操作系统课程设计说明书-基于Linux的进程之间通信
- 格式:doc
- 大小:584.50 KB
- 文档页数:33
实验六:进程间通信实验目的:学会进程间通信方式:无名管道,有名管道,信号,消息队列,实验要求:(一)在父进程中创建一无名管道,并创建子进程来读该管道,父进程来写该管道(二)在进程中为SIGBUS注册处理函数,并向该进程发送SIGBUS信号(三)创建一消息队列,实现向队列中存放数据和读取数据实验器材:软件:安装了Linux的vmware虚拟机硬件:PC机一台实验步骤:(一)无名管道的使用1、编写实验代码pipe_rw.c#include <unistd.h>#include <sys/types.h>#include <errno.h>#include <stdio.h>#include <string.h>#include <stdlib.h>int main(){int pipe_fd[2];//管道返回读写文件描述符pid_t pid;char buf_r[100];char* p_wbuf;int r_num;memset(buf_r,0,sizeof(buf_r));//将buf_r初始化char str1[]=”parent write1 “holle””;char str2[]=”parent write2 “pipe”\n”;r_num=30;/*创建管道*/if(pipe(pipe_fd)<0){printf("pipe create error\n");return -1;}/*创建子进程*/if((pid=fork())==0) //子进程执行代码{//1、子进程先关闭了管道的写端close(pipe_fd[1]);//2、让父进程先运行,这样父进程先写子进程才有内容读sleep(2);//3、读取管道的读端,并输出数据if(read(pipe_fd[0],buf_r, r_num)<0){printf(“read error!”);exit(-1);}printf(“%s\n”,buf_r);//4、关闭管道的读端,并退出close(pipe_fd[1]);}else if(pid>0) //父进程执行代码{//1、父进程先关闭了管道的读端close(pipe_fd[0]);//2、向管道写入字符串数据p_wbuf=&str1;write(pipe_fd[1],p_wbuf,sizof(p_wbuf));p_wbuf=&str2;write(pipe_fd[1],p_wbuf,sizof(p_wbuf));//3、关闭写端,并等待子进程结束后退出close(pipe_fd[1]);}return 0;}/***********************#include <unistd.h>#include <sys/types.h>#include <errno.h>#include <stdio.h>#include <string.h>#include <stdlib.h>int main(){int pipe_fd[2];//管道返回读写文件描述符pid_t pid;char buf_r[100];char* p_wbuf;int r_num;memset(buf_r,0,sizeof(buf_r));//将buf_r初始化char str1[]="holle";char str2[]="pipe";r_num=10;/*创建管道*/if(pipe(pipe_fd)<0){printf("pipe create error\n");return -1;}/*创建子进程*/if((pid=fork())==0) //子进程执行代码{close(pipe_fd[1]);//1、子进程先关闭了管道的写端//2、让父进程先运行,这样父进程先写子进程才有内容读//3、读取管道的读端,并输出数据if(read(pipe_fd[0],buf_r, r_num)<0){printf("read1 error!");exit(-1);}printf("\nparent write1 %s!",buf_r);sleep(1);if(read(pipe_fd[0],buf_r, r_num)<0){printf("read2 error!");exit(-1);}printf("\nparent write2 %s!",buf_r);close(pipe_fd[1]);//4、关闭管道的读端,并退出exit(1);//printf("child error!");}else if(pid>0) //父进程执行代码{close(pipe_fd[0]);//1、父进程先关闭了管道的读端p_wbuf=str1;//2、向管道写入字符串数据write(pipe_fd[1],p_wbuf,sizeof(str1));sleep(1);p_wbuf=str2;write(pipe_fd[1],p_wbuf,sizeof(str2));close(pipe_fd[1]);//3、关闭写端,并等待子进程结束后退出exit(1);//printf("father error!");}return 0;}**************************/2、编译应用程序pipe_rw.c3、运行应用程序子进程先睡两秒让父进程先运行,父进程分两次写入“hello”和“pipe”,然后阻塞等待子进程退出,子进程醒来后读出管道里的内容并打印到屏幕上再退出,父进程捕获到子进程退出后也退出4、由于fork函数让子进程完整地拷贝了父进程的整个地址空间,所以父子进程都有管道的读端和写端。
操作系统课程设计——Linux系统管理实践与进程通信实现二零一三年一月八号一、设计内容1、Linux系统的熟悉与常用操作命令的掌握。
2、Linux环境下进程通信的实现。
(实现父母子女放水果吃水果的同步互斥问题,爸爸放苹果,女儿专等吃苹果,妈妈放橘子,儿子专等吃橘子,盘子即为缓冲区,大小为5。
)二、Linux环境介绍1、Linux的由来与发展Linux是一种可以在PC机上执行的类似UNIX的操作系统,是一个完全免费的操作系统。
1991年,芬兰学生Linux Torvalds开发了这个操作系统的核心部分,因为是Linux改良的minix系统,故称之为Linux。
2、Linux的优点(1)Linux具备UNIX系统的全部优点Linux是一套PC版的UNIX系统,相对于Windows是一个十分稳定的系统,安全性好。
(2)良好的网络环境Linux与UNIX一样,是以网络环境为基础的操作系统,具备完整的网络功能,提供在Internet或Intranet的邮件,FTP,www等各种服务。
(3)免费的资源Linux免费的资源和公开的源代码方便了对操作系统的深入了解,给编程爱好者提供更大的发挥空间。
3、Linux的特点1)全面的多任务,多用户和真正的32位操作系统2)支持多种硬件,多种硬件平台3)对应用程序使用的内存进行保护4)按需取盘5)共享内存页面6)使用分页技术的虚拟内存7)优秀的磁盘缓冲调度功能8)动态链接共享库9)支持伪终端设备10)支持多个虚拟控制台11)支持多种CPU12)支持数字协处理器387的软件模拟13)支持多种文件系统14)支持POSIX的任务控制15)软件移植性好16)与其它UNIX系统的兼容性17)强大的网络功能三、常用命令介绍1、目录操作和DOS相似,Linux采用树型目录管理结构,由根目录(/)开始一层层将子目录建下去,各子目录以 / 隔开。
用户login后,工作目录的位置称为 home directory,由系统管理员设定。
《Linux操作系统设计实践》实验二:进程通信实验目的:进一步了解和熟悉 Linux 支持的多种 IPC 机制,包括信号,管道,消息队列,信号量,共享内存。
实验环境: redhat实验内容:(1)进程间命名管道通信机制的使用:使用命名管道机制编写程序实现两个进程间的发送接收信息。
(2)进程间消息队列通信机制的使用:使用消息队列机制自行编制有一定长度的消息(1k 左右)的发送和接收程序。
(3)进程间共享存储区通信机制的使用:使用共享内存机制编制一个与上述(2)功能相同的程序。
并比较分析与其运行的快慢。
实验代码验证:(1).使用命名管道机制编写程序实现两个进程间的发送接收信息。
#include <stdio.h>#include <stdlib.h>#define FIFO_FILE "MYFIFO"int main(int argc, char *argv[]){FILE *fp;int i;if (argc<=1){printf("usage: %s <pathname>\n",argv[0]); exit(1);}if ((fp = fopen(FIFO_FILE, "w")) == NULL) {printf("open fifo failed. \n");exit(1);}for (i = 1; i < argc; i++){if (fputs(argv[i],fp) == EOF){printf("write fifo error. \n");exit(1);}if (fputs(" ",fp) == EOF){printf("write fifo error. \n"); exit(1);}}fclose(fp);return 0;}#include <stdio.h>#include <stdlib.h>#include <sys/stat.h>#include <unistd.h>#include <linux/stat.h>#define FIFO_FILE "MYFIFO"int main(){FILE *fp;char readbuf[80];if ((fp = fopen(FIFO_FILE, "r")) == NULL) {umask(0);mknod(FIFO_FILE, S_IFIFO | 0666, 0);}else{fclose(fp);}while (1){if ((fp = fopen(FIFO_FILE, "r")) == NULL) {printf("open fifo failed. \n");exit(1);}if (fgets(readbuf, 80, fp) != NULL){printf("Received string :%s \n", readbuf); fclose(fp);}else{if (ferror(fp)){printf("read fifo failed.\n");exit(1);}}}return 0;}实验结果:Server.c将client.c写入的字符输出。
中北大学操作系统课程设计说明书学院、系:软件学院专业:软件工程学生姓名:刘婷学号:0921010708 设计题目:基于Linux的实现进程的信号量互斥申请起迄日期: 2011年12月22日- 2012年1月7日指导教师:贾美丽2012 年 1月 7 日1需求分析基于Linux的进程同步与通信的模拟实现需要完成以下功能:(1).创建进程:手动创建几个进程,或者随即创建几个进程,都在界面上完成;要求包括进程的名称(不能重复)、执行时间和申请资源的等待时间等。
在同一时刻可能有多个进行在内存申请某资源,即可以输入多个进程的资源申请。
(2).3类临界资源的管理,包括申请以及分配等。
分别通过信号量实现或者管程实现。
(3).银行家算法,判断是否可以进行资源的分配。
基于以上的功能,可以使用户选择操作,模拟临界资源的管理和银行家算法。
目的:实现临界资源的管理及死锁的避免。
2总体设计进程同步与模拟实现系统分为4个模块:输入输出,进程对资源的随机申请及分配,临界资源管理,银行家算法避免死锁。
输入输出:包括系统运行所需要的进程的名称,执行时间,申请资源的等待时间,进程对资源的需要量等信息以及系统所要显示出的进程的创建信息,资源的分配信息,进行执行信息,进行动态申请资源信息等。
进程对资源的随机申请及分配:根据所输入的进程、资源、以及进程对资源的最大申请情况,随机产生进程当前对资源的申请,输出相应的分配信息与进程执行信息并调用银行家算法对进程的资源申请进行判断。
临界资源的管理:创建相应个数的进程,完成进程的并发执行,使用互斥信号量使各进程互斥的进入各自的临界区对资源进行申请,进程执行完毕后,互斥的对资源进行恢复。
银行家算法避免死锁:对当前进程对资源的申请利用银行家算法进行判断,看系统分配后是否处于安全状态,若处于安全状态,则将资源分配给进程,并输出分配信息,否则对不予以分配。
3.详细设计在该系统中我主要实现了银行家算法避免死锁的模块,该模块中主要使用了数组的数据结构.3.1银行家算法:设Request[i]是进程i的请求向量,如果Request[i][j]=k,表示进程i需要k各j类型的资源。
linux课程设计进程间通信一、教学目标本节课的教学目标是让学生了解和掌握Linux进程间通信的基本概念和常用方法。
知识目标包括:掌握进程间通信的定义、作用和分类;理解Linux系统中进程间通信的机制和原理。
技能目标包括:学会使用Linux系统中的管道、信号和共享内存等通信方法;能够编写简单的Linux进程间通信程序。
情感态度价值观目标包括:培养学生对Linux系统的兴趣和好奇心,提高学生对计算机操作系统的基本认识;培养学生团队合作精神和自主学习能力。
二、教学内容本节课的教学内容主要包括Linux进程间通信的概念、分类和机制,以及常用的进程间通信方法。
首先,介绍进程间通信的定义和作用,让学生了解进程间通信的重要性。
然后,讲解Linux系统中进程间通信的机制和原理,包括管道、信号和共享内存等方法。
接下来,通过实例演示和编程实践,让学生掌握这些通信方法的用法和特点。
最后,结合实际应用场景,讨论进程间通信在操作系统中的应用和意义。
三、教学方法为了达到本节课的教学目标,采用多种教学方法相结合的方式进行教学。
首先,采用讲授法,向学生讲解进程间通信的基本概念和原理。
其次,通过案例分析法,分析实际应用场景中的进程间通信问题,引导学生学会运用所学知识解决实际问题。
然后,利用实验法,让学生动手实践,编写进程间通信程序,加深对通信方法的理解和记忆。
最后,采用讨论法,鼓励学生积极参与课堂讨论,培养团队合作精神和批判性思维。
四、教学资源为了支持本节课的教学内容和教学方法的实施,准备以下教学资源。
首先,教材《Linux操作系统原理与应用》,作为学生学习的基础资料。
其次,参考书《Linux进程间通信》,为学生提供更深入的理论学习资料。
再次,多媒体教学课件,用于直观展示进程间通信的原理和实例。
最后,实验室设备,包括计算机和网络设备,用于学生进行进程间通信实验。
通过这些教学资源,丰富学生的学习体验,提高学习效果。
五、教学评估本节课的教学评估将采用多种方式,以全面、客观地评价学生的学习成果。
操作系统课程设计Linux一、教学目标本课程的教学目标是使学生掌握Linux操作系统的核心概念、原理和应用技能。
通过本课程的学习,学生将能够:1.理解操作系统的基本原理,包括进程管理、内存管理、文件系统和输入/输出系统。
2.掌握Linux操作系统的安装、配置和管理方法。
3.熟练使用Linux命令行界面,进行日常操作和系统管理。
4.掌握Linux常用命令、 shell脚本编写和系统监控工具的使用。
5.了解Linux操作系统在服务器、嵌入式设备和云计算等领域的应用。
二、教学内容本课程的教学内容分为五个部分:1.操作系统概述:介绍操作系统的定义、功能和分类,以及Linux操作系统的历史和发展。
2.进程管理:讲解进程的基本概念、进程控制、进程同步和互斥、死锁及其解决方法。
3.内存管理:介绍内存分配与回收策略、内存保护、虚拟内存和分页分段机制。
4.文件系统:讲解文件和目录结构、文件访问控制、文件系统性能优化和磁盘空间分配策略。
5.输入/输出系统:介绍I/O设备管理、中断和DMA机制、设备驱动程序和I/O调度策略。
三、教学方法本课程采用多种教学方法相结合的方式,以提高学生的学习兴趣和主动性:1.讲授法:教师讲解操作系统的核心概念和原理,引导学生掌握基本知识。
2.讨论法:学生针对实际案例和问题进行讨论,培养学生的思考和分析能力。
3.案例分析法:分析Linux操作系统的实际应用案例,使学生了解操作系统的应用场景。
4.实验法:安排实验室课时,让学生亲自动手进行系统安装、配置和调试,提高学生的实践能力。
四、教学资源本课程的教学资源包括:1.教材:选用权威、实用的Linux操作系统教材,如《Linux操作系统原理与应用》。
2.参考书:提供相关的学术论文、技术博客和在线文档,供学生拓展阅读。
3.多媒体资料:制作课件、教学视频和演示文稿,辅助学生理解和记忆。
4.实验设备:提供Linux服务器、虚拟机和实验室环境,让学生进行实际操作。
进程间通信Linux 课程设计一、教学目标本课程的教学目标是使学生掌握进程间通信在Linux环境下的基本原理和实现方法。
具体目标如下:1.知识目标:–了解Linux操作系统的基本概念和架构;–理解进程间通信的概念、作用和分类;–掌握Linux下进程间通信的主要方法,如管道、消息队列、共享内存和信号等;–掌握同步机制,如互斥锁、条件变量和信号量等。
2.技能目标:–能够在Linux环境下编写简单的进程间通信程序;–能够分析并解决进程间通信过程中遇到的问题;–能够运用进程间通信的原理和技巧解决实际编程中的问题。
3.情感态度价值观目标:–培养学生的团队协作意识和沟通能力;–培养学生的创新精神和自主学习能力;–培养学生对操作系统和进程间通信领域的兴趣和热情。
二、教学内容本课程的教学内容主要包括以下几个部分:1.Linux操作系统基本概念和架构;2.进程间通信的概念、作用和分类;3.Linux下进程间通信的主要方法:–消息队列;–共享内存;4.同步机制:–条件变量;5.进程间通信实例分析。
三、教学方法为了达到本课程的教学目标,将采用以下教学方法:1.讲授法:用于讲解基本概念、原理和方法;2.案例分析法:通过分析实际案例,使学生更好地理解进程间通信的原理和应用;3.实验法:让学生动手实践,培养实际编程能力;4.讨论法:鼓励学生积极参与课堂讨论,培养团队协作和沟通能力。
四、教学资源为了支持本课程的教学内容和教学方法,将准备以下教学资源:1.教材:《Linux进程间通信》;2.参考书:相关领域的经典著作和学术论文;3.多媒体资料:教学PPT、视频讲座等;4.实验设备:计算机、网络设备等。
五、教学评估为了全面、客观地评估学生的学习成果,本课程将采用以下评估方式:1.平时表现:通过课堂参与、提问、讨论等方式评估学生的积极性、主动性和团队协作能力;2.作业:布置相关的编程练习和研究报告,评估学生的理解和应用能力;3.考试:包括期中和期末考试,以闭卷形式进行,评估学生对进程间通信知识的掌握程度和实际应用能力;4.实验报告:评估学生在实验过程中的动手能力和问题解决能力。
Linux课程设计通讯管理一、教学目标本节课的学习目标包括知识目标、技能目标和情感态度价值观目标。
知识目标要求学生掌握Linux操作系统的基本概念、特点和应用领域;技能目标要求学生能够熟练使用Linux命令行进行基本操作,如文件管理、权限设置等;情感态度价值观目标要求学生培养对Linux操作系统的兴趣和好奇心,提高自主学习和解决问题的能力。
通过本节课的学习,学生将能够了解Linux操作系统的背景和发展历程,掌握Linux的基本使用方法,培养在实际应用中运用Linux操作系统的意识,提高自己的信息技术素养。
二、教学内容本节课的教学内容主要包括Linux操作系统的基本概念、特点和应用领域,以及Linux命令行的使用方法。
首先,介绍Linux操作系统的起源和发展历程,使学生了解Linux操作系统的重要性和地位。
其次,讲解Linux操作系统的特点,如开放源代码、安全性高、稳定性好等。
然后,介绍Linux操作系统的应用领域,如服务器、嵌入式系统等。
最后,通过实际操作,教授学生如何使用Linux命令行进行基本操作,如文件管理、权限设置等。
三、教学方法为了提高学生的学习兴趣和主动性,本节课将采用多种教学方法。
首先,采用讲授法,向学生讲解Linux操作系统的基本概念和特点。
其次,采用讨论法,引导学生探讨Linux操作系统的应用领域和优势。
然后,采用案例分析法,通过分析实际案例,使学生了解Linux操作系统在实际应用中的作用。
最后,采用实验法,让学生亲自动手操作Linux命令行,提高实际操作能力。
四、教学资源为了支持教学内容和教学方法的实施,本节课将准备以下教学资源。
首先,教材《Linux操作系统》,为学生提供系统的理论知识。
其次,参考书《Linux命令行与shell脚本编程》,为学生提供丰富的实践指导。
再次,多媒体资料,如教学视频、PPT等,为学生提供直观的学习材料。
最后,实验设备,如计算机、网络等,为学生提供实际操作的环境。
linux进程间通信课程设计一、课程目标知识目标:1. 理解Linux操作系统中进程间通信的基本概念与原理;2. 掌握进程间通信的几种主要机制,如管道、消息队列、共享内存和信号量;3. 学会使用相关API进行进程间数据传输和控制流程;4. 了解进程间同步和互斥的概念,并掌握相关实现方法。
技能目标:1. 能够编写简单的Linux进程间通信程序;2. 能够分析进程间通信程序的执行流程,并解决通信过程中可能出现的常见问题;3. 能够运用所学知识解决实际场景中的进程间通信问题。
情感态度价值观目标:1. 培养学生对操作系统和底层编程的兴趣,激发学生探究新技术的好奇心;2. 培养学生的团队协作精神,提高学生在团队项目中的沟通与协作能力;3. 培养学生严谨、认真的学习态度,使学生认识到编程过程中细节的重要性。
本课程针对高年级计算机专业学生,结合课程性质、学生特点和教学要求,将课程目标分解为具体的学习成果。
通过本课程的学习,学生将掌握Linux进程间通信的基本知识和技能,培养实际编程能力和团队协作精神,为后续学习操作系统及相关领域知识打下坚实基础。
二、教学内容1. 进程间通信概述- 了解进程与线程的概念及区别;- 掌握Linux操作系统中进程间通信的基本需求及分类。
2. 管道通信- 学习管道的基本原理和使用方法;- 掌握无名管道和命名管道(FIFO)的创建、读写操作及注意事项。
3. 消息队列- 了解消息队列的基本概念和原理;- 掌握消息队列的创建、发送、接收和删除操作。
4. 共享内存- 学习共享内存的基本原理和用途;- 掌握共享内存的创建、映射和解除映射操作,以及同步机制。
5. 信号量- 了解信号量的基本概念和用途;- 掌握信号量的创建、P操作和V操作,以及应用场景。
6. 信号- 学习信号的基本概念、分类和作用;- 掌握信号的发送、捕捉和处理方法。
教学内容根据课程目标进行选择和组织,保证科学性和系统性。
本教学内容涵盖教材中关于Linux进程间通信的相关章节,按照教学进度安排,逐一向学生传授各通信机制的基本原理和实际应用。
烟台大学文经学院
课程:操作系统
学号:
姓名:
班级:
指导老师:。
五.设计流程图
六.分析
从理想的结果来说,应当是每当Client发送一个消息后,server接收该消息,Client再发送下一条。
也就是说“(Client)sent”和“(server)received”的字样应该在屏幕上交替出现。
实际的结果大多是,先由 Client 发送两条消息,然后Server接收一条消息。
此后Client
Server交替发送和接收消息.最后一次接收两条消息. Client 和Server 分别发送和接收了10条消息,与预期设想一致是否
message的传送和控制并不保证完全同步,当一个程序不再激活状态的时候,。
操作系统课程设计说明书-基于Linux的进程之间通信中北大学操作系统课程设计说明书学院、系:软件学院专业:软件工程学生姓名:学号:设计题目:基于Linux的进程之间通信实现信号量通信机制(哲学家进餐)起迄日期: 2015年12月28日- 2016年1月8日指导教师:何志英2015 年12月25日1需求分析1.1小组的拿到的任务是:设计内容:(1) 实现管道通信,要求见P183习题(3)。
(2) 实现信号量通信机制,要求见P191习题(3)。
(3) 实现消息缓冲通信机制,要求见P197习题。
(4) 实现共享内存区通信机制,要求见P201习题(2)。
要求:(1) 用Linux中进程控制系统调用函数来创建进程(线程)。
(2) 输出进程通信时同步的说明信息。
1.2小组分工我拿到的题目是:(2) 实现信号量通信机制,要求见P191习题(3)。
1.3题目的要求如下:1.3.1.哲学家进餐问题描述:设有5个哲学家,共享一张放有5把椅子和5把叉子的圆桌,每人分得一把椅子。
哲学家们在肚子饥饿时才试图分两次从两边捡起两把叉子就餐。
条件:1.每个人只有拿到两把叉子时,哲学家才能吃饭2.如果叉子已在他人手上,则哲学家必须等到他人吃完后才能拿起叉子3.任性的哲学家在自己未拿到两把叉子吃饭之前,绝不放下自己手中的叉子1.3.2问题:1.什么情况下5个哲学家全部都吃不上饭?答:当5个哲学家每人手中都拿到了1把叉子(共5把),即不肯放下自己手中的叉子又想要得到左右邻居的叉子时,每个哲学家永远拿不到两把叉子,所有哲学家都在等待另一把叉子,就会导致这5个哲学家谁都吃不上饭。
也就是产生死锁后的情况。
2.编程实现没有人饿死(永远拿不到两个叉子)的算法。
答:程序请看代码实现。
分析:没有人饿死,就是不允许出现死锁的情况(5个哲学家每人1把叉子)1.3.3解决死锁的方法有三种:1.至多允许四位哲学家同时去拿左边的叉子,最终保证至少有一位哲学家能够进餐,并且在用毕时能释放出他用过的两只叉子,从而使更多哲学家能够进餐;2.规定当哲学家的左右两只叉子均可用时,才允许他拿起叉子进餐;3.规定奇数号的哲学家先拿他左边的叉子,然后再去拿他右边的叉子,而偶数号哲学家则相反。
五位哲学家都先竞争奇数号叉子,获得后再竞争偶数号叉子,最终总有一位哲学家会因为获得两只叉子而进餐。
1.3.4我采用的解决死锁问题的方法我采用的解决死锁的方法是第二种,即在哲学家拿起叉子前先判断他左右邻居的情况,只要左右邻居中有一位正在进餐(叉子已经被邻居拿到,邻居进餐结束前自己无法获得其叉子),就不允许其拿起叉子进餐,这就可以预防死锁的情况发生。
1.4软件需要完成的功能:按照题目要求,需要调用Linux操作系统函数使用信号量机制完成对哲学家进餐问题的求解,要求所有哲学家都能吃到食物,并且要防止哲学家在竞争叉子过程发生死锁。
程序应该包含如下功能:1.哲学家思考功能:哲学家在进餐前和进餐后处于思考状态;2.哲学家拿起叉子动能:哲学家进餐前需要拿起叉子,在这个过程中可能发生死锁,所以要在这个功能中编写防止死锁的方法;3.哲学家进餐功能:哲学家拿起叉子后开始进餐;4.哲学家放下叉子功能:哲学家用餐完毕,放下叉子,并通知其左右邻居;5.执行P、V操作功能:由于要使用信号量机制,肯定会涉及到P、V操作6.创建工作环境功能:包括建立共享内存区、连接进程和共享内存区、创建并初始化信号量集、创建子进程模拟5个哲学家等。
1.5软件设计的目的:完成对哲学家进餐问题的求解,解决死锁问题。
1.6最终成果:最终要提交的成果是:说明书、源程序(cpp 文件)2总体设计2.1程序模块结构图:图1 哲学家进餐问题程序模块结构图2.2程序流程图2.2.1 总体流程图图2 总体程序流程图2.2.2哲学家进餐问题解决方案流程图图3 哲学家进餐问题解决方案流程图3.详细设计3.1 包含必要的头文件由于要调用Linux系统函数,所以要导入必要的头文件,需要导入的头文件如下:3.2所有用到的常量、全局变量及宏定义3.3联合体semun的定义联合体semun用于在对信号量设置和修改值的时候作为semctl函数的最后一个参数。
3.4创建并初始化工作环境模块3.4.1涉及到的Linux系统函数在这个模块中,涉及到很多Linux系统函数的调用,以下是这些重要函数的解释:(1)shmget函数说明:函数原型:int shmget(key_t key, size_t size, int shmflg)函数作用:得到一个共享内存标识符或创建一个共享内存对象并返回共享内存标识符。
参数含义:key:0(IPC_PRIVATE):会建立新共享内存对象大于0的32位整数:视参数shmflg 来确定操作。
size:大于0的整数:新建的共享内存大小,以字节为单位0:只获取共享内存时指定为0 shmflg:0:取共享内存标识符,若不存在则函数会报错IPC_CREAT:当shmflg&IPC_CREAT为真时,如果内核中不存在键值与key相等的共享内存,则新建一个共享内存;如果存在这样的共享内存,返回此共享内存的标识符IPC_CREAT|IPC_EXCL:如果内核中不存在键值与key相等的共享内存,则新建一个共享内存;如果存在这样的共享内存则报错返回值:成功:返回共享内存的标识符出错:-1,错误原因存于error中(2)shmat函数说明:函数原型:void *shmat(int shmid, const void *shmaddr, int shmflg)函数作用:连接共享内存标识符为shmid的共享内存,连接成功后把共享内存区对象映射到调用进程的地址空间,随后可像本地空间一样访问参数含义:shmid 共享内存标识符shmaddr 指定共享内存出现在进程内存地址的什么位置,直接指定为NULL让内核自己决定一个合适的地址位置shmflg SHM_RDONLY:为只读模式,其他为读写模式返回值:成功:附加好的共享内存地址出错:-1,错误原因存于errno中(3)semget函数说明:函数原型:int semget(key_t key,int nsems,int semflg);函数作用:获取与某个键关联的信号量集标识参数含义:key:所创建或打开信号量集的键值。
nsems:创建的信号量集中的信号量的个数,该参数只在创建信号量集时有效。
semflg:调用函数的操作类型返回值:成功返回信号量集的IPC标识符,失败返回-1(4)信号量操作模板sem_op定义:struct sembuf{unsigned short sem_num;short sem_op;short sem_flg;};当sem_op.sem_op为-1时表示执行P操作,sem_op为1时表示执行V操作3.4.2申请共享内存区3.4.3连接共享内存区和进程3.4.4创建信号量集并初始化信号量3.5 实现P、V操作3.5.1涉及到的Linux系统函数(1)semop函数说明:函数原型:int semop(int semid, struct sembuf *sops, unsigned nsops);函数作用:对信号量执行P、V操作参数含义:semid:信号集的识别码,可通过semget获取(semget返回值)。
sops:信号量操作模板nsops:信号操作结构的数量,恒大于或等于1返回值含义:操作结果,正常返回值为0,错误返回-13.5.2实现P操作3.5.3实现V操作3.6实现哲学家进餐问题解决方案的主要算法3.6.1涉及到的linux系统函数(1)sleep函数函数原型:sleep(unsigned long);函数作用:执行挂起一段时间注意:sleep()单位为秒3.6.2实现哲学家思考功能3.6.2实现哲学家进餐功能3.6.3实现哲学家拿起叉子功能3.6.3.1实现拿起叉子前的试探操作(防止死锁算法)3.6.3.2实现拿起叉子功能3.6.4实现放下叉子功能3.6.5将上述功能整合起来3.7将所有模块连接在一起,形成一套完整的程序为了方便最终的整合,将所有模块的整合调用放进一个单独的函数,供主函数调用,最终程序整合只需调用这个方法。
3.8编写主函数3.9编写菜单3.10运行结果使用终端编译,结果如下:4.心得体会通过本次课程设计我学到了很多,下面谈一谈我的收获:(1)团队合作方面:本次课程设计过程中由于我们分工明确,任务下达清楚,大家都知道自己该做什么,都朝着正确的方向在努力,所以收到了比较好的效果,效率也较高,这使我明白了,在以后的分工合作过程中,合理的分工和明确的任务的重要性。
(2)程序设计方面:本次课程设计过程中我遇到了很多挑战:首先是来自题目的挑战,因为自己从来没用过Linux操作系统,所以看到题目后很担心自己会完不成任务,但是最后我还是下决心从0开始,网上的Linux版本花样繁多,不知道该选择那个号,历经很多次失败后,终于成功从网上下载了Red Hat Enterprise Linux 6版本并安装成功了程序的编译环境(gcc)和运行环境(EclipseC++),并成功编译了Linux上的第一个C++程序。
这次经历使我感受到了自学能力的重要性。
在如今的环境下,IT技术更新速度飞快,所以自学能力就显得尤为重要,这次自学安装配置Linux 环境,编译自己写的源代码的过程中我感觉到Linux的用法和Mac OS X操作系统十分相似,很多操作是相通的,这也体现了知识之间是相互联系的,因为Linux和Mac OS X操作系统使用的都是UNIX内核,所以有所相似很正常。
其次是来自技术方面的挑战,很多之前在windows上使用的语句在linux下也发生了改变,导致我在做菜单的时候很多操作都不起作用,这提醒了我以后要注意程序的可移植性。
这次课设对我的帮助很大,今后我会再接再厉,努力做好每份程序。