所列方程正确的是()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】首先表示出爸爸和小朱的速度,再根据题意可得等量关系:小朱走1440米的时间=爸爸走1440米的时间+10分钟,根据等量关系,表示出爸爸和小朱的时间,根据时间关系列出方程即可.【解答】解:设小朱速度是x米/分,则爸爸的速度是(x+100)米/分,由题意得:=+10,即:=+10,故选:B.【点评】此题主要考查了由实际问题抽象出分式方程,关键是分析题意,表示出爸爸和小朱的时间各走1440米所用时间,再由时间关系找出相等关系,列出方程.二、填空题(每小题3分,共18分)11.已知空气的单位体积质量为0.00124g/cm3,将它用科学记数表示为 1.24×10﹣3g/cm3.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00124=1.24×10﹣3.故答案为:1.24×10﹣3.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.因式分解:2m2﹣8n2=2(m+2n)(m﹣2n).【考点】提公因式法与公式法的综合运用.【分析】根据因式分解法的步骤,有公因式的首先提取公因式,可知首先提取系数的最大公约数2,进一步发现提公因式后,可以用平方差公式继续分解.【解答】解:2m2﹣8n2,=2(m2﹣4n2),=2(m+2n)(m﹣2n).【点评】本题考查了提公因式法,公式法分解因式,因式分解一定要进行到每个因式不能再分解为止.13.已知点M(x,y)与点N(﹣2,﹣3)关于x轴对称,则x+y=1.【考点】关于x轴、y轴对称的点的坐标.【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y).【解答】解:根据题意,得x=﹣2,y=3.∴x+y=1.【点评】关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.根据对称点坐标之间的关系可以得到方程或方程组问题.14.一个等腰三角形的一腰上的高与另一腰的夹角为40°,则它的顶角为:50或130°.【考点】等腰三角形的性质;直角三角形的性质.【专题】分类讨论.【分析】等腰三角形分为锐角、直角、钝角等腰三角形,当为等腰直角三角形时不可能出现题中所说情况,所以舍去不计,另外两种情况可以根据垂直的性质及外角的性质求出顶角的度数.【解答】解:①当为锐角三角形时,如图,高与右边腰成40°夹角,由三角形内角和为180°可得,顶角为50°;②当为钝角三角形时,如图,此时垂足落到三角形外面,因为三角形内角和为180°,由图可以看出等腰三角形的顶角的补角为50°,所以三角形的顶角为130°.故答案为50°或130°.【点评】本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,进行分类讨论是正确解答本题的关键,难度适中.15.如图,△ABC中,DE是AC的垂直平分线,AE=4cm,△ABD的周长为14cm,则△ABC的周长为22cm.【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线性质求出AD=DC,根据△ABD的周长求出AB+BC=14cm,即可求出答案.【解答】解:∵DE是AC的垂直平分线,AE=4cm,∴AC=2AE=8cm,AD=DC,∵△ABD的周长为14cm,∴AB+AD+BD=14cm,∴AB+AD+BD=AB+DC+BD=AB+BC=14cm,∴△ABC的周长为AB+BC+AC=14cm+8cm=22cm,故答案为:22cm【点评】本题考查了线段垂直平分线性质的应用,能运用性质定理求出AD=DC是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.。
2015年八年级(上)数学期末模拟试题(二)
命题:数学教研组 考试时间:120min 沉着、冷静、快乐地迎接期末考试,相信你能行!
一、选择题。
(每小题3分,计12小题)
1、下列各式中①
;②
;③
;④
;⑤
;⑥。
一定是二次
根式的有 ( )
A .1个
B .2个
C .3个
D .4个
2、如图所示,某战役缴获敌人防御工事坐标地图碎片,依稀可见,一号暗堡的坐标为
(4,2),四号暗堡的坐标为(-2,4),原有情报得知:敌军指挥部的 坐标为(0,0),你认为敌军指挥部的位置大约是 ( )
A .A 处
B .B 处
C .C 处
D .D 处
3、如图,以数轴的单位长度线段为边作一个正方形,以表示数1的点为圆心,正方形对角线长为半径画弧,交数轴于点A ,则点A 表示的数是 ( )
A.2-
B.21+-
C.21--
D.21-
4、学校快餐店有2元,3元元三种价格的饭菜供师生选择(每人限购一份).如图是某月的销售情况统计图,则该校师生购买饭菜费用的平均数和众数是 ( )
A .2.95元,3元
B .3元,3元
C .3元,4元
D .2.95元,4元
5、一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )
A. 先向左转130°,再向左转50°
B. 先向左转50°,再向右转50°
C. 先向左转50°,再向右转40°
D. 先向左转50°,再向左转40°
6、把直线y=-x+3向上平移m 个单位后,与直线y=2x+4的交点在第一象限,则m 的取值范围是( )
A.1<m<7
B.3<m<4
C.m>1
D.m<4
7、如图在Rt △ABC 中,∠C=90°,AC=BC ,点D 在AC 上,∠CBD=30°,则
DC
AD
的值为( ) A.3 B.
2
2
C.13-
D.不能确定 8、如图,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC=6cm ,点P 是母线BC 上一点,且PC=
3
2
BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是( )
9、下列图形中,表示一次函数y=mx+n 与正比例函数y=mnx (m ,n 为常数,且mn ≠0)的图象的是 ( )
10、某商场用加权平均数来确定什锦糖的单价,由单价为15元/千克的甲种糖果10千克,单价为12元/千克的乙种糖果20千克,单价为10元/千克的丙种糖果30千克混合成的什锦糖果的单价应定为 ( )
A .11元/千克
B .11.5元/千克
C .12元/千克
D .12.5元/千克 11、小颖家离学校1200 米,其中有一段为上坡路,另一段为下坡路. 她去学校共用了16 分钟,假设小颖上坡路的平均速度是3 千米/ 时,下坡路的平均速度是5 千米/ 时,若设小颖上坡用了x 分钟,下坡用了y 分钟,根据题意可列方程组为 ( )
A .
B .
C . D.
12、如图,在四边形ABCD 中,动点P 从点A 开始沿ABCD 的路径匀速前进到D 为止.在这个
过程中,△APD 的面积S 随时间t 的变化关系用图象表示正确的是 ( )
二、填空题。
(每小题3分,计5小题)
13、化简:)23)(23(-+=______________. 14、已知点P (x,y) 的坐标满足方程04)3(2
=++
+y x ,则点P 关于y 轴
对称点的坐标是__________
15、如图,是一个正比例函数的图像,把该图像向左平移一个单位长度, 得到的函数图像的解析式是_______________. (第15题图) 16、一个多边形的每个外角都等于相邻内角的
5
1
,则这个多边形是______________。
17、如图,四边形ABCD 中,∠BAD=130°,∠B=∠D=90°,在BC 、CD 上分别 找一点M 、N ,使△AMN 周长最小时,则∠AMN+∠ANM 的度数为______.
三、解答题。
(第17题图)
18、(10分)计算或化简
(1)213318-+ (2)32275)2
1()1(10
--+-+--π
19、(6分)如图所示,横、纵相邻格点间的距离均为1个单位。
(1)在格点中画出图形ABCD先向右平移6个单位,再向上平移2个单位后的图形;
(2)请求出平移前后两图形对应点之间的距离。
20、(6分)对于题目“化简并求值:,其中”,飞流同学的解答如下:
解:
请问飞流同学的解答对吗?若不对,请你给出正确解法;若对,请说明理由?
21、(8分)如图,折叠长方形的一边AD使点D落在BC边的点F处,已知AB=6cm,BC=10cm,求DE的长度。
22、(10分)某商场计划拨款9 万元从厂家购进50 台电视机.已知厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500 元,乙种每台2100 元,丙种每台2500 元.(1) 若商场同时购进其中两种不同型号的电视机50 台,用去9 万元,请你研究一下商场的进货方案.
(2) 若商场每销售一台甲、乙、丙电视机可分别获利150 元、200 元、250 元,在以上的方案中,为使获利最多,你选择哪种进货方案?
23、(9分)为了解某校九年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩统计如下,其中右侧扇形统计图中的圆心角α为36度.根据上面提供的信息,回答下列问题:
(1)写出样本容量,m的值及抽取部分学生体育成绩的中位数;
(2)已知该校九年级共有500名学生,如果体育成绩达28分以上(含28分)为优秀,请估计该校九年级学生体育成绩达到优秀的总人数.
24、(10分)已知直线l 1∥l 2,且l 3、l 4和l 1、l 2分别交于A 、B 和C 、D 两点,(如图)点P 在AB 上.设∠ADP=∠1,∠DPC=∠2,∠BCP=∠3
(1)探究∠1、∠2、∠3之间的关系,下面给出推导过程请你填写理由. 解:过点P 作PE ∥l
1 ∵PE ∥l 1(已作)
∴∠1=∠DPE (_________)
∵PE ∥l 1,l 1∥l 2(已知) ∴PE ∥l 2(_________) ∴∠3=∠EPC (_________) ∵∠2=∠DPE+∠EPC
∴∠2=∠1+∠3(_________)
(2)如果点P 在A 、B 两点之间运动时,问∠1、∠2、∠3之间的关系是否发生变化?(直接给出结论)
(3)如果点P 在A 、B 两点外侧运动时,猜想∠1、∠2、∠3之间的关系。
(简要作图证明)
25、(10分)如图,在平面直角坐标系中,直线43
4
:+-=x y l 分别交x 轴、y 轴于点A,B,将
△AOB 绕点o 顺时针旋转90°后得到△B O A ''. (1)求直线B A ''的解析式;
(2)若直线B A ''与直线l 相交于点C,求△BC A '的面积;
(3)在直线B A ''上是否存在异于点C 的一点P ,使得BP A '∆与BC A '∆的面积相等?若存在请求出点P 的坐标;若不存在,请说明理由。