“角的平分线的性质”第1课时教学设计
- 格式:pdf
- 大小:172.40 KB
- 文档页数:2
12.3角的平分线的性质第1课时角平分线性质一、新课导入1.导入课题:投影教材第48页开头的“思考”中的文字和图形,让学生说明道理后提出问题:你能从“思考”中得到的启示通过运用尺规作一个角的平分线吗?2.学习目标:(1)学会角平分线的画法.(2)探究并认知角平分线的性质.(3)熟练地运用角平分线的性质解决实际问题.3.学习重、难点:重点:角的平分线的性质.难点:运用角平分线的性质解决相关的问题.二、分层学习1.自学指导:(1)自学内容:探究“角平分线的作法”.(2)自学时间:5分钟.(3)自学方法:阅读、作图、总结、归纳.(4)自学参考提纲:①投影中AE平分∠DAB是由什么方法得到∠DAE=∠BAE?证明△ABC≌△ADC(SSS).②由平分角的仪器尝试画∠AOB的平分线.③由导入得到作角平分线的方法:a.作法(1)能得到OM=ON;b.作法(2)能得到MC=NC;c.由SSS方法判定△OMC≌△ONC,得到∠MOC=∠NOC,∴OC是∠AOB的平分线;d.在作法的第二步中,去掉“大于12MN的长”这个条件行吗?不行.2.自学:学生结合自学指导进行探究式学习.3.助学:(1)师助生:①明了学情:利用角平分仪悟出画角平分线的方法,由实物抽象出几何图形,应用了数学里面的建模思想,部分学生理解起来还存在一定的困难.②差异指导: a.引导学生理解角平分仪平分角的道理是证明两角相等,回忆前面证明角相等的方法是证明三角形全等.b.在尺规作图的过程中引导学生运用三角形三边关系定理,理解“大于12MN的长”这个条件.(2)生助生:学生之间相互交流帮助.4.强化:(1)让学生口述角平分线的作法步骤.(2)尝试练习:作出△ABC的三条角平分线(保留作图痕迹,写出作法).(3)练习:平分平角∠AOB,通过作角平分线得到射线OC,然后反向延长OC得到直线CD,直线CD 与直线AB存在什么样的位置关系?互相垂直.(4)给一张三角形纸片,你能不借助任何工具找到某一个角的平分线吗?能,将这个三角形沿过一个顶点的线折叠,使在该顶点的角的两边重合,则该线就是这个角的平分线.1.自学指导:(1)自学内容:探究“角平分线上的点到角的两边的距离相等”.(2)自学时间:5分钟.(3)学习方法:先通过折纸画图、测量得出角平分线的性质,再探究几何证明方法.(4)探究提纲:①如图,OC平分∠AOB,点P是OC上任一点,P点到OA、OB的距离怎么找?过点P分别向OA、OB作垂线,P点与垂足之间的线段的长就是P点到OA、OB的距离.②这两个距离可采用什么方法得到它们的大小关系?证三角形全等,然后得出这两个距离相等.③用你采用的方法,得到了什么结论?结论:角的平分线上的点到角的两边的距离相等..④将性质用图形、几何语言表示(填写下表):图形:已知事项:已知∠AOB,OC是∠AOB的平分线,P为OC上一点,且PD⊥OA,PE⊥OB,垂足分别为D、E.由已知事项推出的事项:PD=PE⑤根据探究的内容,写出已知、求证及证明结论的过程.已知:∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D、E.求证:PD=PE.证明:∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°.在△PDO和△PEO中,∠PDO=∠PEO,∠AOC=∠BOC,OP=OP,∴△PDO≌△PEO(AAS),∴PD=PE.⑥由上述证明过程,总结证明一个几何命题的一般步骤:1.明确命题中的已知和求证;2.根据题意,画出图形,并用符号表示已知和求证;3.经过分析,找出由已知推出要证的结论的途径,写出证明过程.2.自学:学生可结合自学指导探究式学习.3.助学:(1)师助生:①明了学情:通过第二层次的学习,学生能够理解角平分线的性质定理,但在证明过程中,大部分学生不习惯把文字语言改成几何语言,教师应了解学生在几何表述中存在的问题.②差异指导:得出结论之后,要通过证明,才能确定命题的正确性,引导学生学会证明文字语言描述的几何题的步骤.(2)生助生:学生之间相互交流帮助.4.强化:(1)用文字及几何语言表述定理;(2)证明题的基本步骤.三、评价1.学生的自我评价:学生相互交谈自己的收获和学习困惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果及存在的不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本节课由于采用了动手操作、直观模型的观察以及讨论交流等教学方法.从而有效地增强了学生对角以及角的平分线的感性认识,提高了学生对新知识的理解与感性.所以本节课的教学效果较好,学生对所学的新知识掌握较好,达到了教学的目的,不是之处:少数学生在尺规作图上还存在问题,需要在今后的教学与作业中进一步加强巩固和训练.一、基础巩固(第1、2、3题每题10分,第4题20分,共50分)1.角平分线的性质定理:角平分线上的点到角的两边的距离相等.2.如图,OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D.下列结论中错误的是 (D)A.PC=PDB.OC=ODC.∠CPO=∠DPOD.OC=PO第2题图第3题图第4题图3.如图,△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB于E,若AB=10cm,则△DBE的周长等于(A)A.10cmB.8cmC.6cmD.9cm4.如图,P是∠AOB角平分线上的点,C、D分别是OA、OB上的点,且PC=PD,PE⊥OA于E,PF⊥OB于F,求证:CE=DF.证明:∵OP是∠AOB的平分线,PE⊥OA,PF⊥OB,∴∠PEC=∠PFD=90°,PE=PF,在Rt△PEC 和Rt△PFD中,PC=PD,PE=PF,∴Rt△PEC≌Rt△PFD(HL),∴CE=DF.二、综合应用(第5题10分,第6题20分,共30分)5.如图,在△ABC中,AB=AC,AD是∠BAC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E、F,则下列四个结论:①AD上任意一点到点C、点B的距离相等;②AD上任意一点到AB,AC的距离相等;③BD=CD,AD⊥BC;④∠BDE=∠CDF.其中,正确的个数是(D)A.1个B.2个C.3个D.4个第5题图第6题图6.如图,在△ABC中,AD为∠BAC的平分线,∠B=90°,DF⊥AC,垂足为F,DE=DC,求证:BE=CF.证明:∵DF⊥AC,∴∠DFA=∠B=90°.∵AD为∠BAC的平分线,∴DB=DF.在Rt△BDE和Rt △FDC中,DE=CD,DB=DF,∴Rt△BDE≌Rt△FDC(HL).∴BE=CF.三、拓展延伸(20分)7.如图,点D、B分别在∠MAN的两边上,C是∠MAN内一点,AB=AD,BC=CD,CE⊥AM于E,CF⊥AN于F.求证:CE =CF.证明:在△ABC和△ADC中,AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC(SSS).∴∠DAC=∠BAC.∴AC平分∠MAN.∵CE⊥AM,CF⊥AN,∴CE=CF.人生格言:我们要知道别人能做到的事,只要自己有恒心,坚持努力,就没有什么事是做不到的。
《角平分线的性质》第一课时教学教案《角平分线的性质》第一课时教学教案教学目标:一、知识储备点:用尺规作角的平分线的方法二、能力培养点:①应用三角形全等的知识,解释角的平分线的作法原理;②会用尺规作一个已知角的平分线三、情感体验点在探究角的平分线作法的过程中,培养探究兴趣,增强解决问题的信心,在利用尺规作图的过程中,培养学生动手操作能力和探究精神。
教学设想一、教学重点:利用尺规作已知角的平分线。
二、教学难点:角的平分线的作图方法的提炼。
教学方法:在教师的引导下,以学生自主探究,小组合作交流的方式展开教学活动,探索用尺规作一个角的平分线的方法。
学法引导1、通过对以前角平分线画法的回忆,在条件不允许的情况下,探索新的作法。
2、通过老师的引导,体会用尺规作任意角的平分线的方法。
教具准备:1、角尺2、平分角的仪器3、直角三角尺是一个任意角,在边OA,,移动角尺,使角尺两边相同的刻度分别与重合。
过角尺顶点C的射线的平分线。
为什么?1、以O为圆心,以适当的长为半径画弧,于M,交OB于N;、分别以M、N为圆心,以大于画弧,两弧在∠AOB的内部交于点生:它也是利用“SSS”证得三角形全等,从而得到8角平分线的性质1 用尺规作一个角的平分线⎪⎩⎪⎨⎧===OC OC CN CM ON OM△OMC ≌△ONC (SSS )∠MOC =∠NOC作法:①_________________ _________________②__________________________________③_________________、角的平分仪9。
武威第二十三中学集体备课教学设计时间: 总第 课时 备课组:数学课 题12.3 角的平分线的性质(1)授课年级 八年级 周次 4教学目标知识与能力 初步掌握角的平分线的性质定理 过程与方法经历角的平分线性质的发现过程,情感态度、价值观 能运用角的平分线性质定理解决简单的几何问题教学重点 学习重点:掌握角的平分线的性质定理. 教学难点 学习难点:角平分线定理的应用 教学方法 先学后教,当堂达标 授课类型新授教学准备 三角尺、课件教学过程设计备注【复习回顾】1、全等三角形的性质有哪些?2、全等三角形的判定有哪些? 【新课探究】 一、出示自学目标1、初步掌握角的平分线的性质定理2、能运用角的平分线性质定理解决简单的几何问题二、自学课本48~49页,完成以下题目:1、从一个角的顶点引出一条 ,把这个角分成 个相等的角,这条 叫做这个角的角平分线。
2.如右图,AB =AD ,BC =DC , 沿着A 、C 画一条射线AE ,AE 就是∠BAD 的角平分线,你知道为什么吗3.根据角平分仪的制作原理,如何用尺规作角的平分线?自学课本48页后,思考为什么要用大于21MN 的长为半径画弧?4.OC 是∠AOB 的平分线,点P 是射线OC 上的任意一点, 操作测量:取点P 的三个不同的位置,分别过点P 作PD ⊥OA ,PE ⊥OB,点D 、E 为垂足,测量PD 、PE 的长.将三次数据填入下表:观察测量结果,猜想线段PD 与PE 的大小关系,写出结论BAO EP DBDCA(第3题)(第2题)PD PE 第一次 第二次 第三次5、命题:角平分线上的点到这个角的两边距离相等. 题设:一个点在一个角的平分线上 结论:这个点到这个角的两边的距离相等6、用数学语言来表述角的平分线的性质定理: 如右图,∵OC 是∠AOB 的平分线,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别为D ,E∴7、证明一个几何命题的步骤有那些? (1)明确命题中的 和 。
湘教版八下数学1.4角平分线的性质第1课时角平分线的性质和判定教学设计一. 教材分析湘教版八下数学第1.4节角平分线的性质,主要讲述了角平分线的性质和判定。
本节课的内容是学生学习几何知识的重要组成部分,也是学生进一步学习圆的性质和线段平分线性质的基础。
通过本节课的学习,学生可以掌握角平分线的性质和判定方法,为以后的学习打下坚实的基础。
二. 学情分析学生在学习本节课之前,已经掌握了角的定义、角的计算等基本知识,同时也学习了线段的性质和判定。
但是,对于角平分线的性质和判定,学生可能还比较陌生。
因此,在教学过程中,教师需要引导学生通过观察、思考、操作等活动,自主探索角平分线的性质和判定方法,从而达到理解掌握的目的。
三. 教学目标1.知识与技能:学生能够理解角平分线的性质,掌握角平分线的判定方法。
2.过程与方法:学生通过观察、操作、思考等活动,培养自己的逻辑思维能力和空间想象力。
3.情感态度与价值观:学生通过对角平分线性质的学习,增强对数学的兴趣和好奇心,培养自己的探索精神。
四. 教学重难点1.重点:角平分线的性质。
2.难点:角平分线的判定方法。
五. 教学方法采用问题驱动法、引导发现法、合作交流法等教学方法,引导学生通过观察、操作、思考等活动,自主探索角平分线的性质和判定方法。
六. 教学准备教师准备多媒体教学课件、角平分线的模型、练习题等教学资源。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾已学过的角和线段的知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过多媒体课件呈现角平分线的性质和判定方法,引导学生观察、思考,引导学生发现角平分线的性质和判定方法。
3.操练(10分钟)教师学生进行小组合作交流,让学生通过实际操作,进一步理解和掌握角平分线的性质和判定方法。
4.巩固(10分钟)教师通过出示一些练习题,让学生独立完成,巩固所学知识。
5.拓展(10分钟)教师出示一些拓展题,引导学生思考,进一步深化对角平分线性质和判定方法的理解。
人教版数学八年级上册《角平分线的性质(1)》教学设计一. 教材分析人教版数学八年级上册《角平分线的性质(1)》这一节的内容主要包括角平分线的定义、性质及其在几何中的应用。
学生通过学习这一节内容,可以进一步了解角的平分线与角的大小、角的边长之间的关系,为后续学习三角形、多边形等几何知识打下基础。
二. 学情分析学生在学习这一节内容之前,已经学习了角的概念、垂线的性质等知识,具备了一定的几何基础。
但部分学生对角平分线的理解可能仍存在困难,因此在教学过程中需要加强对角平分线概念的讲解,并通过大量的实例让学生加深对角平分线的认识。
三. 教学目标1.了解角平分线的定义及其性质;2.学会运用角平分线解决一些简单的几何问题;3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.角平分线的定义及其性质;2.角平分线在几何中的应用。
五. 教学方法1.采用讲解法,让学生理解角平分线的定义和性质;2.运用示例法,让学生通过观察、分析、归纳角平分线的性质;3.采用练习法,让学生在实践中运用角平分线解决几何问题;4.运用小组合作法,让学生在讨论中加深对角平分线性质的理解。
六. 教学准备1.准备相关的教学课件、图片、几何模型等;2.准备一些有关角平分线的练习题。
七. 教学过程1.导入(5分钟)通过复习角的概念、垂线的性质等知识,引导学生进入新课的学习。
2.呈现(10分钟)利用课件、图片等展示角平分线的定义和性质,让学生直观地了解角平分线。
3.操练(10分钟)让学生通过观察、分析、归纳角平分线的性质,并尝试解答一些有关角平分线的问题。
4.巩固(10分钟)让学生分组讨论,运用角平分线的性质解决一些几何问题,加深对角平分线性质的理解。
5.拓展(5分钟)引导学生思考:角平分线在实际生活中有哪些应用?让学生联系生活实际,拓宽思路。
6.小结(5分钟)对本节课的内容进行总结,强化学生对角平分线性质的记忆。
7.家庭作业(5分钟)布置一些有关角平分线的练习题,让学生课后巩固所学知识。
教学设计(一)创设情景,提出问题如图是小明制作的风筝,AB=AD,BC=DC.不用度量,就知道AC是∠DAB的角平分线,你知道其中的道理吗?师生活动:学生根据三角形全等的知识口述其中的道理,从而引入新课.(二)合作探究,形成知识问题1:在练习本上画一个角,怎样得到这个角的平分线?师生活动:学生可能用量角器,也可能用折纸的方法动手操作,然后回答问题.追问1:你能评价这些方法吗?在生产生活中,这些方法是否可行呢?师生活动:学生分析并回答──利用量角器比较方便,但是有误差;利用折叠的方法比较简捷,但是只限于可以折叠的材质,若在木板、钢板等材料上操作,此方法就不可行了.追问2:下图是一个平分角的仪器,其中AB =AD,BC =DC,将点A 放在角的顶点,AB 和AD 沿着角的两边放下,沿AC 画一条射线AE,射线AE 就是∠DAB 的平分线.你能说明它的道理吗?师生活动:教师启发学生将实际问题抽象为数学模型,并运用全等三角形的知识解释平分角的仪器的工作原理.小组交流完成教学过程教学环节教学活动评估要点追问3:从利用平分角的仪器画角的平分线中,你受到哪些启发?如何利用直尺和圆规作一个角的平分线?师生活动:师生分别在黑板和练习本上利用直尺和圆规作∠AOB的平分线.教师与学生共同归纳,得出利用尺规作角的平分线的具本方法.如果学生没有思路,教师可作如下提示:1.在用平分角的仪器画角的平分线时,把仪器放在角的两边,仪器的顶点与角的顶点重合,且仪器的两边相等(AB=CD),怎样在作图中体现这个过程呢?2.在平分角的仪器中,BC=DC,怎样在作图中体现这个过程呢?追问4:你能说明为什么射线OC是∠AOB的平分线吗?师生活动:学生用三角形全等进行证明,明确作图的理论依据.【设计意图】让学生运用全等三角形的知识解释平分角的仪器的工作原理,体会数学的应用价值,同时从中获得启发,用尺规作角的平分线,增强作图技能.最后让学生在简单推理的过程中体会作法的合理性.问题2 利用尺规我们可以作一个角的平分线,那么角的平分线有什么性质呢?首先思考下面的问题:1.操作测量:任意作一个角∠AOB,作出∠AOB的平分线OC,在OC上任取一点P,取点P的三个不同的位置,分别过点P作PD⊥OA,PE ⊥OB,点D、E 为垂足,测量PD、PE的长.将三次数据填入下表:此处的思考内容,重在发展学生的发散思维,肯定学生的闪光点2.观察测量结果,猜想线段PD与PE的大小关系,写出结论:____________ 3.通过以上测量,你发现了角的平分线的什么性质?师生活动:学生动手操作,独立思考,然后汇报自己的发现.学生互相补充,教师指导,一起猜想出角的平分线的性质.追问1:通过动手实验、观察比较,我们猜想“角的平分线上的点到角的两边的距离相等”,你能通过严格的逻辑推理证明这个结论吗?1.明确命题中的已知和求证.已知:一个点在一个角的平分线上.结论:这个点到这个角两边的距离相等.(如果一个点在一个角的平分线上,那么这个点到这个角两边的距离相等)2.根据题意,画出图形,并用数学符号表示已知和求证.已知:如图,∠AOC=∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E.求证:PD=PE.3.经过分析,找出由已知推出求证的途径,写出证明过程.证明:∵PD⊥OA,PE⊥OB (已知)∴∠PDO= ∠PEO=90°(垂直的定义)∴在△PDO和△PEO中∴△PDO ≌△PEO(AAS)∴PD=PE(全等三角形的对应边相等)符号语言:∵∠AOC=∠BOC,PD⊥OA,PE⊥OB,垂足分别为点D、E,∴PD=PE.师生活动:教师首先引导学生分析命题的条件和结论.如果学生感到困难,可以让学生将命题改写成“如果……那么……”的形式,然后引导学生逐字分析结论,进而发现并找出结论中的隐含条件(垂直).最后让学生画出图形,用符号语言写出已知和求证,并独立完成证明过程.学生动手操作,独立思考,然后汇报自己的发现.学生互相补充,教师指导,追问2:由角的平分线的性质的证明过程,你能概括出证明几何命题的一般步骤吗?师生活动:师生共同概括证明几何命题的一般步聚:1.明确命题中的已知和求证.2.根据题意,画出图形,并用数学符号表示已知和求证.3.经过分析,找出由已知推出求证的途径,写出证明过程.追问3:角的平分线的性质的作用是什么?师生活动:学生回答,角的平分线的性质的作用主要是用于判断和证明两条线段相等,与以前的方法相比,运用此性质不需要先证两个三角形全等.【设计意图】让学生通过实践发现、分析概括、推理证明角的平分线的性质,体会研究几何问题的基本思路.以角的平分线的性质的证明为例,让学生概括证明几何命题的一般步聚,发展他们的归纳概括能力.而反思性质,可以让学生进一步体会到证明两条线段相等时利用角的平分线的性质比先证两个三角形全等更简捷.(三)巩固提高1.下列结论一定成立的是()A.如图1,OC 平分∠AOB,点P 在OC 上,D,E 分别为OA,OB 上的点,则PD =PE.B.如图2,PD⊥OA,PE⊥OB,垂足分别为点D、E,则PD=PE .C.如图3,OC 平分∠AOB,点P 在OC 上,PD⊥OA,垂足为D.若PD =3,则点P 到OB 的距离为3.图1 图2 图32.如图4,△ABC中,∠B =∠C,AD 是∠BAC 的平分线,DE⊥AB,DF ⊥AC,垂足分别为E,F.求证:EB =FC.图4师生活动:学生先独立思考,然后小组交流,派代表回答,教师适时点拨,并板演证明过程.【设计意图】通过有梯度的训练,提高学生运用角的平分线的性质解决问题的能力.板书设计性质一:角的平分线上的点到角的内部到角的两边的距离相等∵∠POA=∠POB(OP平分∠AOB)PA⊥OA、PB⊥OB∴PA=PB课后作业如图, OP 为∠AOB 内一条射线, C,D 分别为 OA ,OB 上两点,且∠PCO+∠PDO=180°, PC=PD.求证: OP 平分∠A0B.课后反思本课时重在理解掌握性质定理一,并将其灵活应用到具体的几何问题中去,一定要让学生明白应用的前提是“角平分线”,1是角平分线,2是涉及到垂直(或90度),两者缺一不可。
12.3 角的平分线的性质第1课时角平分线的性质一、教学目标(一)知识与技能1.会作已知角的平分线;2.了解角的平分线的性质,能利用三角形全等证明角的平分线的性质;3.会利用角的平分线的性质进行证明与计算.(二)过程与方法在探究作角的平分线的方法及角的平分线的性质的过程中,进一步发展学生的推理证明意识和能力.(三)情感、态度与价值观在探究作角的平分线的方法及角的平分线的性质的过程中,培养学生探究问题的兴趣、合作交流的意识、动手操作的能力与探索精神,增强解决问题的信心,获得解决问题的成功体验.二、教学重点、难点重点:角的平分线的性质的证明及应用;难点:角的平分线的性质的探究.三、教法学法三步导学的教学模式;自主探索,合作交流的学习方式.四、教与学互动设计(一)激情导课如图是小明制作的风筝,他根据AB=AD,BC=DC.不用度量,就知道AC是∠DAB的角平分线,你知道其中的道理吗?(二)民主导学1、探究一:角的平分线的作法Ⅰ、议一议问题1请你拿出准备好的角,用你自己的方法画出它的角平分线.问题2如图是一个平分角的仪器,其中AB=AD,BC=DC.将点A放在角的顶点,AB 和AD沿着角的两边放下,画一条射线AE,AE就是∠DAB的平分线.你能说明它的道理吗?问题3通过上面的探究,你有什么启发?你能用尺规作图作已知角的平分线吗?请你试着做一做,并与同伴交流.BBD 21已知:∠MAN求作:∠MAN 的角平分线.作法:(1)以A 为圆心,适当长为半径画弧,交AM 于B ,交AN 于D.(2)分别以B 、D 为圆心,大于的长为半径画弧,两弧在∠MAN 的内部交于点C.(3)画射线AC. ∴射线AC 即为所求. Ⅱ、练一练平分平角∠AOB.通过上面的步骤得到射线OC 以后,把它反向延长得到直线CD.直线CD 与直线AB 是什么关系?思考:你能总结出“过直线上一点作这条直线的垂线”的方法吗?请说明你的方法。
2、探究二:角的平分线的性质 Ⅰ、做一做如图,将∠AOB 对折,再折出一个直角三角形(使第一条折痕为斜边),然后展开.观察两次折叠形成的三条折痕,你能得出什么结论?试着证明你的结论.(1)角的平分线的性质:角的平分线上的点到角的两边的距离相等.(2)角的平分线性质的证明步骤: ① 明确命题中的已知和求证;已知:一个点在一个角的平分线上. 结论:这个点到这个角两边的距离相等.②M 根据题意,画出图形,并用数学符号表示已知和求证;已知:如图,∠AOC=∠BOC ,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别为点D 、E.求证: PD=PE.③M 经过分析,找出由已知推出求证的途径,写出证明过程.证明:∵ PD ⊥OA ,PE ⊥ OB (已知)∴ ∠PDO= ∠PEO=90°(垂直的定义)在△PDO 和△PEO 中B POACED∠PDO= ∠PEO (已证) ∠AOC= ∠BOC (已证) OP=OP (公共边) ∴ △PDO ≌ △PEO (AAS )∴ PD=PE (全等三角形的对应边相等)符号语言:∵∠AOC=∠BOC, PD ⊥OA ,PE ⊥OB ,垂足分别为点D 、E.(已知) ∴ PD=PE (角的平分线上的点到角的两边的距离相等) Ⅱ、练一练(1) 下面四个图中,点P 都在∠AOB 的平分线上,则图形_____ 中PD =PE.(2)下图中,PD ⊥OA,PE ⊥OB ,垂足分别为点D 、E ,则图中PD =PE 吗?(3)在S 区有一个贸易市场P ,它建在公路与铁路所成角的平分线上,要从P 点建两条路,一条到公路,一条到铁路,怎样修才能使路最短?它们有怎样的数量关系呢?思考:角的平分线的性质在应用时应该注意什么问题?3、角的平分线性质的应用POAB CEDP OABCEDP OAB C EDA BPOAC EDBCDB POACED公路DABC DBAE F E BADCDE PA OB C(1)如图,△ABC 中,∠C =90°,BD 平分∠ABC ,CD =3cm ,则点D 到AB 的距离为 cm .(第1题图) (第2题①图) (第2题②图)(2)变式训练,深化新知变式①,如图,△ABC 中,∠C =90°,BD 平分∠ABC ,DE ⊥AB ,垂足为点E ,AC=8cm , 则AD+DE= cm.变式②,如图,△ABC 中,∠C =90°,BD 平分∠ABC ,DE ⊥AB 于E ,F 在BC 上,AD=DF求证:CF=EA (三)检测导结1、目标检测 (本测试题共三道题,相信大家一定会做得非常棒!) (1)如图,OC 是∠AOB 的平分线,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,垂足分别是D 、E ,PD=4cm ,则PE=_____cm.(第1题图) (第2题图)(第3题图)(2)如图,点C 为直线AB 上一点,过点C 作直线MN ,使MN ⊥AB.(不写作法,保留作图痕迹,写出结论)(3)已知:如图,在△ABC 中,AD 是它的角平分线,且BD=CD ,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F.求证:EB=FC.2、请你谈谈学习这节课的收获.(四)布置作业1.必做题:习题2.思考题如图,要在S区建一个集贸市场,使它到公路、铁路距离相等,离公路与铁路交叉处500米,这个集贸市场应建在何处(在图上标出它的位置,比例尺1:20000)? (五)结束寄语严格性之于数学家,犹如道德之于人.条理清晰,因果相应,言必有据,是学习者谨记和遵循的原则. 希望每一个同学都能用聪明和智慧编织出更加精彩的人生!五、板书设计第1课时 角的平分线的性质1. 角的平分线的作法2. 角的平分线的性质:角的平分线上的点到角的两边的距离相等.3.应用已知:∠MAN 已知:如图,∠AOC=∠B OC ,点P 在OC 上,PD ⊥OA ,PE ⊥OB ,求作:∠MAN 的角平分线 垂足分别为点D 、E. 求证: PD=PE.∴ 射线AC 即为所求. 符号语言:∵∠AOC=∠BOC, PD ⊥OA,PE ⊥OB ,垂足分别为点D 、E.∴ PD=PEBPOACED六、教学反思。
《角的平分线的性质》教学设计《角的平分线的性质》教学设计精选2篇(一)教学设计:《角的平分线的性质》一、教学目标:1. 理解角的平分线的概念;2. 掌握角的平分线的性质;3. 能够应用角的平分线的性质解决相关问题。
二、教学内容:1. 角的平分线的定义;2. 角的平分线的性质;3. 角的平分线的应用。
三、教学过程:Step 1 引入新知识:1. 通过展示一张含有角及其平分线的图片,引发学生对角的平分线的兴趣和思考;2. 学生根据图片,描述角的平分线的特点。
Step 2 角的平分线的定义与性质:1. 引导学生观察,讨论两个相邻的、边相等的角之间的关系;2. 引导学生总结出“两个相邻的、边相等的角之间存在一个角的平分线”的性质;3. 学生互相交流,理解并记忆角的平分线的定义与性质。
Step 3 角的平分线的应用:1. 通过给出一些已知条件,让学生找出角的平分线;2. 学生自主解决问题,教师引导学生应用角的平分线的性质解决问题;3. 学生举例子,解决多种情况的问题。
Step 4 练习巩固:1. 教师布置角的平分线的练习题,提供多种类型的问题;2. 学生独立完成练习,教师适时给予指导和帮助;3. 学生互相交流,共同解决问题。
四、教学评价:1. 教师观察学生的学习情况和参与程度,做好记录;2. 根据学生的表现和回答问题的情况,了解学生对角的平分线的掌握程度;3. 通过学生的解决问题的方式和结果,评价学生的学习成果。
五、教学延伸:1. 可以介绍更多与角的平分线相关的性质;2. 可以引导学生进行角的平分线相关的探究性实验;3. 可以让学生设计角的平分线相关的问题,互相出题和解答。
《角的平分线的性质》教学设计精选2篇(二)教学目标:1. 了解角的概念和基本术语2. 学会如何测量角的大小3. 掌握角的度量单位和换算教学步骤:步骤一:引入通过展示一些角的图形和实际生活中的角的例子,引起学生对角的兴趣,并让学生尝试描述角的特征和表达自己对角的理解。