零点起飞学Linux C之进程间通信
- 格式:ppt
- 大小:2.56 MB
- 文档页数:27
linux系统进程间通信的方式
Linux系统进程间通信的方式有多种,其中比较常见的有管道、消息队列、信号量、共享内存和套接字等。
1. 管道:管道是一种半双工的通信方式,其本质是一块内存缓冲区。
它分为匿名管道和命名管道,匿名管道只能用于父子进程之间的通信,而命名管道则可以用于任意两个进程之间的通信。
2. 消息队列:消息队列是一种通过内核实现的进程间通信机制,其可以实现多对多的进程通信。
消息队列可以设置消息的优先级和大小,发送方通过消息队列发送消息,接收方则通过读取消息队列的方式获取消息。
3. 信号量:信号量是一种用于同步多进程共享资源的机制。
它可以用来解决多个进程同时访问共享资源时所产生的竞争问题。
通过信号量机制,进程可以申请资源、释放资源以及等待资源。
4. 共享内存:共享内存是一种高效的进程间通信方式,它允许多个进程共享同一块物理内存空间。
多个进程可以直接访问这块内存,从而实现进程间数据的快速传递。
5. 套接字:套接字是一种跨网络的进程间通信方式,它可以实现不同主机上的进程之间的通信。
套接字可以用于实现客户端和服务器的通信,也可以用于实现进程之间的通信。
总的来说,不同的进程间通信方式有不同的应用场景,开发者需要根据实际的需求选择合适的进程间通信方式。
- 1 -。
进程间通信之:Linux下进程间通信概述8.1Linux 下进程间通信概述在上一章中,读者已经知道了进程是一个程序的一次执行。
这里所说的进程一般是指运行在用户态的进程,而由于处于用户态的不同进程之间是彼此隔离的,就像处于不同城市的人们,它们必须通过某种方式来进行通信,例如人们现在广泛使用的手机等方式。
本章就是讲述如何建立这些不同的通话方式,就像人们有多种通信方式一样。
Linux 下的进程通信手段基本上是从UNIX 平台上的进程通信手段继承而来的。
而对UNIX 发展做出重大贡献的两大主力ATT 的贝尔实验室及BSD(加州大学伯克利分校的伯克利软件发布中心)在进程间的通信方面的侧重点有所不同。
前者是对UNIX 早期的进程间通信手段进行了系统的改进和扩充,形成了“systemVIPC”,其通信进程主要局限在单个计算机内;后者则跳过了该限制,形成了基于套接口(socket)的进程间通信机制。
而Linux 则把两者的优势都继承了下来,如图8.1 所示。
图8.1 进程间通信发展历程n UNIX 进程间通信(IPC)方式包括管道、FIFO 以及信号。
n SystemV 进程间通信(IPC)包括SystemV 消息队列、SystemV 信号量以及SystemV 共享内存区。
n Posix 进程间通信(IPC)包括Posix 消息队列、Posix 信号量以及Posix 共享内存区。
现在在Linux 中使用较多的进程间通信方式主要有以下几种。
(1)管道(Pipe)及有名管道(namedpipe):管道可用于具有亲缘关系进程间的通信,有名管道,除具有管道所具有的功能外,它还允许无亲缘关系进。
进程间通信的几种方法进程间通信是计算机系统中一种非常常见的需求,它允许多个进程在不同的地址空间中共享资源,实现信息的共享以及通信。
在计算机系统中,进程间通信的方法会根据使用的网络类型以及网络的连接有所不同。
对于进程间通信的方法,一般可以分为以下几种:(一)共享内存共享内存是一种最简单的进程间通信的方式,也是当今使用最为普遍的进程间通信方法。
在此方法中,多个进程可以访问共享内存区域,这样它们就可以直接在内存中进行通信,而且支持多个进程同时读取和写入内存中的数据,能满足多样化的通信需求,从而提高了系统的效率。
但是,由于这种方法不能实现两个进程之间的“双向”通信,因此它只能适用于一些特定的应用场景,而不能满足一般的进程间通信需求。
(二)消息传递消息传递是进程之间通信的常见方法,它允许两个进程之间进行双向通信,同时还能可靠地传输数据。
在消息传递中,多个进程可以通过将自己的传输内容发送到指定的消息服务器来实现进程间通信。
消息服务器会将这些内容发送到另一个进程,以便双方进行通信。
简单的消息传递本质上是一种客户端/服务器架构,而处理多个进程之间的通信时,可以使用一种名为“发布/订阅”的模型。
在这种模型中,发送者会将消息(即发布)发布到消息服务器上,而接收者(即订阅)可以订阅消息服务器上的那些发布消息。
(三)管道(PIPES)管道是另一种常用的进程间通信模式,它可以实现进程间的双向通信。
在管道模式中,多个进程共享一个双向管道,它们可以在这个双向管道上进行双向通信,也就是说,管道的一端可以用来发送数据,另一端可以用来接收数据。
与消息传递不同,管道不需要使用额外的服务器,因此它可以更快地传输数据,但是它也有很大的局限性,无法跨越网络,仅限于同一台机器上的多个进程之间的通信。
(四)信号量信号量是一种重要的进程间通信机制,它可以用来实现同步和互斥操作,使多个进程都能够按照规定的方式来完成工作,从而实现协作和通信。
信号量原理是通过一个数值来控制多个进程对共享资源的访问,当这个数值为正时,它允许多个进程访问共享资源,当这个数值为0时,它就不允许多个进程访问共享资源。
深入理解操作系统中的进程间通信机制进程间通信(Inter-Process Communication,IPC)是操作系统中实现不同进程之间数据传输、共享资源、协同工作的一种机制。
在多进程环境下,各个进程相互独立运行,因此需要一种机制来实现它们之间的通信与协调。
本文将深入探讨进程间通信的概念、分类以及常用的实现方式。
一、进程间通信的概念进程间通信是指在操作系统中,不同进程之间通过一定的方法来交换数据和信息的过程。
它是为了满足进程之间资源共享、信息传递、任务协作等需求而设计的。
通过进程间通信,进程可以相互发送数据、接收数据,实现数据共享、同步、互斥等功能。
二、进程间通信的分类根据通信时是否需要借助操作系统来实现,进程间通信可以分为以下两类:1.隐式通信隐式通信是指不需要借助操作系统提供的特殊通信机制,而是通过共享的文件、数据库、内存等资源来实现进程之间的数据交换。
这种通信方式通常适合于处于同一主机上的进程通信,无需操作系统进行干预。
2.显式通信显式通信是指需要借助操作系统提供的通信机制来实现进程间通信。
其中常见的通信机制包括管道、消息队列、信号量、共享内存等。
这些通信机制是操作系统提供的API,用于实现进程间数据传输和共享资源。
三、常用的进程间通信方式在显式通信中,有多种方式可以实现进程间通信。
下面介绍几种常用的方式:1.管道(Pipe)管道是一种半双工的通信方式,用于在两个进程之间传递数据。
它基于文件描述符实现,包括有名管道和无名管道。
有名管道可以在不相关的进程之间进行通信,而无名管道仅用于相关进程之间的通信。
2.消息队列(Message Queue)消息队列是一种可以在不同进程间传递、保存消息的机制。
它采用先进先出的方式,保证消息的有序发送和接收。
通过消息队列,进程可以发送和接收各种类型的消息,实现数据传递和同步。
3.信号量(Semaphore)信号量是一种用于进程间同步和互斥的机制。
它通常用于解决多个进程之间对共享资源的访问问题。
linux进程间的通信(C):共享内存⼀、共享内存介绍共享内存是三个IPC(Inter-Process Communication)机制中的⼀个。
它允许两个不相关的进程访问同⼀个逻辑内存。
共享内存是在两个正在进⾏的进程之间传递数据的⼀种⾮常有效的⽅式。
⼤多数的共享内存的实现,都把由不同进程之间共享的内存安排为同⼀段物理内存。
共享内存是由IPC为进程创建⼀个特殊的地址范围,它将出现在该进程的地址空间中。
其他进程可以将同⼀段共享内存连接它们⾃⼰的地址空间中。
所有进程都可以访问共享内存中的地址,就好像它们是由malloc分配的⼀样。
如果某个进程向共享内存写⼊了数据,所做的改动将⽴刻被可以访问同⼀段共享内存的任何其他进程看到。
⼆、共享内存的同步共享内存为在多个进程之间共享和传递数据提供了⼀种有效的⽅式。
但是它并未提供同步机制,所以我们通常需要⽤其他的机制来同步对共享内存的访问。
我们通常是⽤共享内存来提供对⼤块内存区域的有效访问,同时通过传递⼩消息来同步对该内存的访问。
在第⼀个进程结束对共享内存的写操作之前,并⽆⾃动的机制可以阻⽌第⼆个进程开始对它进⾏读取。
对共享内存访问的同步控制必须由程序员来负责。
下图显⽰了共享内存是如何共存的:图中的箭头显⽰了每个进程的逻辑地址空间到可⽤物理内存的映射关系。
三、共享内存使⽤的函数1. #include <sys/shm.h>2.3. int shmget(key_t key, size_t size, int shmflg);4. void *shmat(int shm_id, const void *shm_addr, int shmflg);5. int shmdt(const void *shm_addr);6. int shmctl(int shm_id, int cmd, struct shmid_ds *buf);1. shmget函数该函数⽤来创建共享内存:1. int shmget(key_t key, size_t size, int shmflg);参数:key : 和信号量⼀样,程序需要提供⼀个参数key,它有效地为共享内存段命名。
Linux下进程间通信--共享内存:最快的进程间通信⽅式共享内存:⼀、概念:共享内存可以说是最有⽤的进程间通信⽅式,也是最快的IPC形式。
两个不同进程A、B共享内存的意思是,同⼀块物理内存被映射到进程A、B各⾃的进程地址空间。
进程A可以即时看到进程B对共享内存中数据的更新,反之亦然。
由于多个进程共享同⼀块内存区域,必然需要某种同步机制,互斥锁和信号量都可以。
采⽤共享内存通信的⼀个显⽽易见的好处是效率⾼,因为进程可以直接读写内存,⽽不需要任何数据的拷贝。
对于像管道和消息队列等通信⽅式,则需要在内核和⽤户空间进⾏四次的数据拷贝,⽽共享内存则只拷贝两次数据[1]:1.⼀次从输⼊⽂件到共享内存区,2.另⼀次从共享内存区到输出⽂件。
实际上,进程之间在共享内存时,并不总是读写少量数据后就解除映射,有新的通信时,再重新建⽴共享内存区域。
⽽是保持共享区域,直到通信完毕为⽌,这样,数据内容⼀直保存在共享内存中,并没有写回⽂件。
共享内存中的内容往往是在解除映射时才写回⽂件的。
因此,采⽤共享内存的通信⽅式效率是⾮常⾼的。
⼆、相关函数:与信号量⼀样,在Linux中也提供了⼀组函数接⼝⽤于使⽤共享内存,⽽且使⽤共享共存的接⼝还与信号量的⾮常相似,⽽且⽐使⽤信号量的接⼝来得简单。
它们声明在头⽂件 sys/shm.h中。
1、shmget函数该函数⽤来创建共享内存,它的原型为:int shmget(key_t key, size_t size, int shmflg);1.第⼀个参数,与信号量的semget函数⼀样,程序需要提供⼀个参数key(⾮0整数),它有效地为共享内存段命名。
shmget函数成功时返回⼀个与key相关的共享内存标识符(⾮负整数),⽤于后续的共享内存函数。
调⽤失败返回-1.不相关的进程可以通过该函数的返回值访问同⼀共享内存,它代表程序可能要使⽤的某个资源,程序对所有共享内存的访问都是间接的,程序先通过调⽤shmget函数并提供⼀个键,再由系统⽣成⼀个相应的共享内存标识符(shmget函数的返回值),只有shmget函数才直接使⽤信号量键,所有其他的信号量函数使⽤由semget函数返回的信号量标识符。