2019高三大一轮复习数学(文)(教师用书 课时规范训练)第三章 导数及其应用
- 格式:doc
- 大小:1.62 MB
- 文档页数:85
第三章⎪⎪⎪导数及其应用第一节 导数的概念及运算本节主要包括2个知识点: 1.导数的运算; 2.导数的几何意义.突破点(一) 导数的运算[基本知识]1.函数y =f (x )在x =x 0处的导数称函数y =f (x )在x =x 0处的瞬时变化率lim Δx →0ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx. 2.函数f (x )的导函数 称函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx为f (x )的导函数.3.基本初等函数的导数公式4.(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.[基本能力]1.判断题(1)f ′(x 0)与(f (x 0))′的计算结果相同.( ) (2)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( ) (3)f ′(x 0)是导函数f ′(x )在x =x 0处的函数值.( ) (4)⎝⎛⎭⎫sin π3′=cos π3.( ) (5)若(ln x )′=1x ,则⎝⎛⎭⎫1x ′=ln x .( )(6)函数f (x )=sin(-x )的导数为f ′(x )=cos x .( ) (7)y =cos 3x 由函数y =cos u ,u =3x 复合而成.( ) 答案:(1)× (2)× (3)√ (4)× (5)× (6)× (7)√ 2.填空题(1)已知f (x )=13-8x +2x 2,f ′(x 0)=4,则x 0=________. 解析:∵f ′(x )=-8+4x ,∴f ′(x 0)=-8+4x 0=4,解得x 0=3. 答案:3(2)函数y =ln xe x 的导函数为________________.答案:y ′=1-x ln xx e x(3)已知f (x )=2sin x +x ,则f ′⎝⎛⎭⎫π4=________.解析:∵f (x )=2sin x +x ,∴f ′(x )=2cos x +1,则f ′⎝⎛⎭⎫π4=2cos π4+1=2+1. 答案:2+1[全析考法][典例] (1)函数f (x )=(x +1)2(x -3),则其导函数f ′(x )=( ) A .3x 2-2x B .3x 2-2x -5 C .3x 2-xD .3x 2-x -5(2)(2018·钦州模拟)已知函数f (x )=x ln x ,则f ′(1)+f (4)的值为( )A .1-8ln 2B .1+8ln 2C .8ln 2-1D .-8ln 2-1(3)已知函数f (x )=sin x cos φ-cos x sin φ-1(0<φ<π2),若f ′⎝⎛⎭⎫π3=1,则φ的值为( ) A.π3B.π6C.π4D.5π12[解析] (1)法一:因为f (x )=(x +1)2(x -3)=(x +1)(x +1)(x -3),所以f ′(x )=[(x +1)(x +1)]′(x -3)+(x +1)(x +1)(x -3)′=2(x +1)(x -3)+(x +1)2=3x 2-2x -5.法二:f (x )=(x +1)2(x -3)=x 3-x 2-5x -3,则f ′(x )=3x 2-2x -5.(2)因为f ′(x )=ln x +1,所以f ′(1)=0+1=1,所以f ′(1)+f (4)=1+4ln 4=1+8ln 2.故选B.(3)因为f (x )=sin x cos φ-cos x sin φ-1⎝⎛⎭⎫0<φ<π2,所以f ′(x )=cos x cos φ+sin x sin φ=cos(x -φ),因为f ′⎝⎛⎭⎫π3=1,所以cos ⎝⎛⎭⎫π3-φ=1,因为0<φ<π2,所以φ=π3,故选A. [答案] (1)B (2)B (3)A[方法技巧] 导数运算的常见形式及其求解方法[全练题点]1.下列函数中满足f (x )=f ′(x )的是( ) A .f (x )=3+x B .f (x )=-x C .f (x )=ln xD .f (x )=0解析:选D 若f (x )=0,则f ′(x )=0,从而有f (x )=f ′(x ).故选D. 2.(2018·延安模拟)设函数f (x )=ax +3,若f ′(1)=3,则a =( ) A .2 B .-2 C .3D .-3解析:选C 由题意得,f ′(x )=a ,因为f ′(1)=3,所以a =3,故选C.3.(2018·南宁模拟)设f (x )在x =x 0处可导,且li m Δx →f (x 0+3Δx )-f (x 0)Δx=1,则f ′(x 0)=( )A .1B .0C .3 D.13解析:选D 因为lim Δx →0f (x 0+3Δx )-f (x 0)Δx =1,所以lim Δx →0 ⎣⎡⎦⎤3×f (x 0+3Δx )-f (x 0)3Δx =1,即3f ′(x 0)=1,所以f ′(x 0)=13.故选D.4.(2018·桂林模拟)已知函数y =x cos x -sin x ,则其导函数y ′=( ) A .x sin x B .-x sin x C .x cos xD .-x cos x解析:选B 函数y =x cos x -sin x 的导函数y ′=cos x -x sin x -cos x =-x sin x ,故选B.5.(2018·九江一模)已知f (x )是(0,+∞)上的可导函数,且f (x )=x 3+x 2f ′(2)+2ln x ,则函数f (x )的解析式为( )A .f (x )=x 3-32x 2+2ln xB .f (x )=x 3-133x 2+2ln x C .f (x )=x 3-3x 2+2ln x D .f (x )=x 3+3x 2+2ln x解析:选B ∵f (x )=x 3+x 2f ′(2)+2ln x ,∴f ′(x )=3x 2+2xf ′(2)+2x ,令x =2,得f ′(2)=12+4f ′(2)+1,∴f ′(2)=-133,∴f (x )=x 3-133x 2+2ln x ,故选B.突破点(二) 导数的几何意义[基本知识]函数f (x )在点x 0处 的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率.相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).特别地,如果曲线y =f (x )在点(x 0,y 0)处的切线垂直于x 轴,则此时导数f ′(x 0)不存在,由切线定义可知,切线方程为x =x 0.[基本能力]1.判断题(1)曲线的切线与曲线不一定只有一个公共点.( ) (2)求曲线过点P 的切线时P 点一定是切点.( ) 答案:(1)√ (2)× 2.填空题(1)曲线y =x 3-x +3在点(1,3)处的切线方程为________. 答案:2x -y +1=0(2)已知直线y =-x +1是函数f (x )=-1a ·e x图象的切线,则实数a =________. 解析:设切点为(x 0,y 0),则f ′(x 0)=-1a ·e x 0=-1,∴e x 0=a ,又-1a ·e x 0=-x 0+1,∴x 0=2,a =e 2. 答案:e 2(3)曲线f (x )=x ln x 在点M (1,f (1))处的切线方程为________.解析:由题意,得f ′(x )=ln x +1,所以f ′(1)=ln 1+1=1,即切线的斜率为1.因为f (1)=0,所以所求切线方程为y -0=x -1,即x -y -1=0.答案:x -y -1=0[全析考法]“过点A A 必为切点,前者未必是切点.曲线在某点处的切线,若有,则只有一条;曲线过某点的切线往往不止一条.切线与曲线的公共点不一定只有一个.[例1] 已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程. [解] (1)∵f ′(x )=3x 2-8x +5, ∴f ′(2)=1,又f (2)=-2,∴曲线f (x )在点(2,f (2))处的切线方程为y -(-2)=x -2, 即x -y -4=0.(2)设切点坐标为(x 0,x 30-4x 20+5x 0-4),∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2),又切线过点(x 0,x 30-4x 20+5x 0-4),∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2),整理得(x 0-2)2(x 0-1)=0, 解得x 0=2或x 0=1,∴经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0. [方法技巧]求切线方程问题的两种类型及方法(1)求“在”曲线y =f (x )上一点P (x 0,y 0)处的切线方程:点P (x 0,y 0)为切点,切线斜率为k =f ′(x 0),有唯一的一条切线,对应的切线方程为y -y 0=f ′(x 0)(x -x 0).(2)求“过”曲线y =f (x )上一点P (x 0,y 0)的切线方程:切线经过点P ,点P 可能是切点,也可能不是切点,这样的直线可能有多条.解决问题的关键是设切点,利用“待定切点法”,即:①设切点A (x 1,y 1),则以A 为切点的切线方程为y -y 1=f ′(x 1)(x -x 1);②根据题意知点P (x 0,y 0)在切线上,点A (x 1,y 1)在曲线y =f (x )上,得到方程组⎩⎪⎨⎪⎧y 1=f (x 1),y 0-y 1=f ′(x 1)(x 0-x 1),求出切点A (x 1,y 1),代入方程y -y 1=f ′(x 1)(x -x 1),化简即得所求的切线方程.求切点坐标[例2] (2018·32P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( )A .(0,0)B .(1,-1)C .(-1,1)D .(1,-1)或(-1,1)[解析] ∵f (x )=x 3+ax 2,∴f ′(x )=3x 2+2ax ,∵曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,∴3x 20+2ax 0=-1,∵x 0+x 30+ax 20=0,解得x 0=±1,∴当x 0=1时,f (x 0)=-1,当x 0=-1时,f (x 0)=1.故选D.[答案] D求参数值或范围[例3] (1)(2018·长沙一模)若曲线y =12e x 2与曲线y =a ln x 在它们的公共点P (s ,t )处具有公共切线,则实数a =( )A .-2 B.12 C .1D .2(2)(2018·南京调研)若函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行或重合的切线,则实数a 的取值范围是________.[解析] (1)y =12e x 2的导数为y ′=x e ,在点P (s ,t )处的切线斜率为s e ,y =a ln x 的导数为y ′=a x ,在点P (s ,t )处的切线斜率为a s ,由题意知,s e =a s ,且12e s 2=a ln s ,解得ln s =12,s 2=e ,故a =1.(2)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行或重合的切线,即f ′(x )=2在(0,+∞)上有解,而f ′(x )=1x +a ,故1x +a =2,即a =2-1x 在(0,+∞)上有解,因为x >0,所以2-1x<2,所以a 的取值范围是(-∞,2).[答案] (1)C (2)(-∞,2)[方法技巧]根据导数的几何意义求参数值的思路根据导数的几何意义求参数的值时,一般是利用切点P (x 0,y 0)既在曲线上又在切线上构造方程组求解.[全练题点]1.[考点一]曲线y =sin x +e x 在点(0,1)处的切线方程是( ) A .x -3y +3=0 B .x -2y +2=0 C .2x -y +1=0D .3x -y +1=0解析:选C ∵y =sin x +e x ,∴y ′=cos x +e x ,∴y ′| x =0=cos 0+e 0=2,∴曲线y =sin x +e x 在点(0,1)处的切线方程为y -1=2(x -0),即2x -y +1=0.2.[考点一]曲线y =x e x +2x -1在点(0,-1)处的切线方程为( ) A .y =3x -1 B .y =-3x -1 C .y =3x +1D .y =-2x -1解析:选A 因为y ′=e x +x e x +2,所以曲线y =x e x +2x -1在点(0,-1)处的切线的斜率k =y ′| x =0=3,∴切线方程为y =3x -1.3.[考点二]已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D.12解析:选A 已知曲线y =x 24-3ln x (x >0)的一条切线的斜率为12,由y ′=12x -3x =12,得x =3,故选A.4.[考点三](2018·东城期末)若直线y =-x +2与曲线y =-e x+a相切,则a 的值为( )A .-3B .-2C .-1D .-4解析:选A 由于y ′=(-e x +a )′=-e x +a ,令-e x +a =-1,得切点的横坐标为x =-a ,所以切点为(-a ,-1),进而有-(-a )+2=-1,故a =-3.5.[考点三](2018·西安一模)若曲线y =e x -ae x (a >0)上任意一点处的切线的倾斜角的取值范围是⎣⎡⎭⎫π3,π2,则a =( )A.112 B.13 C.34D .3解析:选C y ′=e x +a e x ,∵y =e x -aex 在任意一点处的切线的倾斜角的取值范围是⎣⎡⎭⎫π3,π2,∴e x +a e x ≥3,由a >0知,e x +a ex ≥2a ⎝⎛⎭⎫当且仅当e x =a e x 时等号成立,故2a =3,故a =34,故选C.[全国卷5年真题集中演练——明规律] 1.(2014·全国卷Ⅱ)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2D .3解析:选D y ′=a -1x +1,由题意得y ′|x =0=2,即a -1=2,所以a =3. 2.(2016·全国卷Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.解析:易得(ln x +2)′=1x ,[ln(x +1)]′=1x +1.设曲线y =ln x +2上的切点横坐标为x 1,曲线y =ln(x +1)上的切点横坐标为x 2,则y =ln x +2的切线方程为:y =1x 1·x +ln x 1+1,y =ln(x +1)的切线方程为:y =1x 2+1x +ln(x 2+ 1)-x 2x 2+1.根据题意,有⎩⎨⎧1x 1=1x 2+1,ln x 1+1=ln (x 2+1)-x 2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln 2.答案:1-ln 23.(2016·全国卷Ⅲ)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.解析:因为f(x)为偶函数,所以当x>0时,f(x)=f(-x)=ln x-3x,所以当x>0时,f′(x)=1x-3,则f′(1)=-2.所以y=f(x)在点(1,-3)处的切线方程为y+3=-2(x-1),即y=-2x-1.答案:y=-2x-1[课时达标检测][小题对点练——点点落实]对点练(一)导数的运算1.(2018·泉州质检)设函数f(x)=x(x+k)(x+2k),则f′(x)=()A.3x2+3kx+k2B.x2+2kx+2k2C.3x2+6kx+2k2D.3x2+6kx+k2解析:选C法一:f(x)=x(x+k)(x+2k),f′(x)=(x+k)(x+2k)+x[(x+k)(x+2k)]′=(x+k)·(x+2k)+x(x+2k)+x(x+k)=3x2+6kx+2k2,故选C.法二:因为f(x)=x(x+k)(x+2k)=x3+3kx2+2k2x,所以f′(x)=3x2+6kx+2k2,故选C.2.(2018·泰安一模)给出下列结论:①若y=log2x,则y′=1x ln 2;②若y=-1x,则y′=12x x;③若f(x)=1x2,则f′(3)=-227;④若y=ax(a>0),则y′=a x ln a.其中正确的个数是()A.1 B.2 C.3 D.4解析:选D根据求导公式可知①正确;若y=-1x=-x-12,则y′=12x-32=12x x,所以②正确;若f(x)=1x2,则f′(x)=-2x-3,所以f′(3)=-227,所以③正确;若y=ax(a>0),则y′=a x ln a,所以④正确.因此正确的结论个数是4,故选D.3.若函数y=x m的导函数为y′=6x5,则m=()A.4 B.5C.6 D.7解析:选C因为y=x m,所以y′=mx m-1,与y′=6x5相比较,可得m=6.4.已知函数f(x)=xe x(e是自然对数的底数),则其导函数f′(x)=()A.1+x e xB.1-x e xC .1+xD .1-x解析:选B 函数f (x )=xe x ,则其导函数f ′(x )=e x -x e x e 2x =1-x e x ,故选B.5.若f (x )=x 2-2x -4ln x ,则f ′(x )<0的解集为( ) A .(0,+∞) B .(0,2) C .(0,2)∪(-∞,-1)D .(2,+∞)解析:选B 函数f (x )=x 2-2x -4ln x 的定义域为{x |x >0},f ′(x )=2x -2-4x =2x 2-2x -4x ,由f ′(x )=2x 2-2x -4x<0,得0<x <2,∴f ′(x )<0的解集为(0,2),故选B. 6.(2018·信阳模拟)已知函数f (x )=a e x +x ,若1<f ′(0)<2,则实数a 的取值范围是( ) A.⎝⎛⎭⎫0,1e B .(0,1) C .(1,2)D .(2,3)解析:选B 根据题意,f (x )=a e x +x ,则f ′(x )=(a e x )′+x ′=a e x +1,则f ′(0)=a +1,若1<f ′(0)<2,则1<a +1<2,解得0<a <1,所以实数a 的取值范围为(0,1).故选B.对点练(二) 导数的几何意义1.(2018·安徽八校联考)函数f (x )=tan x 2在⎣⎡⎦⎤π2,f ⎝⎛⎭⎫π2处的切线的倾斜角α为( ) A.π6 B.π4 C.π3D.π2解析:选B f ′(x )=⎝ ⎛⎭⎪⎫sin x2cos x 2′=12cos 2x 2,得切线斜率k =tan α=f ′⎝⎛⎭⎫π2=1,故α=π4,选B.2.若函数f (x )=x 3-x +3的图象在点P 处的切线平行于直线y =2x -1,则点P 的坐标为( )A .(1,3)B .(-1,3)C .(1,3)或(-1,3)D .(1,-3)解析:选C f ′(x )=3x 2-1,令f ′(x )=2,即3x 2-1=2⇒x =1或-1,又f (1)=3,f (-1)=3,所以P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故点P 的坐标为(1,3)或(-1,3).3.(2018·福州质检)过点(-1,1)与曲线f (x )=x 3-x 2-2x +1相切的直线有( )A .0条B .1条C .2条D .3条解析:选C 设切点P (a ,a 3-a 2-2a +1),由f ′(x )=3x 2-2x -2,当a ≠-1时,可得切线的斜率k =3a 2-2a -2=(a 3-a 2-2a +1)-1a -(-1),所以(3a 2-2a -2)(a +1)=a 3-a 2-2a ,即(3a 2-2a -2)(a +1)=a (a -2)(a +1),所以a =1,此时k =-1.又(-1,1)是曲线上的点且f ′(-1)=3≠-1,故切线有2条.4.(2018·重庆一模)已知直线y =a 与函数f (x )=13x 3-x 2-3x +1的图象相切,则实数a的值为( )A .-26或83B .-1或3C .8或-83D .-8或83解析:选D 令f ′(x )=x 2-2x -3=0,得x =-1或x =3,∵f (-1)=83,f (3)=-8,∴a =83或-8.5.(2018·临川一模)函数f (x )=x +ln xx的图象在x =1处的切线与两坐标轴围成的三角形的面积为( )A.12B.14C.32D.54解析:选B 因为f (x )=x +ln xx ,f ′(x )=1+1-ln x x 2,所以f (1)=1,f ′(1)=2,故切线方程为y -1=2(x -1).令x =0,可得y =-1;令y =0,可得x =12.故切线与两坐标轴围成的三角形的面积为12×1×12=14,故选B.6.(2018·成都诊断)若曲线y =ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( )A.⎝⎛⎭⎫-12,+∞ B.⎣⎡⎭⎫-12,+∞ C .(0,+∞)D .[0,+∞)解析:选D 由题意知,函数y =ln x +ax 2的定义域为(0,+∞),y ′=1x +2ax =2ax 2+1x ≥0恒成立,即2ax 2+1≥0,a ≥-12x 2恒成立,又在定义域内,-12x 2∈(-∞,0),所以实数a 的取值范围是[0,+∞).7.(2017·柳州二模)已知函数f (x )=x 2+bx +c (b ,c ∈R ),F (x )=f ′(x )e x ,若F (x )的图象在x =0处的切线方程为y =-2x +c ,则函数f (x )的最小值是( )A .2B .1C .0D .-1解析:选C ∵f ′(x )=2x +b ,∴F (x )=2x +b e x ,F ′(x )=2-2x -be x,又F (x )的图象在x =0处的切线方程为y =-2x +c ,∴⎩⎪⎨⎪⎧ F ′(0)=-2,F (0)=c ,得⎩⎪⎨⎪⎧b =c ,b =4,∴f (x )=(x +2)2≥0,f (x )min=0.8.(2018·唐山模拟)已知函数f (x )=x 2-1,g (x )=ln x ,则下列说法中正确的为( ) A .f (x ),g (x )的图象在点(1,0)处有公切线B .存在f (x )的图象的某条切线与g (x )的图象的某条切线平行C .f (x ),g (x )的图象有且只有一个交点D .f (x ),g (x )的图象有且只有三个交点解析:选B 对于A ,f (x )的图象在点(1,0)处的切线为y =2x -2,函数g (x )的图象在点(1,0)处的切线为y =x -1,故A 错误;对于B ,函数g (x )的图象在(1,0)处的切线为y =x -1,设函数f (x )的图象在点(a ,b )处的切线与y =x -1平行,则f ′(a )=2a =1,a =12,故b =⎝⎛⎭⎫122-1=-34,即g (x )的图象在(1,0)处的切线与f (x )的图象在⎝⎛⎭⎫12,-34处的切线平行,B 正确;如图作出两函数的图象,可知两函数的图象有两个交点,C ,D 错误.故选B.9.(2018·包头一模)已知函数f (x )=x 3+ax +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.解析:函数f (x )=x 3+ax +1的导数为f ′(x )=3x 2+a ,f ′(1)=3+a ,又f (1)=a +2,所以切线方程为y -a -2=(3+a )(x -1),因为切线经过点(2,7),所以7-a -2=(3+a )(2-1),解得a =1.答案:1[大题综合练——迁移贯通]1.(2018·兰州双基过关考试)定义在实数集上的函数f (x )=x 2+x ,g (x )=13x 3-2x +m .(1)求函数f (x )的图象在x =1处的切线方程;(2)若f (x )≥g (x )对任意的x ∈[-4,4]恒成立,求实数m 的取值范围. 解:(1)∵f (x )=x 2+x ,∴f (1)=2.∵f ′(x )=2x +1,∴f ′(1)=3.∴所求切线方程为y -2=3(x -1),即3x -y -1=0. (2)令h (x )=g (x )-f (x )=13x 3-x 2-3x +m ,则h ′(x )=(x -3)(x +1). ∴当-4≤x ≤-1时,h ′(x )≥0; 当-1<x ≤3时,h ′(x )≤0; 当3<x ≤4时,h ′(x )>0.要使f (x )≥g (x )恒成立,即h (x )max ≤0, 由上知h (x )的最大值在x =-1或x =4处取得, 而h (-1)=m +53,h (4)=m -203,∴h (x )的最大值为m +53,∴m +53≤0,即m ≤-53.∴实数m 的取值范围为⎝⎛⎦⎤-∞,-53. 2.(2018·青岛期末)设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x-4y -12=0.(1)求f (x )的解析式;(2)证明曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解:(1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又因为f ′(x )=a +bx2,所以⎩⎨⎧2a -b 2=12,a +b 4=74.解得⎩⎪⎨⎪⎧a =1,b =3,所以f (x )=x -3x .(2)证明:设P (x 0,y 0)为曲线y =f (x )上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0,得y =-6x 0,所以切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0.令y =x ,得y =x =2x 0,所以切线与直线y =x 的交点坐标为(2x 0,2x 0).所以曲线y =f (x )在点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积S =12⎪⎪⎪⎪-6x 0 |2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形面积为定值,且此定值为6.3.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.(3)证明:不存在与曲线C 同时切于两个不同点的直线. 解:(1)由题意得f ′(x )=x 2-4x +3, 则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞). (2)设曲线C 的其中一条切线的斜率为k , 则由题意,及(1)可知,⎩⎪⎨⎪⎧k ≥-1,-1k ≥-1,解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).(3)证明:设存在直线与曲线C 同时切于不同的两点A (x 1,y 1),B (x 2,y 2),x 1≠x 2,则点A (x 1,y 1)处的切线方程为y -⎝⎛⎭⎫13x 31-2x 21+3x 1=(x 21-4x 1+3)(x -x 1),化简得y =(x 21-4x 1+3)x +⎝⎛⎭⎫-23x 31+2x 21,而点B (x 2,y 2)处的切线方程是y =(x 22-4x 2+3)x +⎝⎛⎭⎫-23x 32+2x 22. 由于两切线是同一直线,则有x 21-4x 1+3=x 22-4x 2+3,即x 1+x 2=4;又有-23x 31+2x 21=-23x 32+2x 22,即-23(x 1-x 2)·(x 21+x 1x 2+x 22)+2(x 1-x 2)(x 1+x 2)=0,则-13(x 21+x 1x 2+x 22)+4=0,则x 1(x 1+x 2)+x 22-12=0,即(4-x 2)×4+x 22-12=0,即x 22-4x 2+4=0,解得x 2=2.但当x 2=2时,由x 1+x 2=4得x 1=2,这与x 1≠x 2矛盾. 所以不存在与曲线C 同时切于两个不同点的直线.第二节 导数与函数的单调性本节主要包括2个知识点:1.利用导数讨论函数的单调性或求函数的单调区间;2.利用导数解决函数单调性的应用问题.突破点(一)利用导数讨论函数的单调性或求函数的单调区间[基本知识]1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.由函数的单调性与导数的关系可得的结论(1)函数f(x)在(a,b)内可导,且f′(x)在(a,b)任意子区间内都不恒等于0.当x∈(a,b)时,f′(x)≥0⇔函数f(x)在(a,b)上单调递增;f′(x)≤0⇔函数f(x)在(a,b)上单调递减.(2)f′(x)>0(<0)在(a,b)上成立是f(x)在(a,b)上单调递增(减)的充分条件.[基本能力]1.判断题(1)若函数f(x)在区间(a,b)上单调递增,那么在区间(a,b)上一定有f′(x)>0.()(2)如果函数在某个区间内恒有f′(x)=0,则函数f(x)在此区间上没有单调性.()(3)f′(x)>0是f(x)为增函数的充要条件.()答案:(1)×(2)√(3)×2.填空题(1)函数f(x)=e x-x的减区间为________.答案:(-∞,0)(2)函数f(x)=1+x-sin x在(0,2π)上的单调情况是________.答案:单调递增(3)已知f(x)=x3-ax在[1,+∞)上是增函数,则a的最大值是________.答案:3[全析考法][例1] (2016·山东高考节选)已知f (x )=a (x -ln x )+2x -1x 2,a ∈R .讨论f (x )的单调性.[解] f (x )的定义域为(0,+∞),f ′(x )=a -a x -2x 2+2x 3=(ax 2-2)(x -1)x 3.当a ≤0,x ∈(0,1)时, f ′(x )>0,f (x )单调递增; x ∈(1,+∞)时, f ′(x )<0,f (x )单调递减. 当a >0时,f ′(x )=a (x -1)x 3⎝⎛⎭⎫x - 2a ⎝⎛⎭⎫x + 2a . ①若0<a <2,则 2a >1, 当x ∈(0,1)或x ∈⎝⎛⎭⎫2a ,+∞时, f ′(x )>0,f (x )单调递增; 当x ∈⎝⎛⎭⎫1,2a 时,f ′(x )<0,f (x )单调递减. ②若a =2,则2a =1,在x ∈(0,+∞)内,f ′(x )≥0,f (x )单调递增.③若a >2,则0< 2a <1,当x ∈⎝⎛⎭⎫0,2a 或x ∈(1,+∞)时, f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫2a ,1时,f ′(x )<0,f (x )单调递减. 综上所述,当a ≤0时,f (x )在(0,1)内单调递增, 在(1,+∞)内单调递减;当0<a <2时,f (x )在(0,1)内单调递增,在⎝⎛⎭⎫1,2a 内单调递减,在⎝⎛⎭⎫ 2a ,+∞内单调递增;当a =2时,f (x )在(0,+∞)内单调递增; 当a >2时,f (x )在⎝⎛⎭⎫0,2a 内单调递增,在⎝⎛⎭⎫ 2a ,1内单调递减,在(1,+∞)内单调递增.[方法技巧]导数法研究函数f (x )在(a ,b )内单调性的步骤(1)求f ′(x );(2)确定f ′(x )在(a ,b )内的符号;(3)作出结论:f ′(x )>0时为增函数;f ′(x )<0时为减函数.[提醒] 研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.求函数的单调区间[例2] (2018·山东德州期中)已知函数f (x )=13x 3-(2m +1)x 2+3m (m +2)x +1,其中m为实数.(1)当m =-1时,求函数f (x )在[-4,4]上的最大值和最小值; (2)求函数f (x )的单调递增区间.[解] (1)当m =-1时,f (x )=13x 3+x 2-3x +1,f ′(x )=x 2+2x -3=(x +3)(x -1).当x <-3或x >1时,f ′(x )>0,f (x )单调递增; 当-3<x <1时,f ′(x )<0,f (x )单调递减. ∴当x =-3时,f (x )极大值=10; 当x =1时,f (x )极小值=-23.又∵f (-4)=233,f (4)=793,∴函数f (x )在[-4,4]上的最大值为793,最小值为-23.(2)f ′(x )=x 2-2(2m +1)x +3m (m +2) =(x -3m )(x -m -2).当3m =m +2,即m =1时,f ′(x )=(x -3)2≥0, ∴f (x )单调递增,即f (x )的单调递增区间为(-∞,+∞).当3m >m +2,即m >1时,由f ′(x )=(x -3m )(x -m -2)>0可得x <m +2或x >3m , 此时f (x )的单调递增区间为(-∞,m +2),(3m ,+∞).当3m <m +2,即m <1时,由f ′(x )=(x -3m )(x -m -2)>0可得x <3m 或x >m +2, 此时f (x )的单调递增区间为(-∞,3m ),(m +2,+∞). 综上所述:当m =1时,f (x )的单调递增区间为(-∞,+∞); 当m >1时,f (x )的单调递增区间为(-∞,m +2),(3m ,+∞); 当m <1时,f (x )的单调递增区间为(-∞,3m ),(m +2,+∞).[方法技巧] 用导数求函数单调区间的三种类型及方法[全练题点]1.[考点二](2018·江西金溪一中等校联考)已知函数f (x )与f ′(x )的图象如图所示,则函数g (x )=f (x )ex 的单调递减区间为( )A .(0,4)B .(-∞,1),⎝⎛⎭⎫43,4C.⎝⎛⎭⎫0,43 D .(0,1),(4,+∞)解析:选D g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x ,令g ′(x )<0,即f ′(x )-f (x )<0,由题图可得x ∈(0,1)∪(4,+∞).故函数g (x )的单调递减区间为(0,1),(4,+∞).故选D.2.[考点二](2018·芜湖一模)函数f (x )=e x -e x ,x ∈R 的单调递增区间是( ) A.()0,+∞ B.()-∞,0 C.()-∞,1D.()1,+∞解析:选D 由题意知,f ′(x )=e x -e ,令f ′(x )>0,解得x >1,故选D. 3.[考点一]已知函数f (x )=x -2x +1-a ln x ,a >0.讨论f (x )的单调性.解:由题意知,f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8.①当Δ≤0,即0<a ≤22时,对一切x >0都有f ′(x )≥0.此时f (x )是(0,+∞)上的单调递增函数.②当Δ>0,即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.所以f (x ),f ′(x )随x 的变化情况如下表:此时f (x )在 ⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增,在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减, 在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.4.[考点二]已知函数f (x )=ax 2+1(a >0),g (x )=x 3+bx .(1)若曲线y =f (x )与曲线y =g (x )在它们的交点(1,c )处具有公共切线,求a ,b 的值; (2)当a 2=4b 时,求函数f (x )+g (x )的单调区间. 解:(1)f ′(x )=2ax ,g ′(x )=3x 2+b , 由已知可得⎩⎪⎨⎪⎧f (1)=a +1=c ,g (1)=1+b =c ,2a =3+b ,解得a =b =3.(2)令F (x )=f (x )+g (x )=x 3+ax 2+a 24x +1,F ′(x )=3x 2+2ax +a 24,令F ′(x )=0,得x 1=-a 2,x 2=-a6,∵a >0,∴x 1<x 2,由F ′(x )>0得,x <-a 2或x >-a6;由F ′(x )<0得,-a 2<x <-a6.∴函数f (x )+g (x )的单调递增区间是⎝⎛⎭⎫-∞,-a 2,⎝⎛⎭⎫-a6,+∞;单调递减区间为⎝⎛⎭⎫-a 2,-a 6.突破点(二) 利用导数解决函数单调性的应用问题利用导数解决函数单调性的应用问题主要有:(1)已知函数的单调性求参数范围问题:此类问题是近几年高考的热点,一般为解答题的第二问,难度中档.有时也以选择题、填空题的形式出现,难度中高档.解决此类问题的关键是转化为恒成立问题,再参变分离,转化为最值问题求解.(2)比较大小或解不等式问题:利用导数方法解决此类问题的主要技巧就是灵活地构造函数,通过函数的性质求解.[全析考法]已知函数的单调性求参数的取值范围[例1] (1)若f (x )在区间(1,+∞)上为增函数,求a 的取值范围; (2)若f (x )在区间(-1,1)上为减函数,求a 的取值范围; (3)若f (x )的单调递减区间为(-1,1),求a 的值.[解] (1)因为f ′(x )=3x 2-a ,且f (x )在区间(1,+∞)上为增函数, 所以f ′(x )≥0在(1,+∞)上恒成立, 即3x 2-a ≥0在(1,+∞)上恒成立, 所以a ≤3x 2在(1,+∞)上恒成立, 所以a ≤3,即a 的取值范围为(-∞,3]. (2)因为f (x )在区间(-1,1)上为减函数, 所以f ′(x )=3x 2-a ≤0在(-1,1)上恒成立, 即a ≥3x 2在(-1,1)上恒成立.因为-1<x <1,所以3x 2<3,所以a ≥3. 即a 的取值范围为[3,+∞). (3)因为f (x )=x 3-ax -1,所以f ′(x )=3x 2-a .由f ′(x )=0,得x =±3a3(a ≥0). 因为f (x )的单调递减区间为(-1,1), 所以3a3=1,即a =3.[方法技巧]由函数的单调性求参数取值范围的方法(1)可导函数在区间(a ,b )上单调,实际上就是在该区间上f ′(x )≥0(或f ′(x )≤0)恒成立,得到关于参数的不等式,从而转化为求函数的最值问题,求出参数的取值范围,注意检验等号成立时导数是否在(a ,b )上恒为0.(2)可导函数在区间(a ,b )上存在单调区间,实际上就是f ′(x )>0(或f ′(x )<0)在该区间上存在解集,即f ′(x )max >0(或f ′(x )min <0)在该区间上有解,从而转化为不等式问题,求出参数的取值范围.(3)若已知f (x )在区间I 上的单调性,区间I 上含有参数时,可先求出f (x )的单调区间,令I 是其单调区间的子集,从而求出参数的取值范围.比较大小或解不等式[例2] (1)(2017·吉林长春三模)定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则e x 1f (x 2)与e x 2f (x 1) 的大小关系为( )A .e x 1f (x 2)>e x 2f (x 1)B .e x 1f (x 2)<e x 2f (x 1)C .e x 1f (x 2)=e x 2f (x 1)D .e x 1f (x 2)与e x 2f (x 1)的大小关系不确定(2)已知函数f (x )(x ∈R )满足f (1)=1,且f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________.[解析] (1)设g (x )=f (x )ex ,则g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x ,由题意得g ′(x )>0,所以g (x )单调递增, 当x 1<x 2时,g (x 1)<g (x 2),即f (x 1)e x 1<f (x 2)ex 2, 所以e x 1f (x 2)>e x 2f (x 1).(2)设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R 上单调递减.∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12,∴F (x 2)<F (1),而函数F (x )在R 上单调递减, ∴x 2>1,即x ∈(-∞,-1)∪(1,+∞). [答案] (1)A (2)(-∞,-1)∪(1,+∞)[方法技巧]利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.常见构造的辅助函数形式有:(1)f (x )>g (x )→F (x )=f (x )-g (x ); (2)xf ′(x )+f (x )→[xf (x )]′; (3)xf ′(x )-f (x )→⎣⎡⎦⎤f (x )x ′;(4)f ′(x )+f (x )→[e x f (x )]′; (5)f ′(x )-f (x )→⎣⎡⎦⎤f (x )e x ′.[全练题点]1.[考点一]若函数f (x )=x 3-ax 2+4在区间[0,2]上单调递减,则( ) A .a ≥3 B .a =3 C .a ≤3D .0<a <3解析:选A 因为函数f (x )=x 3-ax 2+4在区间[0,2]上单调递减,所以f ′(x )=3x 2-2ax ≤0在[0,2]上恒成立.当x =0时,显然成立,当x ≠0时,a ≥32x 在(0,2]上恒成立.因为32x ≤3,所以a ≥3.综上,a ≥3. 2.[考点一]已知函数f (x )=12x 2-t cos x ,若其导函数f ′(x )在R 上单调递增,则实数t 的取值范围为( )A.⎣⎡⎦⎤-1,-13 B.⎣⎡⎦⎤-13,13 C .[-1,1]D.⎣⎡⎦⎤-1,13解析:选C 因为f (x )=12x 2-t cos x ,所以f ′(x )=x +t sin x .令g (x )=f ′(x ),因为f ′(x )在R 上单调递增,所以g ′(x )=1+t cos x ≥0恒成立,所以t cos x ≥-1恒成立,因为cos x∈[-1,1],所以⎩⎪⎨⎪⎧-t ≥-1,t ≥-1,所以-1≤t ≤1,即实数t 的取值范围为[-1,1].3.[考点二]对于R 上可导的任意函数f (x ),若满足1-xf ′(x )≤0,则必有( )A .f (0)+f (2)>2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)<2f (1)D .f (0)+f (2)≥2f (1)解析:选A 当x <1时,f ′(x )<0,此时函数f (x )单调递减,当x >1时,f ′(x )>0,此时函数f (x )单调递增,∴当x =1时,函数f (x )取得极小值同时也取得最小值,所以f (0)>f (1),f (2)>f (1),则f (0)+f (2)>2f (1).4.[考点二](2018·江西赣州联考)定义在R 上的函数f (x )满足:f (x )>1-f ′(x ),f (0)=0,f ′(x )是f (x )的导函数,则不等式e x f (x )>e x -1(其中e 为自然对数的底数)的解集为( )A .(0,+∞)B .(-∞,-1)∪(0,+∞)C .(-∞,0)∪(1,+∞)D .(-1,+∞)解析:选A 设g (x )=e x f (x )-e x ,则g ′(x )=e x f (x )+e x f ′(x )-e x .由已知f (x )>1-f ′(x ),可得g ′(x )>0在R 上恒成立,即g (x )是R 上的增函数.因为f (0)=0,所以g (0)=-1,则不等式e x f (x )>e x -1可化为g (x )>g (0),所以原不等式的解集为(0,+∞).5.[考点一](2018·四川成都模拟)已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范围是________.解析:由题意知f ′(x )=-x +4-3x =-(x -1)(x -3)x ,由f ′(x )=0得函数f (x )的两个极值点为1和3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,∴1∈(t ,t +1)或3∈(t ,t +1)⇔⎩⎪⎨⎪⎧ t <1,t +1>1或⎩⎪⎨⎪⎧t <3,t +1>3⇔0<t <1或2<t <3.答案:(0,1)∪(2,3)6.[考点一](2018·辽宁大连双基测试)已知函数f (x )=ln x +axx +1(a ∈R ).(1)若函数f (x )在区间(0,4)上单调递增,求a 的取值范围; (2)若函数y =f (x )的图象与直线y =2x 相切,求a 的值.解:(1)f ′(x )=1x +a (x +1)-ax (x +1)2=(x +1)2+axx (x +1)2.∵函数f (x )在区间(0,4)上单调递增,∴f ′(x )≥0在(0,4)上恒成立,∴(x +1)2+ax ≥0, 即a ≥-x 2+2x +1x =-⎝⎛⎭⎫x +1x -2在(0,4)上恒成立. ∵x +1x ≥2,当且仅当x =1时取等号,∴a ∈[-4,+∞).(2)设切点为(x 0,y 0),则y 0=2x 0,f ′(x 0)=2,y 0=ln x 0+ax 0x 0+1,∴1x 0+a (x 0+1)2=2,①且2x 0=ln x 0+ax 0x 0+1.② 由①得a =⎝⎛⎭⎫2-1x 0(x 0+1)2,③ 代入②,得2x 0=ln x 0+(2x 0-1)(x 0+1), 即ln x 0+2x 20-x 0-1=0.令F (x )=ln x +2x 2-x -1,x >0,则 F ′(x )=1x +4x -1=4x 2-x +1x >0, ∴F (x )在(0,+∞)上单调递增. ∵F (1)=0,∴x 0=1,代入③式得a =4.[全国卷5年真题集中演练——明规律] 1.(2014·全国卷Ⅱ)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)解析:选D 因为f (x )=kx -ln x ,所以f ′(x )=k -1x . 因为f (x )在区间(1,+∞)上单调递增, 所以当x >1时,f ′(x )=k -1x ≥0恒成立, 即k ≥1x 在区间(1,+∞)上恒成立. 因为x >1,所以0<1x <1,所以k ≥1.故选D.2.(2016·全国卷Ⅰ)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1] B.⎣⎡⎦⎤-1,13 C.⎣⎡⎦⎤-13,13 D.⎣⎡⎦⎤-1,-13 解析:选C 法一:取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,但f ′(0)=1-23-1=-23<0,不具备在(-∞,+∞)单调递增的条件,故排除A 、B 、D.故选C.法二:函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,等价于f ′(x )=1-23cos2x +a cos x =-43cos 2x +a cos x +53≥0在(-∞,+∞)恒成立.设cos x =t ,则g (t )=-43t 2+at +53≥0在[-1,1]恒成立,所以⎩⎨⎧g (1)=-43+a +53≥0,g (-1)=-43-a +53≥0,解得-13≤a ≤13.故选C.3.(2015·全国卷Ⅱ)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)解析:选A 设y =g (x )=f (x )x (x ≠0),则g ′(x )=xf ′(x )-f (x )x 2,当x >0时,xf ′(x )-f (x )<0,∴g ′(x )<0,∴g (x )在(0,+∞)上为减函数,且g (1)=f (1)=-f (-1)=0.∵f (x )为奇函数,∴g (x )为偶函数,∴g (x )的图象的示意图如图所示.当x >0时,由f (x )>0,得g (x )>0,由图知0<x <1,当x <0时,由f (x )>0,得g (x )<0,由图知x <-1,∴使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),故选A.4.(2017·全国卷Ⅰ)已知函数f (x )=a e 2x +(a -2)e x -x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围. 解:(1)f (x )的定义域为(-∞,+∞),f ′(x )=2a e 2x +(a -2)e x -1=(a e x -1)(2e x +1). (ⅰ)若a ≤0,则f ′(x )<0,所以f (x )在(-∞,+∞)上单调递减. (ⅱ)若a >0,则由f ′(x )=0,得x =-ln a .当x ∈(-∞,-ln a )时,f ′(x )<0; 当x ∈(-ln a ,+∞)时,f ′(x )>0.所以f (x )在(-∞,-ln a )上单调递减,在(-ln a ,+∞)上单调递增. (2)(ⅰ)若a ≤0,由(1)知,f (x )至多有一个零点.(ⅱ)若a >0,由(1)知,当x =-ln a 时,f (x )取得最小值,最小值为f (-ln a )=1-1a +ln a .①当a =1时,由于f (-ln a )=0, 故f (x )只有一个零点;②当a ∈(1,+∞)时,由于1-1a +ln a >0,即f (-ln a )>0,故f (x )没有零点;③当a ∈(0,1)时,1-1a +ln a <0,即f (-ln a )<0.又f (-2)=a e -4+(a -2)e -2+2>-2e -2+2>0,故f (x )在(-∞,-ln a )有一个零点. 设正整数n 0满足n 0>ln ⎝⎛⎭⎫3a -1,则f (n 0)=e n 0(a e n 0+a -2)-n 0>e n 0-n 0>2n 0-n 0>0. 由于ln ⎝⎛⎭⎫3a -1>-ln a ,因此f (x )在(-ln a ,+∞)有一个零点. 综上,a 的取值范围为(0,1).[课时达标检测][小题对点练——点点落实]对点练(一) 利用导数讨论函数的单调性或求函数的单调区间1.(2018·福建龙岩期中)函数f (x )=x 3+bx 2+cx +d 的图象如图,则函数y =log 2⎝⎛⎭⎫x 2+23bx +c 3的单调递减区间为( ) A .(-∞,-2) B .[3,+∞) C .[-2,3]D.⎣⎡⎭⎫12,+∞ 解析:选A 由题图可以看出-2,3是函数f (x )=x 3+bx 2+cx +d 的两个极值点,即方程f ′(x )=3x 2+2bx +c =0的两根,所以-2b 3=1,c3=-6,即2b =-3,c =-18,所以函数y =log 2⎝⎛⎭⎫x 2+23bx +c 3可化为y =log 2(x 2-x -6).解x 2-x -6>0得x <-2或x >3.因为二次函数y =x 2-x -6的图象开口向上,对称轴为直线x =12,所以函数y =log 2(x 2-x -6)的单调递减区间为(-∞,-2).故选A.2.(2017·焦作二模)设函数f (x )=2(x 2-x )ln x -x 2+2x ,则函数f (x )的单调递减区间为( )A.⎝⎛⎭⎫0,12B.⎝⎛⎭⎫12,1 C .(1,+∞)D .(0,+∞)解析:选B 由题意可得f (x )的定义域为(0,+∞),f ′(x )=2(2x -1)ln x +2(x 2-x )·1x -2x +2=(4x -2)ln x .由f ′(x )<0可得(4x -2)ln x <0,所以⎩⎪⎨⎪⎧ 4x -2>0,ln x <0,或⎩⎪⎨⎪⎧4x -2<0,ln x >0,解得12<x <1,故函数f (x )的单调递减区间为⎝⎛⎭⎫12,1,故选B. 3.(2018·湖北荆州质检)函数f (x )=ln x -12x 2-x +5的单调递增区间为________.解析:函数f (x )的定义域为(0,+∞),再由f ′(x )=1x -x -1>0可解得0<x <5-12.答案:⎝ ⎛⎭⎪⎫0,5-12 对点练(二) 利用导数解决函数单调性的应用问题1.(2018·河南洛阳模拟)已知函数f (x )=-x 3+ax 2-x -1在R 上是单调函数,则实数a 的取值范围是( )A .(-∞,- 3 ]∪[3,+∞)B .[-3, 3 ]C .(-∞,-3)∪(3,+∞)D .(-3,3)解析:选B f ′(x )=-3x 2+2ax -1,由题意知,f ′(x )≤0在R 上恒成立,则Δ=(2a )2-4×(-1)×(-3)≤0恒成立,解得-3≤a ≤ 3.2.(2018·河北正定中学月考)函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)·f ′(x )<0,设a =f (0),b =f ⎝⎛⎭⎫12,c =f (3),则( )A .a <b <cB .c <a <bC .c <b <aD .b <c <a解析:选B 由f (x )=f (2-x )可知,f (x )的图象关于直线x =1对称.根据题意知当x ∈(-∞,1)时,f ′(x )>0,f (x )为增函数,当x ∈(1,+∞)时,f ′(x )<0,f (x )为减函数,所以f (3)=f (-1)<f (0)<f ⎝⎛⎭⎫12,即c <a <b .故选B.3.(2018·河北唐山期末)已知函数f (x )=ln(e x +e -x )+x 2,则使得f (2x )>f (x +3)成立的x的取值范围是( )A .(-1,3)B .(-∞,-3)∪(3,+∞)C .(-3,3)D .(-∞,-1)∪(3,+∞)解析:选D 因为f (-x )=ln(e -x +e x )+(-x )2=ln(e x +e -x )+x 2=f (x ),所以函数f (x )是偶函数.通过导函数可知函数y =e x +e-x在(0,+∞)上是增函数,所以函数f (x )=ln(e x +e-x)+x 2在(0,+∞)上也是增函数,所以不等式f (2x )>f (x +3)等价于|2x |>|x +3|,解得x <-1或x >3.故选D.4.(2018·云南大理州统测)定义在R 上的函数f (x )的导函数为f ′(x ),若对任意x ,有f (x )>f ′(x ),且f (x )+2 017为奇函数,则不等式f (x )+2 017e x <0的解集是( )A .(-∞,0)B .(0,+∞) C.⎝⎛⎭⎫-∞,1e D.⎝⎛⎭⎫1e ,+∞解析:选B 设h (x )=f (x )e x ,则h ′(x )=f ′(x )-f (x )e x<0,所以h (x )是定义在R 上的减函数.因为f (x )+2 017为奇函数,所以f (0)=-2 017,h (0)=-2 017.因为f (x )+2 017e x <0,所以f (x )e x <-2 017,即h (x )<h (0),结合函数h (x )的单调性可知x >0,所以不等式f (x )+2 017e x <0的解集是(0,+∞).故选B.5.若函数f (x )=x +4mx -m ln x 在[1,2]上为减函数,则m 的最小值为( ) A.32 B.34 C.23D.43解析:选C 因为f (x )=x +4m x -m ln x 在[1,2]上为减函数,所以f ′(x )=1-4m x2-m x =x 2-mx -4mx2≤0在[1,2]上恒成立,所以x 2-mx -4m ≤0在[1,2]上恒成立.令g (x )=x 2-mx -4m ,所以⎩⎪⎨⎪⎧g (1)=1-m -4m ≤0,g (2)=4-2m -4m ≤0,所以m ≥23,故m 的最小值为23,故选C.6.已知函数f (x )=x sin x ,x 1,x 2∈⎝⎛⎭⎫-π2,π2,且f (x 1)<f (x 2),那么( ) A .x 1-x 2>0B .x 1+x 2>0C .x 21-x 22>0D .x 21-x 22<0解析:选D 由f (x )=x sin x 得f ′(x )=sin x +x cos x ,当x ∈⎝⎛⎭⎫0,π2时,f ′(x )>0,即f (x )在⎝⎛⎭⎫0,π2上为增函数,又f (-x )=-x sin(-x )=x sin x =f (x ),因而f (x )为偶函数,∴当f (x 1)<f (x 2)时有f (|x 1|)<f (|x 2|),∴|x 1|<|x 2|,x 21-x 22<0,。
考点规范练14 导数的概念及运算基础巩固1.已知函数f (x )=√x 3+1,则lim Δx →0f (1-Δx )-f (1)Δx 的值为 ()A.-13 B.13 C.23D.02.已知曲线y=ln x 的切线过原点,则此切线的斜率为() A.e B.-e C.1eD.-1e3.已知奇函数y=f (x )在区间(-∞,0]上的解析式为f (x )=x 2+x ,则切点横坐标为1的切线方程是() A.x+y+1=0 B.x+y-1=0 C.3x-y-1=0 D.3x-y+1=04.(2017江西上饶模拟)若点P 是曲线y=x 2-ln x 上任意一点,则点P 到直线y=x-2的距离的最小值为() A.1 B.√2 C.√22D.√35.曲线f (x )=x 3-x+3在点P 处的切线平行于直线y=2x-1,则点P 的坐标为() A.(1,3)B.(-1,3)C.(1,3)和(-1,3)D.(1,-3)6.已知直线y=kx+1与曲线y=x 3+ax+b 相切于点A (1,2),则a b等于() A.-8B.-6C.-1D.57.若函数y=f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f (x )具有T 性质.下列函数中具有T 性质的是() A.y=sin x B.y=ln x C.y=e xD.y=x 38.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+154x-9都相切,则a 等于() A.-1或-2564B.-1或214C.-74或-2564D.-74或79.(2017吉林长春二模)若函数f (x )=lnx x,则f'(2)=.10.(2017山西太原模拟)函数f (x )=x e x的图象在点(1,f (1))处的切线方程是. 11.曲线y=log 2x 在点(1,0)处的切线与坐标轴所围三角形的面积等于. 12.若函数f (x )=12x 2-ax+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是.能力提升13.函数y=f (x ),y=g (x )的导函数的图象如图所示,则y=f (x ),y=g (x )的图象可能是()14.(2017广州深圳调研)如图,y=f (x )是可导函数,直线l :y=kx+2是曲线y=f (x )在x=3处的切线,令g (x )=xf (x ),g'(x )是g (x )的导函数,则g'(3)=()A.-1B.0C.2D.415.设直线l 1,l 2分别是函数f (x )={-lnx ,0<x <1,lnx ,x >1图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是() A.(0,1) B.(0,2) C.(0,+∞)D.(1,+∞)16.已知f (x ),g (x )分别是定义在R 上的偶函数和奇函数,且f (x )-g (x )=e x+x 2+1,则函数h (x )=2f (x )-g (x )在点(0,h (0))处的切线方程是.高考预测17.若函数f (x )=ln x-f'(1)x 2+5x-4,则f'(12)=.参考答案考点规范练14 导数的概念及运算1.A 解析limΔx →0f (1-Δx )-f (1)Δx =-lim Δx →0f (1-Δx )-f (1)-Δx=-f'(1)=-(13×1-23)=-13.2.C 解析由题意可得y=ln x 的定义域为(0,+∞),且y'=1x.设切点为(x 0,ln x 0),则切线方程为y-ln x 0=1x 0(x-x 0).因为切线过点(0,0),所以-ln x 0=-1,解得x 0=e,故此切线的斜率为1e.3.B 解析由函数y=f (x )为奇函数,可得f (x )在[0,+∞)内的解析式为f (x )=-x 2+x ,故切点为(1,0).因为y'=-2x+1,所以y'|x=1=-1, 故切线方程为y=-(x-1),即x+y-1=0.4.B 解析因为定义域为(0,+∞),所以y'=2x-1x ,令2x-1x=1,解得x=1,则曲线在点P (1,1)处的切线方程为x-y=0,所以两平行线间的距离为d=√2=√2.故所求的最小值为√2.5.C 解析∵f (x )=x 3-x+3,∴f'(x )=3x 2-1.设点P (x ,y ),则f'(x )=2,即3x 2-1=2,解得x=1或x=-1, 故P (1,3)或(-1,3).经检验,点(1,3),(-1,3)均不在直线y=2x-1上,符合题意.故选C . 6.A 解析由题意得y=kx+1过点A (1,2),故2=k+1,即k=1.∵y'=3x 2+a ,且直线y=kx+1与曲线y=x 3+ax+b 相切于点A (1,2),∴k=3+a ,即1=3+a ,∴a=-2.将点A (1,2)代入曲线方程y=x 3+ax+b ,可解得b=3, 即a b=(-2)3=-8.故选A .7.A 解析设曲线上两点P (x 1,y 1),Q (x 2,y 2),则由导数几何意义可知,两条切线的斜率分别为k 1=f'(x 1),k 2=f'(x 2). 若函数具有T 性质,则k 1·k 2=f'(x 1)·f'(x 2)=-1.A 项,f'(x )=cos x ,显然k 1·k 2=cos x 1·cos x 2=-1有无数组解,所以该函数具有性质T;B 项,f'(x )=1x(x>0),显然k 1·k 2=1x 1·1x 2=-1无解,故该函数不具有性质T;C 项,f'(x )=e x>0,显然k 1·k 2=e x 1·e x 2=-1无解,故该函数不具有性质T;D 项,f'(x )=3x 2≥0,显然k 1·k 2=3x 12×3x 22=-1无解,故该函数不具有性质T .综上,选A .8.A 解析因为y=x 3,所以y'=3x 2.设过点(1,0)的直线与y=x 3相切于点(x 0,x 03),则在该点处的切线斜率为k=3x 02,所以切线方程为y-x 03=3x 02(x-x 0),即y=3x 02x-2x 03.又点(1,0)在切线上,则x 0=0或x 0=32.当x 0=0时,由y=0与y=ax 2+154x-9相切,可得a=-2564; 当x 0=32时,由y=274x-274与y=ax 2+154x-9相切,可得a=-1. 9.1-ln24解析由f'(x )=1-lnxx 2,得f'(2)=1-ln24. 10.y=2e x-e 解析∵f (x )=x e x,∴f (1)=e,f'(x )=e x+x e x,∴f'(1)=2e,∴f (x )的图象在点(1,f (1))处的切线方程为y-e =2e(x-1),即y=2e x-e .11.12log 2e 解析∵y'=1xln2,∴k=1ln2, ∴切线方程为y=1ln2(x-1),∴所围三角形的面积为S=12×1×1ln2=12ln2=12log 2e .12.[2,+∞)解析∵f (x )=12x 2-ax+ln x ,∴f'(x )=x-a+1x .∵f (x )存在垂直于y 轴的切线, ∴f'(x )存在零点,∴x+1x -a=0有解, ∴a=x+1x ≥2(x>0).13.D 解析由y=f'(x )的图象知y=f'(x )在(0,+∞)内单调递减,说明函数y=f (x )的切线的斜率在(0,+∞)内也单调递减,故可排除A,C .又由图象知y=f'(x )与y=g'(x )的图象在x=x 0处相交,说明y=f (x )与y=g (x )的图象在x=x 0处的切线的斜率相同,故可排除B .故选D . 14.B 解析由题图可知曲线y=f (x )在x=3处的切线斜率等于-13,即f'(3)=-13.又g (x )=xf (x ),g'(x )=f (x )+xf'(x ),g'(3)=f (3)+3f'(3).由题图可知f (3)=1,所以g'(3)=1+3×(-13)=0. 15.A 解析由题意得P 1,P 2分别位于两段函数的图象上.设P 1(x 1,ln x 1),P 2(x 2,-ln x 2)(不妨设x 1>1,0<x 2<1),则由导数的几何意义易得切线l 1,l 2的斜率分别为k 1=1x 1,k 2=-1x 2.由已知得k 1k 2=-1,所以x 1x 2=1.所以x 2=1x 1.所以切线l 1的方程为y-ln x 1=1x 1(x-x 1),切线l 2的方程为y+ln x 2=-1x 2(x-x 2), 即y-ln x 1=-x 1(x -1x 1). 分别令x=0得A (0,-1+ln x 1),B (0,1+ln x 1). 又l 1与l 2的交点为P (2x11+x 12,lnx 1+1-x 121+x 12). ∵x 1>1,∴S △PAB =12|y A -y B |·|x P |=2x 11+x 12<1+x 121+x 12=1. ∴0<S △PAB <1,故选A .16.x-y+4=0解析∵f (x )-g (x )=e x+x 2+1,且f (x )是偶函数,g (x )是奇函数,∴f (-x )-g (-x )=f (x )+g (x )=e -x +x 2+1.∴f (x )=e x +e -x +2x 2+22,g (x )=e -x -e x2.∴h (x )=2f (x )-g (x )=e x +e -x +2x 2+2-e -x -e x2=32e x +12e -x +2x 2+2.∴h'(x )=32e x -12e -x +4x ,即h'(0)=32−12=1.又h(0)=4,∴切线方程为x-y+4=0.-2f'(1)x+5,17.5解析∵f'(x)=1x∴f'(1)=1-2f'(1)+5,解得f'(1)=2,)=2-2+5=5.∴f'(12。
第3课时 导数与函数的综合问题题型一 导数与不等式有关的问题命题点1 解不等式例1 设f (x )是定义在R 上的奇函数,f (2)=0,当x >0时,有-x2<0恒成立,则不等式x 2f (x )>0的解集是________________.答案 (-∞,-2)∪(0,2)解析 ∵当x >0时,⎣⎢⎡⎦⎥⎤x ′<0, ∴φ(x )=x 为减函数,又φ(2)=0,∴当且仅当0<x <2时,φ(x )>0,此时x 2f (x )>0.又f (x )为奇函数,∴h (x )=x 2f (x )也为奇函数.故x 2f (x )>0的解集为(-∞,-2)∪(0,2).命题点2 证明不等式例2 (2016·全国丙卷)设函数f (x )=ln x -x +1.(1)讨论f (x )的单调性;(2)证明:当x ∈(1,+∞)时,1<x -1ln x<x . (1)解 由题设,f (x )的定义域为(0,+∞),f ′(x )=1x-1,令f ′(x )=0,解得x =1. 当0<x <1时,f ′(x )>0,f (x )单调递增;当x >1时,f ′(x )<0,f (x )单调递减.(2)证明 由(1)知,f (x )在x =1处取得最大值,最大值为f (1)=0.所以当x ≠1时,ln x <x -1.故当x ∈(1,+∞)时,ln x <x -1,ln 1x <1x-1, 即1<x -1ln x<x . 命题点3 不等式恒成立或有解问题例3 已知函数f (x )=1+ln x x. (1)若函数f (x )在区间(a ,a +12)上存在极值,求正实数a 的取值范围; (2)如果当x ≥1时,不等式f (x )≥k x +1恒成立,求实数k 的取值范围.解 (1)函数的定义域为(0,+∞),f ′(x )=1-1-ln x x2=-ln x x2, 令f ′(x )=0,得x =1;当x ∈(0,1)时,f ′(x )>0,f (x )单调递增;当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.所以x =1为极大值点,所以0<a <1<a +12, 故12<a <1,即实数a 的取值范围为(12,1). (2)当x ≥1时,k ≤++x 恒成立, 令g (x )=++x, 则g ′(x )=+ln x +1+1x -++x2 =x -ln x x2. 再令h (x )=x -ln x ,则h ′(x )=1-1x≥0, 所以h (x )≥h (1)=1,所以g ′(x )>0,所以g (x )为单调增函数,所以g (x )≥g (1)=2,故k ≤2.所以实数k 的取值范围是(-∞,2].引申探究本题(2)中,若改为存在x 0∈[1,e],使不等式f (x )≥k x +1成立,求实数k 的取值范围. 解 当x ∈[1,e]时,k ≤++x 有解, 令g (x )=++x ,由例3(2)解题知,g (x )为单调增函数,∴g (x )max =g (e)=2+2e ,∴k ≤2+2e ,即实数k 的取值范围是(-∞,2+2e]. 思维升华 (1)利用导数解不等式的思路已知一个含f ′(x )的不等式,可得到和f (x )有关的函数的单调性,然后可利用函数单调性解不等式.(2)利用导数证明不等式的方法。
课时规范训练(时间:40分钟)1.函数f (x )=x 3-3x ,x ∈(-1,1)( ) A .有最大值,但无最小值 B .有最大值,也有最小值 C .无最大值,也无最小值D .无最大值,但有最小值解析:选C.f ′(x )=3x 2-3,∵x ∈(-1,1), ∴f ′(x )<0,∴f (x )在(-1,1)上是减函数,f (x )无最大值,也无最小值. 2.已知函数f (x )=x 3+bx 2+cx 的图像如图所示,则x 21+x 22等于( )A.23 B .43 C.83D .163解析:选C.由图像可知f (x )的图像过点(1,0)与(2,0),x 1,x 2是函数f (x )的极值点,因此1+b +c =0,8+4b +2c =0,解得b =-3,c =2,所以f (x )=x 3-3x 2+2x ,所以f ′(x )=3x 2-6x +2.x 1,x 2是方程f ′(x )=3x 2-6x +2=0的两根,因此x 1+x 2=2,x 1x 2=23,所以x 21+x 22=(x 1+x 2)2-2x 1x 2=4-43=83.3.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图像可能是( )解析:选C.由函数f (x )在x =-2处取得极小值,可得f ′(-2)=0,且当x ∈(a ,-2)(a <-2)时,f (x )单调递减,即f ′(x )<0;当x ∈(-2,b )(b >-2)时,f (x )单调递增,即f ′(x )>0.所以函数y =xf ′(x )在区间(a ,-2)(a <-2)内的函数值为正,在区间(-2,b )(-2<b <0)内的函数值为负,由此可排除选项A 、B 、D.4.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是( )A .(-1,2)B .(-∞,-3)∪(6,+∞)C .(-3,6)D .(-∞,-1)∪(2,+∞)解析:选B.∵f ′(x )=3x 2+2ax +(a +6), 由已知可得f ′(x )=0有两个不相等的实根. ∴Δ=4a 2-4×3(a +6)>0,即a 2-3a -18>0. ∴a >6或a <-3.5.已知函数f (x )=e xx2-k ⎝ ⎛⎭⎪⎫2x +ln x ,若x =2是函数f (x )的唯一一个极值点,则实数k 的取值范围为( )A .(-∞,e]B .C .(-∞,e)D .上的最小值.解:(1)由题意知f ′(x )=(x -k +1)e x .令f ′(x )=0,得x =k -1.f (x )与f ′(x )随x 的变化情况如下表:所以, (2)当k -1≤0,即k ≤1时,f (x )在上单调递增, 所以f (x )在区间上的最小值为f (0)=-k ; 当0<k -1<1,即1<k <2时,f (x )在上单调递减,在上单调递增,所以f (x )在区间上的最小值为f (k -1)=-ek -1;当k -1≥1,即k ≥2时,f (x )在上单调递减, 所以f (x )在区间上的最小值为f (1)=(1-k )e. 综上,当k ≤1时,f (x )在上的最小值为f (0)=-k ; 当1<k <2时,f (x )在上的最小值为f (k -1)=-ek -1;当k ≥2时,f (x )在上的最小值为f (1)=(1-k )e.(时间:25分钟)11.已知函数f (x )=m ⎝ ⎛⎭⎪⎫x -1x -2ln x (m ∈R ),g (x )=-m x,若至少存在一个x 0∈,使得f (x 0)<g (x 0)成立,则实数m 的取值范围是( )A.⎝⎛⎦⎥⎤-∞,2eB .⎝ ⎛⎭⎪⎫-∞,2eC .(-∞,0]D .(-∞,0)解析:选B.由题意,不等式f (x )<g (x )在上有解,∴mx <2ln x ,即m 2<ln xx在上有解,令h (x )=ln x x ,则h ′(x )=1-ln xx2,当1≤x ≤e 时,h ′(x )≥0,∴在上,h (x )max =h (e)=1e ,∴m 2<1e ,∴m <2e .∴m 的取值范围是⎝⎛⎭⎪⎫-∞,2e .故选B.12.设函数f (x )=ax 2+bx +c (a ,b ,c ∈R ),若x =-1为函数f (x )e x的一个极值点,则下列图像不可能为y =f (x )图像的是( )解析:选D.设h (x )=f (x )e x, 则h ′(x )=(2ax +b )e x +(ax 2+bx +c )e x=(ax 2+2ax +bx +b +c )e x.∵x =-1为函数f (x )e x的一个极值点, ∴c -a =0,∴c =a .∴f (x )=ax 2+bx +a . 若方程ax 2+bx +a =0有两根x 1,x 2, 则x 1x 2=aa=1,D 中图像一定不满足条件.13.已知f (x )=x 3-6x 2+9x -abc ,a <b <c ,且f (a )=f (b )=f (c )=0.现给出如下结论:①f (0)f (1)>0; ②f (0)f (1)<0;③f (0)f (3)>0; ④f (0)f (3)<0. 其中正确结论的序号是________.解析:∵f ′(x )=3x 2-12x +9=3(x -1)(x -3), 由f ′(x )<0,得1<x <3,由f ′(x )>0, 得x <1或x >3,∴f (x )在区间(1,3)上是减函数,在区间(-∞,1),(3,+∞)上是增函数. 又a <b <c ,f (a )=f (b )=f (c ) ∴y 极大值=f (1)=4-abc >0,y 极小值=f (3)=-abc <0.∴0<abc <4.∴a ,b ,c 均大于零,或者a <0,b <0,c >0.又x =1,x =3为函数f (x )的极值点,后一种情况不可能成立,如图.∴f (0)<0.∴f (0)f (1)<0,f (0)f (3)>0.∴正确结论的序号是②③. 答案:②③14.若函数f (x )=x 3-3x 在(a,6-a 2)上有最小值,则实数a 的取值范围是________. 解析:f ′(x )=3x 2-3=0,得x =±1,且x =1为函数的极小值点,x =-1为函数的极大值点.函数f (x )在区间(a,6-a 2)上有最小值,则函数f (x )极小值点必在区间(a,6-a 2)内, 即实数a 满足a <1<6-a 2且f (a )=a 3-3a ≥f (1)=-2. 解a <1<6-a 2,得-5<a <1. 不等式a 3-3a ≥f (1)=-2,即a 3-3a +2≥0,即a 3-1-3(a -1)≥0, 即(a -1)(a 2+a -2)≥0, 即(a -1)2(a +2)≥0,即a ≥-2.故实数a 的取值范围是上的最小值为8,求a 的值. 解:(1)当a =-4时,由f ′(x )=x -x -x=0得x =25或x =2,由f ′(x )>0得x ∈⎝ ⎛⎭⎪⎫0,25或x ∈(2,+∞),故函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,25和(2,+∞). (2)f ′(x )=x +ax +a2x,a <0,由f ′(x )=0得x =-a 10或x =-a2.当x ∈⎝ ⎛⎭⎪⎫0,-a 10时,f (x )单调递增;当x ∈⎝ ⎛⎭⎪⎫-a10,-a 2时,f (x )单调递减; 当x ∈⎝ ⎛⎭⎪⎫-a2,+∞时,f (x )单调递增.易知f (x )=(2x +a )2x ≥0,且f ⎝ ⎛⎭⎪⎫-a 2=0.①当-a2≤1,即-2≤a <0时,f (x )在上的最小值为f (1),由f (1)=4+4a +a 2=8,得a =±22-2,均不符合题意.②当1<-a2≤4,即-8≤a <-2时,f (x )在上的最小值为f ⎝ ⎛⎭⎪⎫-a 2=0,不符合题意.③当-a2>4,即a <-8时,f (x )在上的最小值可能在x =1或x =4处取得,而f (1)≠8,由f (4)=2(64+16a +a 2)=8得a =-10或a =-6(舍去),当a =-10时,f (x )在(1,4)上单调递减,f (x )在上的最小值为f (4)=8,符合题意.综上,a =-10.。
§3.1 导数的运算及几何意义1.导数与导函数的概念(1)当x 1趋于x 0,即Δx 趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数y =f (x )在x 0点的瞬时变化率.在数学中,称瞬时变化率为函数y =f (x )在x 0点的导数,通常用符号 f ′(x 0)表示,记作 f ′(x 0)=limx 1→x 0f x 1-f x 0x 1-x 0=limΔx →0f x 0+Δx -f x 0Δx.(2)如果一个函数f (x )在区间(a ,b )上的每一点x 处都有导数,导数值记为f ′(x ):f ′(x )=lim Δx →0f x +Δx -f x Δx,则f ′(x )是关于x 的函数,称f ′(x )为f (x )的导函数,通常也简称为导数.2.导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).3.基本初等函数的导数公式4.若f ′(x ),g ′(x )存在,则有 (1)′=f ′(x )±g ′(x );(2)′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f x g x ′=fx g x -f x gx[g x2(g (x )≠0).【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)与(f (x 0))′表示的意义相同.( ) (2)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( ) (5)函数f (x )=sin(-x )的导数是f ′(x )=cos x .( ) 答案:(1)× (2)× (3)√ (4)× (5)×1.(教材改编)f ′(x )是函数f (x )=13x 3+2x +1的导函数,则f ′(-1)的值为( )A .0B .3C .4D .-73解析:选B.∵f (x )=13x 3+2x +1,∴f ′(x )=x 2+2.∴f ′(-1)=3.2.如图所示为函数y =f (x ),y =g (x )的导函数的图像,那么y =f (x ),y =g (x )的图像可能是( )解析:选D.由y =f ′(x )的图像知y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )的切线的斜率在(0,+∞)上也单调递减,故可排除A ,C.又由图像知y =f ′(x )与y =g ′(x )的图像在x =x 0处相交,说明y =f (x )与y =g (x )的图像在x =x 0处的切线的斜率相同,故可排除B.故选D.3.设函数f (x )的导数为f ′(x ),且f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,则f ′⎝ ⎛⎭⎪⎫π4=________.解析:因为f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,所以f ′(x )=f ′⎝ ⎛⎭⎪⎫π2cos x -sin x , 所以f ′⎝ ⎛⎭⎪⎫π2=f ′⎝ ⎛⎭⎪⎫π2cos π2-sin π2, 即f ′⎝ ⎛⎭⎪⎫π2=-1,所以f (x )=-sin x +cos x .f ′(x )=-cos x -sin x .故f ′⎝ ⎛⎭⎪⎫π4=-cos π4-sin π4=- 2. 答案:- 24.(2016·高考全国甲卷)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.解析:分别求出两个对应函数的导数,设出两个切点坐标,利用导数得到两个切点坐标之间的关系,进而求出切线斜率,求出b 的值.求得(ln x +2)′=1x ,′=1x +1.设曲线y =ln x +2上的切点为(x 1,y 1),曲线y =ln(x +1)上的切点为(x 2,y 2),则k =1x 1=1x 2+1,所以x 2+1=x 1.又y 1=ln x 1+2,y 2=ln(x 2+1)=ln x 1, 所以k =y 1-y 2x 1-x 2=2, 所以x 1=1k =12,y 1=ln 12+2=2-ln 2,所以b =y 1-kx 1=2-ln 2-1=1-ln 2. 答案:1-ln 25.(2016·高考全国丙卷)已知f (x )为偶函数,当x <0时,f (x )=ln(-x )+3x ,则曲线y =f (x )在点(1,-3)处的切线方程是________.解析:先利用函数奇偶性求出x >0时f (x )的解析式,再求切线方程.因为f (x )为偶函数,所以当x >0时,f (x )=f (-x )=ln x -3x ,所以f ′(x )=1x-3,则f ′(1)=-2.所以y =f (x )在点(1,-3)处的切线方程为y +3=-2(x -1),即y =-2x -1.答案:y =-2x -1类型一 导数的运算求下列函数的导数. (1)y =x 2sin x ; (2)y =ln x +1x;(3)y =cos x ex ;(4)y =x sin ⎝⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2. 解 (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (2)y ′=⎝ ⎛⎭⎪⎫ln x +1x ′=(ln x )′+⎝ ⎛⎭⎪⎫1x ′=1x -1x2.(3)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=cos x ′e x -cos x e x′e x 2=-sin x +cos xex. (4)∵y =x sin ⎝⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2=12x sin(4x +π)=-12x sin 4x , ∴y ′=-12sin 4x -12x ·4cos 4x=-12sin 4x -2x cos 4x .求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量.1.(1)f (x )=x (2 016+ln x ),若f ′(x 0)=2 017,则x 0等于( ) A .e 2B .1C .ln 2D .e解析:选B.f ′(x )=2 016+ln x +x ×1x=2 017+ln x ,故由f ′(x 0)=2 017得2 017+ln x 0=2 017,则ln x 0=0,解得x 0=1.(2)若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( ) A .-1 B .-2 C .2D .0解析:选B.f ′(x )=4ax 3+2bx ,∵f ′(x )为奇函数,且f ′(1)=2,∴f ′(-1)=-2.类型二 导数的几何意义题点1 已知切点的切线方程问题(1)(2017·云南昆明一检)函数f (x )=ln x -2x x的图像在点(1,-2)处的切线方程为( )A .2x -y -4=0B .2x +y =0C .x -y -3=0D .x +y +1=0解析 f ′(x )=1-ln x x2,则f ′(1)=1, 故该切线方程为y -(-2)=x -1, 即x -y -3=0. 答案 C (2)曲线y =e -2x+1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为________.解析 ∵y ′=-2e-2x,曲线在点(0,2)处的切线斜率k =-2,∴切线方程为y =-2x +2,该直线与直线y =0和y =x 围成的三角形如图所示,其中直线y =-2x +2与y =x 的交点为A ⎝ ⎛⎭⎪⎫23,23, ∴三角形的面积S =12×1×23=13.答案 13题点2 未知切点的切线方程问题(1)(2017·山东威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A .x +y -1=0B .x -y -1=0C .x +y +1=0D .x -y +1=0解析 ∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=+ln x 0x 0,解得x 0=1,y 0=0. ∴切点为(1,0), ∴f ′(1)=1+ln 1=1. ∴直线l 的方程为y =x -1, 即x -y -1=0.故选B. 答案 B(2)(2016·高考山东卷)若函数y =f (x )的图像上存在两点,使得函数的图像在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( )A .y =sin xB .y =ln xC .y =e xD .y =x 3解析 设函数y =f (x )图像上的两点分别为(x 1,y 1),(x 2,y 2),且x 1≠x 2,则由题意知只需函数y =f (x )满足f ′(x 1)·f ′(x 2)=-1即可.y =f (x )=sin x 的导函数为f ′(x )=cos x ,则f ′(0)·f ′(π)=-1,故函数y =sin x 具有T 性质;y =f (x )=ln x 的导函数为f ′(x )=1x ,则f ′(x 1)·f ′(x 2)=1x 1x 2>0,故函数y =ln x 不具有T 性质;y=f (x )=e x 的导函数为f ′(x )=e x ,则f ′(x 1)·f ′(x 2)=e x 1+x 2>0,故函数y =e x不具有T 性质;y =f (x )=x 3的导函数为f ′(x )=3x 2,则f ′(x 1)·f ′(x 2)=9x 21x 22≥0,故函数y =x 3不具有T 性质.故选A.答案 A题点3 和切线有关的参数问题已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图像都相切,且与f (x )图像的切点为(1,f (1)),则m 等于( )A .-1B .-3C .-4D .-2解析 ∵f ′(x )=1x,∴直线l 的斜率为k =f ′(1)=1. 又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图像的切点为(x 0,y 0), 则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,于是解得m =-2.故选D. 答案 D导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎪⎨⎪⎧y 1=f x 1,y 0-y 1=f x 1x 0-x 1求解即可.(4)函数图像在每一点处的切线斜率的变化情况反映函数图像在相应点处的变化情况,由切线的倾斜程度可以判断出函数图像升降的快慢.2.(1)若直线y =2x +m 是曲线y =x ln x 的切线,则实数m 的值为________. 解析:设切点为(x 0,x 0ln x 0),由y ′=(x ln x )′=ln x +x ·1x=ln x +1,得切线的斜率k =ln x 0+1,故切线方程为y -x 0ln x 0=(ln x 0+1)(x -x 0), 整理得y =(ln x 0+1)x -x 0,与y =2x +m 比较得⎩⎪⎨⎪⎧ln x 0+1=2,-x 0=m ,解得x 0=e ,故m =-e.答案:-e(2)已知函数f (x )的图像在点M (1,f (1))处的切线方程2x -3y +1=0,则f (1)+f ′(1)=________.解析:依题意得2×1-3f (1)+1=0,即f (1)=1,由切线的斜率k =23,则f ′(1)=23,则f (1)+f ′(1)=53. 答案:53求曲线的切线方程条件审视不准致误(四)典例 (12分)若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,求a 的值.由于题目中没有指明点O (0,0)的位置情况,容易忽略点O 在曲线y =x 3-3x 2+2x 上这个隐含条件,进而不考虑O 点为切点的情况.易知点O (0,0)在曲线y =x 3-3x 2+2x 上. (1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x .由⎩⎪⎨⎪⎧y =2x ,y =x 2+a ,得x 2-2x +a =0,依题意Δ=4-4a =0,得a =1.(2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,且k =y ′|x =x 0=3x 20-6x 0+2,①又k =y 0x 0=x 20-3x 0+2,②联立①②得,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x .由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0,依题意,Δ=116-4a =0,得a =164.综上,a =1或a =164.对于求曲线的切线方程没有明确切点的情况,要先判断切线所过点是否在曲线上;若所过点在曲线上,要求该点是否为切点进行讨论.思想方法 感悟提高1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,而函数值f (x 0)是一个常数,其导数一定为0,即(f (x 0))′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.3.未知切点的曲线切线问题,一定要先设切点,利用导数的几何意义表示切线的斜率建立方程.1.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.复合函数的导数要正确分解函数的结构,由外向内逐层求导.2.求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者.3.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别.课时规范训练(时间:40分钟)1.若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b =( )A .-1B .0C .1D .2解析:选C.依题意得,f ′(x )=-a sin x ,g ′(x )=2x +b , 于是有f ′(0)=g ′(0),即-a sin 0=2×0+b ,b =0,m =f (0)=g (0),即m =a =1,因此a +b =1.2.已知函数f (x )=(x 2+2)(ax 2+b ),且f ′(1)=2,则f ′(-1)=( ) A .-1 B .-2 C .2D .0解析:选B.f (x )=(x 2+2)(ax 2+b )=ax 4+(2a +b )x 2+2b ,f ′(x )=4ax 3+2(2a +b )x 为奇函数,所以f ′(-1)=-f ′(1)=-2.3.已知直线y =x +1与曲线y =ln(x +a )相切,则a 的值为( ) A .1 B .2 C .-1D .-2解析:选B.设直线y =x +1与曲线y =ln(x +a )的切点为(x 0,y 0),则y 0=1+x 0,y 0=ln(x 0+a ).又y ′=1x +a ,所以y ′|x =x 0=1x 0+a=1,即x 0+a =1. 又y 0=ln(x 0+a ),所以y 0=0,则x 0=-1,所以a =2.4.给出定义:设f ′(x )是函数y =f (x )的导函数,f ″(x )是函数f ′(x )的导函数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.已知函数f (x )=3x +4sin x -cos x 的拐点是M (x 0,f (x 0)),则点M ( )A .在直线y =-3x 上B .在直线y =3x 上C .在直线y =-4x 上D .在直线y =4x 上解析:选B.f ′(x )=3+4cos x +sin x ,f ″(x )=-4sin x +cos x ,由题意知4sinx 0-cos x 0=0,所以f (x 0)=3x 0,故M (x 0,f (x 0))在直线y =3x 上.故选B.5. 已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)等于( )A .-1B .0C .2D .4解析:选B.由题图可知曲线y =f (x )在x =3处的切线斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1,∴g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.6.已知曲线y =1e x +1,则曲线的切线斜率取得最小值时的直线方程为( )A .x +4y -2=0B .x -4y +2=0C .4x +2y -1=0D .4x -2y -1=0解析:选A.y ′=-e xx +2=-1e x+1ex +2,因为e x >0,所以e x+1e x ≥2e x ×1e x =2(当且仅当e x =1e x ,即x =0时取等号),则e x+1ex+2≥4,故y ′=-1e x+1e x +2≥-14当(x =0时取等号).当x =0时,曲线的切线斜率取得最小值,此时切点的坐标为⎝ ⎛⎭⎪⎫0,12, 切线的方程为y -12=-14(x -0),即x +4y -2=0.故选A.7.已知f (x )=x ln x ,若过曲线y =f (x )上的点P 的切线斜率为2,则点P 的坐标为________.解析:设P (m ,n ), 易知f ′(x )=1+ln x , 则切线斜率为1+ln m =2, 解得m =e ,∴n =m ln m =eln e =e. 答案:(e ,e)8.已知函数f (x )=x 3-3x ,若过点A (0,16)且与曲线y =f (x )相切的直线方程为y =ax +16,则实数a 的值是________.解析:先设切点为M (x 0,y 0),则切点在曲线上有y 0=x 30-3x 0,①求导数得到切线的斜率k =f ′(x 0)=3x 20-3, 又切线l 过A 、M 两点,所以k =y 0-16x 0, 则3x 20-3=y 0-16x 0,② 联立①②可解得x 0=-2,y 0=-2, 从而实数a 的值为a =k =-2-16-2=9.答案:99.求下列函数的导数. (1)y =x ·tan x ;(2)y =(x +1)(x +2)(x +3); (3)y =ln xx 2+1. 解:(1)y ′=(x ·tan x )′=x ′tan x +x (tan x )′=tan x +x ·⎝ ⎛⎭⎪⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x=tan x +xcos 2x.(2)y ′=(x +1)′+(x +1)′=(x +2)(x +3)+(x +1)(x +2)+(x +1)(x +3)=3x 2+12x +11.(3)y ′=xx 2+-ln x x 2+x 2+2=1xx 2+-2x ln x x 2+2=x 2+1-2x 2ln x x x 2+2.10.设函数f (x )=ax -bx,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.解:(1)方程7x -4y -12=0可化为y =74x -3.当x =2时,y =12.又f ′(x )=a +bx2,于是⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x.(2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0),即y -⎝⎛⎭⎪⎫x 0-3x 0=⎝⎛⎭⎪⎫1+3x20(x -x 0). 令x =0,得y =-6x 0,从而得切线与直线x =0的交点的坐标为⎝ ⎛⎭⎪⎫0,-6x 0.令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪⎪⎪-6x 0|2x 0|=6.故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,且此定值为6.(时间:25分钟)11.已知曲线C :f (x )=x 3-ax +a ,若过曲线C 外一点A (1,0)引曲线C 的两条切线,它们的倾斜角互补,则a 的值为( )A.278B .-2C .2D .-278解析:选A.设切点坐标为(t ,t 3-at +a ).由题意知,f ′(x )=3x 2-a ,切线的斜率k =y ′|x =t =3t 2-a ①,所以切线方程为y -(t 3-at +a )=(3t 2-a )(x -t ) ②.将点A (1,0)代入②式得-(t 3-at +a )=(3t 2-a )(1-t ),解得t =0或t =32.分别将t =0和t =32代入①式,得k =-a 和k =274-a ,由题意得它们互为相反数,故a =278.12.设曲线y =xn +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则x 1·x 2·…·x n 的值为( )A.1nB .1n +1C.nn +1D .1解析:选B.对y =xn +1(n ∈N *)求导得y ′=(n +1)x n,令x =1得在点(1,1)处的切线的斜率k =n +1,在点(1,1)处的切线方程为y -1=(n +1)(x -1),由切线与x 轴的交点横坐标为x n ,不妨设y =0,所以x n =nn +1,则x 1·x 2·…·x n =12×23×34×…×n -1n ×n n +1=1n +1,故选B.13.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析:∵f (x )=12x 2-ax +ln x ,∴f ′(x )=x -a +1x .∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点, 即x +1x -a =0有解,∴a =x +1x≥2.答案:1.函数的单调性如果在某个区间内,函数y =f (x )的导数f ′(x )>0,则在这个区间上,函数y =f (x )是增加的;如果在某个区间内,函数y =f (x )的导数f ′(x )<0,则在这个区间上,函数y =f (x )是减少的.2.函数的极值如果函数y =f (x )在区间(a ,x 0)上是增加的,在区间(x 0,b )上是减少的,则x 0是极大值点,f (x 0)是极大值.如果函数y =f (x )在区间(a ,x 0)上是减少的,在区间(x 0,b )上是增加的,则x 0是极小值点,f (x 0)是极小值.3.函数的最值(1)在闭区间上连续的函数f (x )在上必有最大值与最小值.(2)若函数f (x )在上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.(3)设函数f (x )在上连续,在(a ,b )内可导,求f (x )在上的最大值和最小值的步骤如下:①求f (x )在(a ,b )内的极值;②将f (x )的各极值与f (a ),f (b )进行比较,其中最大的一个是最大值,最小的一个是最小值.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若函数f (x )在(a ,b )内单调递增,那么一定有f ′(x )>0.( )(2)如果函数 f (x )在某个区间内恒有 f ′(x )=0,则 f (x )在此区间内没有单调性.( )(3)函数的极大值不一定比极小值大.( )(4)对可导函数f (x ),f ′(x 0)=0是x 0点为极值点的充要条件.( ) (5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( ) 答案:(1)× (2)√ (3)√ (4)× (5)√1.函数f (x )=ln x -ax (a >0)的单调递增区间为( )A.⎝ ⎛⎭⎪⎫0,1a B .⎝ ⎛⎭⎪⎫1a,+∞ C.⎝⎛⎭⎪⎫-∞,1aD .(-∞,a )解析:选A.由f ′(x )=1x -a >0,得0<x <1a,∴f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,1a .2.如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图像的一部分,则该函数的解析式为( )A .y =1125x 3-35x B .y =2125x 3-45xC .y =3125x 3-x D .y =-3125x 3+15x解析:选A.函数在上为减函数,所以在上y ′≤0,经检验只有A 符合.故选A. 3.已知e 为自然对数的底数,设函数f (x )=(e x-1)(x -1)k(k =1.2),则( ) A .当k =1时,f (x )在x =1处取到极小值 B .当k =1时,f (x )在x =1处取到极大值C .当k =2时,f (x )在x =1处取到极小值D .当k =2时,f (x )在x =1处取到极大值解析:选C.当k =1时,f ′(x )=e x·x -1,f ′(1)≠0, ∴x =1不是f (x )的极值点.当k =2时,f ′(x )=(x -1)(x e x+e x -2),显然f ′(1)=0,且在x =1附近的左侧,f ′(x )<0, 当x >1时,f ′(x )>0,∴f (x )在x =1处取到极小值,故选C.4.(教材改编)如图是f (x )的导函数f ′(x )的图像,则f (x )的极小值点的个数为________.解析:由题意知在x =-1处f ′(-1)=0,且其左右两侧导数符号为左负右正. 答案:15.设1<x <2,则ln x x,⎝ ⎛⎭⎪⎫ln x x 2,ln x2x2的大小关系是________.(用“<”连接)解析:令f (x )=x -ln x (1<x <2), 则f ′(x )=1-1x =x -1x>0,∴函数y =f (x )(1<x <2)为增函数,∴f (x )>f (1)=1>0,∴x >ln x >0⇒0<ln x x<1,∴⎝ ⎛⎭⎪⎫ln x x 2<ln x x.又ln x2x2-ln x x =2ln x -x ln x x 2=-x xx2>0,∴⎝ ⎛⎭⎪⎫ln x x 2<ln x x<ln x 2x 2.答案:⎝ ⎛⎭⎪⎫ln x x 2<ln x x<ln x 2x 2 课时1 导数与函数的单调性类型一 不含参数的函数的单调性求函数f (x )=ln xx的单调区间.解 函数f (x )的定义域为(0,+∞). 因为f (x )=ln x x,所以f ′(x )=1-ln x x2. 当f ′(x )>0,即0<x <e 时,函数f (x )单调递增; 当f ′(x )<0,即x >e 时,函数f (x )单调递减. 故函数f (x )的单调递增区间为(0,e), 单调递减区间为(e ,+∞). 确定函数单调区间的步骤: (1)确定函数f (x )的定义域; (2)求f ′(x );(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间; (4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.1.函数y =12x 2-ln x 的单调递减区间为( )A .(-1,1]B .(0,1]C ..类型二 含参数的函数的单调性(2017·山东青岛模拟)已知函数f (x )=ln x +ax +a +1x-1. (1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)当-12≤a ≤0时,讨论f (x )的单调性.解 (1)当a =1时,f (x )=ln x +x +2x-1,此时f ′(x )=1x +1-2x2,f ′(2)=12+1-24=1.又因为f (2)=ln 2+2+22-1=ln 2+2,所以切线方程为y -(ln 2+2)=x -2, 整理得x -y +ln 2=0. (2)f ′(x )=1x +a -1+ax2=ax 2+x -a -1x 2=ax +a +x -x 2.当a =0时,f ′(x )=x -1x 2. 此时,在(0,1)上,f ′(x )<0,f (x )单调递减; 在(1,+∞)上,f ′(x )>0,f (x )单调递增. 当-12≤a <0时,f ′(x )=a ⎝ ⎛⎭⎪⎫x +a +1a x -x 2.当-1+a a =1,即a =-12时,f ′(x )=-x -22x 2≤0在(0,+∞)上恒成立,所以f (x )在(0,+∞)上单调递减.当-12<a <0时,-1+a a >1,此时在(0,1)或⎝ ⎛⎭⎪⎫-1+a a ,+∞上,f ′(x )<0,f (x )单调递减,在⎝ ⎛⎭⎪⎫1,-1+a a 上,f ′(x )>0,f (x )单调递增.综上,当a =0时,f (x )在(0,1)上单调递减,在(1,+∞)上单调递增;当-12<a <0时,f (x )在(0,1)或⎝ ⎛⎭⎪⎫-1+a a ,+∞上单调递减,在⎝ ⎛⎭⎪⎫1,-1+a a 上单调递增;当a =-12时,f (x )在(0,+∞)上单调递减.(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.(3)个别导数为0的点不影响所在区间的单调性,如f (x )=x 3,f ′(x )=3x 2≥0(f ′(x )=0在x =0时取到),f (x )在R 上是增函数.2.(2017·陕西西安模拟)讨论函数f (x )=(a -1)·ln x +ax 2+1的单调性.解:f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x.①当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; ②当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减; ③当0<a <1时,令f ′(x )=0,解得x =1-a 2a ,则当x ∈⎝⎛⎭⎪⎫0, 1-a 2a 时,f ′(x )<0;当x ∈⎝⎛⎭⎪⎫1-a 2a ,+∞时,f ′(x )>0,故f (x )在⎝ ⎛⎭⎪⎫0, 1-a 2a 上单调递减,在⎝ ⎛⎭⎪⎫1-a 2a ,+∞上单调递增. 类型三 利用函数单调性求参数(2017·辽宁锦州质检)设函数f (x )=13x 3-a 2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(1)求b ,c 的值;(2)若a >0,求函数f (x )的单调区间;(3)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)内存在单调递减区间,求实数a 的取值范围.解 (1)f ′(x )=x 2-ax +b , 由题意得⎩⎪⎨⎪⎧f =1,f=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0), 当x ∈(-∞,0)时,f ′(x )>0; 当x ∈(0,a )时,f ′(x )<0; 当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞), 单调递减区间为(0,a ). (3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1),使不等式g ′(x )=x 2-ax +2<0成立,即x ∈(-2,-1)时,a <⎝⎛⎭⎪⎫x +2x max =-22,当且仅当x =2x即x =-2时等号成立.所以满足要求的a 的取值范围是(-∞,-22).在本例3(3)中,1.若g (x )在(-2,-1)内为减函数,如何求解? 解:∵g ′(x )=x 2-ax +2, 且g (x )在(-2,-1)内为减函数, ∴g ′(x )≤0,即x 2-ax +2≤0 在(-2,-1)内恒成立,∴⎩⎪⎨⎪⎧g -,g-,即⎩⎪⎨⎪⎧4+2a +2≤0,1+a +2≤0,解之得a ≤-3,即实数a 的取值范围为(-∞,-3]. 2.若g (x )在单调减区间为(-2,-1),求a 的值. 解:∵g (x )的单调减区间为(-2,-1), ∴x 1=-2,x 2=-1是g ′(x )=0的两个根, ∴(-2)+(-1)=a ,即a =-3.3.若g (x )在(-2,-1)上不单调,求a 的取值范围.解:由引申探究1知g (x )在(-2,-1)上为减函数,a 的范围是(-∞,-3], 若g (x )在(-2,-1)上为增函数,可知a ≥x +2x 在(-2,-1)上恒成立,又y =x +2x的值域为(-3,-22],∴a 的范围是∪ 已知函数单调性,求参数范围的两个方法(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)转化为不等式的恒成立问题:即“若函数单调递增,则f ′(x )≥0;若函数单调递减,则f ′(x )≤0”来求解.3.已知函数f (x )=x 3-ax -1,求下列条件下实数a 的取值范围. (1)若f (x )在区间(1,+∞)上为增函数,求a 的取值范围. (2)若f (x )在区间(-1,1)上为减函数,试求a 的取值范围.解:(1)因为f ′(x )=3x 2-a ,且f (x )在区间(1,+∞)上为增函数,所以f ′(x )≥0在(1,+∞)上恒成立,即3x 2-a ≥0在(1,+∞)上恒成立, 所以a ≤3x 2在(1,+∞)上恒成立, 所以a ≤3,即a 的取值范围为(-∞,3].(2)由f ′(x )=3x 2-a ≤0在(-1,1)上恒成立,得a ≥3x 2在(-1,1)上恒成立.因为-1<x <1,所以3x 2<3,所以a ≥3.即当a 的取值范围为分类讨论思想研究函数的单调性(五)典例 (12分)(2017·甘肃兰州市、张掖市联考)已知函数f (x )=ln x ,g (x )=f (x )+ax 2+bx ,其中函数g (x )的图像在点(1,g (1))处的切线平行于x 轴.(1)确定a 与b 的关系;(2)若a ≥0,试讨论函数g (x )的单调性.思维点拨 依据g (x )的切线条件可得g ′(1)=0得a ,b 关系,代g (x )后消去b ,对a 进行分类讨论确定g ′(x )的符号.(1)依题意得g (x )=ln x +ax 2+bx , 则g ′(x )=1x+2ax +b .由函数g (x )的图像在点(1,g (1))处的切线平行于x 轴得:g ′(1)=1+2a +b =0,∴b =-2a -1.(2)由(1)得g ′(x )=2ax 2-a +x +1x=ax -x -x.∵函数g (x )的定义域为(0,+∞), ∴当a =0时,g ′(x )=-x -1x. 由g ′(x )>0,得0<x <1,由g ′(x )<0,得x >1, 当a >0时,令g ′(x )=0,得x =1或x =12a ,若12a <1,即a >12, 由g ′(x )>0,得x >1或0<x <12a,由g ′(x )<0,得12a <x <1,若12a >1,即0<a <12,由g ′(x )>0,得x >12a 或0<x <1,由g ′(x )<0,得1<x <12a;若12a =1,即a =12,在(0,+∞)上恒有g ′(x )≥0. 综上可得:当a =0时,函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减;当0<a <12时,函数g (x )在(0,1)上单调递增,在⎝ ⎛⎭⎪⎫1,12a 上单调递减,在⎝ ⎛⎭⎪⎫12a ,+∞上单调递增; 当a =12时,函数g (x )在(0,+∞)上单调递增;当a >12时,函数g (x )在⎝ ⎛⎭⎪⎫0,12a 上单调递增,在⎝⎛⎭⎪⎫12a ,1上单调递减,在(1,+∞)上单调递增.(1)含参数的函数的单调性问题一般要分类讨论,常见的分类讨论标准有以下几种可能:①方程f ′(x )=0是否有根;②若f ′(x )=0有根,求出根后是否在定义域内;③若根在定义域内且有两个,比较根的大小是常见的分类方法.(2)本题求解先分a =0或a >0两种情况,再比较12a和1的大小.思想方法 感悟提高1.已知函数解析式求单调区间,实质上是求f ′(x )>0,f ′(x )<0的解区间,并注意定义域.2.含参函数的单调性要分类讨论,通过确定导数的符号判断函数的单调性. 3.已知函数单调性可以利用已知区间和函数单调区间的包含关系或转化为恒成立问题的两种思路解决.1.f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.2.注意两种表述“函数f (x )在(a ,b )上为减函数”与“函数f (x )的减区间为(a ,b )”的区别.3.讨论函数单调性要在定义域内进行,不要忽略函数的间断点.课时规范训练(时间:40分钟)1.已知函数f (x )=12x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A.f ′(x )=32x 2+a ,当a ≥0时,f ′(x )≥0恒成立,故“a >0”是“f (x )在R 上单调递增”的充分不必要条件.2.若f (x )=ln xx,e<a <b ,则( )A .f (a )>f (b )B .f (a )=f (b )C .f (a )<f (b )D .f (a )f (b )>1解析:选A.f ′(x )=1-ln x x2, 当x >e 时,f ′(x )<0,f (x )为减函数. ∴f (a )>f (b ).3.已知f (x )=x 3-ax 在上为单调函数,则a 的取值范围是________. 解析:f ′(x )=3a -4x +1x,若函数f (x )在上为单调函数,即f ′(x )=3a -4x +1x ≥0或f ′(x )=3a -4x +1x≤0在上恒成立,即3a ≥4x -1x 或3a ≤4x -1x在上恒成立.令h (x )=4x -1x,则h (x )在上单调递增,所以3a ≥h (2)或3a≤h (1),即3a ≥152或3a ≤3,又a >0,所以0<a ≤25或a ≥1. 答案:⎝ ⎛⎦⎥⎤0,25∪[)1,+∞9.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.解:(1)对f (x )求导得f ′(x )=14-a x 2-1x ,由f (x )在点(1,f (1))处的切线垂直于直线y =12x知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x2. 令f ′(x )=0,解得x =-1或x =5.因为x =-1不在f (x )的定义域(0,+∞)内,故舍去. 当x ∈(0,5)时,f ′(x )<0, 故f (x )在(0,5)内为减函数; 当x ∈(5,+∞)时,f ′(x )>0, 故f (x )在(5,+∞)内为增函数.综上,f (x )的单调增区间为(5,+∞),单调减区间为(0,5). 10.已知函数f (x )=ln x ,g (x )=12ax +b .(1)若f (x )与g (x )在x =1处相切,求g (x )的表达式; (2)若φ(x )=m x -x +1-f (x )在.(时间:25分钟)11.已知a ≥0,函数f (x )=(x 2-2ax )e x,若f (x )在上是单调减函数,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,34 B .⎝ ⎛⎭⎪⎫12,34C.⎣⎢⎡⎭⎪⎫34,+∞ D .⎝ ⎛⎭⎪⎫0,12 解析:选C.f ′(x )=(2x -2a )e x+(x 2-2ax )e x =e x,由题意知当x ∈时,f ′(x )≤0恒成立,即x 2+(2-2a )x -2a ≤0恒成立.令g (x )=x 2+(2-2a )x -2a ,则有⎩⎪⎨⎪⎧g -g ,即⎩⎪⎨⎪⎧-2+-2a --2a ≤0,12+2-2a -2a ≤0,解得a ≥34.12.已知f (x )是可导的函数,且f ′(x )<f (x )对于x ∈R 恒成立,则( ) A .f (1)<e f (0),f (2 016)>e 2 016f (0) B .f (1)>e f (0),f (2 016)>e2 016f (0)C .f (1)>e f (0),f (2 016)<e 2 016f (0) D .f (1)<e f (0),f (2 016)<e 2 016f (0)解析:选D.令g (x )=f xex,则g ′(x )=⎝ ⎛⎭⎪⎫f x e x ′=fxx-f xxe2x=f x -f xex<0,所以函数g (x )=f xex是单调减函数,所以g (1)<g (0),g (2 016)<g (0), 即fe1<f1,fe2 016<f1,故f (1)<e f (0),f (2 016)<e2 016f (0).13.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则a 的取值范围是________.解析:对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝ ⎛⎭⎪⎫x -122+14+2a .当x ∈⎣⎢⎡⎭⎪⎫23,+∞时,f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a .令29+2a >0,解得a >-19. 所以a 的取值范围是⎝ ⎛⎭⎪⎫-19,+∞.答案:⎝ ⎛⎭⎪⎫-19,+∞14.已知函数f (x )=-12x 2+4x -3ln x 在区间上不单调,则t 的取值范围是________.解析:由题意知f ′(x )=-x +4-3x=-x -x -x,由f ′(x )=0得函数f (x )的两个极值点为1和3, 则只要这两个极值点有一个在区间(t ,t +1)内, 函数f (x )在区间上就不单调,由t <1<t +1或t <3<t +1,得0<t <1或2<t <3.答案:(0,1)∪(2,3)15.已知函数f (x )=a ln x -ax -3(a ∈R ). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图像在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈,函数g (x )=x 3+x 2⎣⎢⎡⎦⎥⎤fx +m 2在区间(t,3)上总不是单调函数,求m 的取值范围.解:(1)函数f (x )的定义域为(0,+∞), 且f ′(x )=a -xx,当a >0时,f (x )的增区间为(0,1), 减区间为(1,+∞);当a <0时,f (x )的增区间为(1,+∞), 减区间为(0,1);当a =0时,f (x )不是单调函数.(2)由(1)及题意得f ′(2)=-a2=1,即a =-2,∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x.∴g (x )=x 3+⎝ ⎛⎭⎪⎫m2+2x 2-2x ,∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t,3)上总不是单调函数, 即g ′(x )=0在区间(t,3)上有变号零点.由于g ′(0)=-2,∴⎩⎪⎨⎪⎧gt ,g当g ′(t )<0,即3t 2+(m +4)t -2<0时对任意t ∈恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9; 由g ′(3)>0,得m >-373.所以-373<m <-9.即实数m 的取值范围是⎝ ⎛⎭⎪⎫-373,-9.课时2 导数与函数的极值、最值类型一 用导数解决函数极值问题题点1 根据函数图像判断极值设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图像如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2) 解析 由题图可知,当x <-2时,f ′(x )>0; 当-2<x <1时,f ′(x )<0; 当1<x <2时,f ′(x )<0; 当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 答案 D题点2 求函数的极值(2017·山东济南模拟)已知函数f (x )=x -a ln x (a ∈R ). (1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.解 由题意知函数f (x )的定义域为(0,+∞),f ′(x )=1-a x. (1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x(x >0),因为f (1)=1,f ′(1)=-1,所以曲线y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0. (2)由f ′(x )=1-a x =x -ax,x >0知:①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值;②当a >0时,由f ′(x )=0,解得x =a .又当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值.题点3 已知极值求参数(1)(2017·广州模拟)已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,则a -b =________.解析 由题意得f ′(x )=3x 2+6ax +b ,则⎩⎪⎨⎪⎧a 2+3a -b -1=0,b -6a +3=0,解得⎩⎪⎨⎪⎧a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9,经检验当a =1,b =3时,函数f (x )在x =-1处无法取得极值,而a =2,b =9满足题意,故a -b =-7.答案 -7(2)(2017·福建福州质量检测)若函数f (x )=x 33-a2x 2+x +1在区间⎝ ⎛⎭⎪⎫12,3上有极值点,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫2,52B .⎣⎢⎡⎭⎪⎫2,52C.⎝⎛⎭⎪⎫2,103D .⎣⎢⎡⎭⎪⎫2,103解析 若函数f (x )在区间⎝ ⎛⎭⎪⎫12,3上无极值,则当x ∈⎝ ⎛⎭⎪⎫12,3时,f ′(x )=x 2-ax +1≥0恒成立或当x ∈⎝ ⎛⎭⎪⎫12,3时,f ′(x )=x 2-ax+1≤0恒成立.当x ∈⎝ ⎛⎭⎪⎫12,3时,y =x +1x 的值域是⎣⎢⎡⎭⎪⎫2,103;当x ∈⎝ ⎛⎭⎪⎫12,3时,f ′(x )=x 2-ax +1≥0,即a ≤x +1x恒成立,a ≤2;当x ∈⎝ ⎛⎭⎪⎫12,3时,f ′(x )=x 2-ax +1≤0,即a ≥x +1x 恒成立,a ≥103.因此要使函数f (x )在⎝ ⎛⎭⎪⎫12,3上有极值点, 实数a 的取值范围应是⎝⎛⎭⎪⎫2,103.答案 C(1)求函数f (x )极值的步骤: ①确定函数的定义域; ②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④列表检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值.(2)若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值.1.(1)(2015·高考陕西卷)函数y =x e x在其极值点处的切线方程为________. 解析:由题知y ′=e x +x e x,令y ′=0,解得x =-1,代入函数解析式可得极值点的坐标为⎝⎛⎭⎪⎫-1,-1e ,又极值点处的切线为平行于x 轴的直线,故方程为y =-1e .答案:y =-1e(2)设f (x )=ln(1+x )-x -ax 2,若f (x )在x =1处取得极值,则a 的值为________. 解析:由题意知,f (x )的定义域为(-1,+∞), 且f ′(x )=11+x -2ax -1=-2ax 2-a +x1+x ,由题意得:f ′(1)=0, 即-2a -2a -1=0,解得a =-14,又当a =-14时,f ′(x )=12x 2-12x 1+x =12x x -1+x ,当0<x <1时,f ′(x )<0; 当x >1时,f ′(x )>0,所以f (1)是函数f (x )的极小值,所以a =-14.答案:-14类型二 用导数求函数的最值已知a ∈R ,函数f (x )=a x+ln x -1.(1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)求f (x )在区间(0,e]上的最小值.解 (1)当a =1时,f (x )=1x+ln x -1,x ∈(0,+∞),所以f ′(x )=-1x 2+1x =x -1x2,x ∈(0,+∞).因此f ′(2)=14,即曲线y =f (x )在点(2,f (2))处的切线斜率为14.又f (2)=ln 2-12,所以曲线y =f (x )在点(2,f (2))处的切线方程为y -⎝ ⎛⎭⎪⎫ln 2-12=14(x -2),即x -4y +4ln 2-4=0.(2)因为f (x )=ax+ln x -1,所以f ′(x )=-a x2+1x=x -ax2.令f ′(x )=0,得x =a .①若a ≤0,则f ′(x )>0,f (x )在区间(0,e]上单调递增,此时函数f (x )无最小值. ②若0<a <e ,当x ∈(0,a )时,f ′(x )<0,函数f (x )在区间(0,a )上单调递减,当x ∈(a ,e]时,f ′(x )>0,函数f (x )在区间(a ,e]上单调递增,所以当x =a 时,函数f (x )取得最小值ln a .③若a ≥e,则当x ∈(0,e]时,f ′(x )≤0,函数f (x )在区间(0,e]上单调递减, 所以,当x =e 时,函数f (x )取得最小值ae.综上可知,当a ≤0时,函数f (x )在区间(0,e]上无最小值; 当0<a <e 时,函数f (x )在区间(0,e]上的最小值为ln a ; 当a ≥e 时,函数f (x )在区间(0,e]上的最小值为ae.2.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ⎝ ⎛⎭⎪⎫a >12,当x ∈(-2,0)时,f (x )的最小值为1,则a 的值等于( )A.14 B .13 C.12D .1解析:选D.由题意知,当x ∈(0,2)时,f (x )的最大值为-1. 令f ′(x )=1x -a =0,得x =1a,当0<x <1a时,f ′(x )>0;当x >1a时,f ′(x )<0.∴f (x )max =f ⎝ ⎛⎭⎪⎫1a =-ln a -1=-1,解得a =1.类型三 函数极值和最值的综合问题(2017·四川德阳模拟)已知函数f (x )=13x 3-ax +1.(1)当x =1时,f (x )取得极值,求a 的值; (2)求f (x )在上的最小值. 解 因为f ′(x )=x 2-a , (1)当x =1时,f (x )取得极值, 所以f ′(1)=1-a =0,a =1, 又当x ∈(-1,1)时,f ′(x )<0;x ∈(1,+∞)时,f ′(x )>0,所以f (x )在x =1处取得极小值,即a =1时符合题意. (2)①当a ≤0时,f ′(x )>0对x ∈(0,1)恒成立,所以f (x )在(0,1)上单调递增,f (x )在x =0处取得最小值f (0)=1. ②当a >0时,令f ′(x )=x 2-a =0,解得x =-a 或a . ⅰ.当0<a <1时,a <1,当x ∈(0,a )时,f ′(x )<0,f (x )单调递减; 当x ∈(a ,1)时,f ′(x )>0,f (x )单调递增, 所以f (x )在x =a 处取得最小值f (a )=1-2a a3.ⅱ.当a ≥1时,a ≥1.x ∈(0,1)时,f ′(x )<0,f (x )单调递减,所以f (x )在x =1处取得最小值f (1)=43-a .。
基础巩固题组 (建议用时:40分钟)一、填空题1.函数f (x )=2x 3-6x 2-18x -7在[1,4]上的最小值为________. 解析 f ′(x )=6x 2-12x -18=6(x 2-2x -3) =6(x -3)(x +1),由f ′(x )>0,得x >3或x <-1; 由f ′(x )<0,得-1<x <3,故函数f (x )在[1,3]上单调递减,在[3,4]上单调递增, ∴f (x )min =f (3)=2×27-6×9-18×3-7=-61. 答案 -612.函数f (x )=x 3+3x 2+3x -a 的极值点的个数是________.解析 ∵f ′(x )=3x 2+6x +3=3(x 2+2x +1)=3(x +1)2≥0,∴函数f (x )在R 上单调递增,故f (x )无极值点. 答案 03.(2015·泰州调研)函数f (x )=x 3-3bx +3b 在(0,1)内有极小值,则b 的取值范围是________.解析 由f (x )=x 3-3bx +3b ,得f ′(x )=3x 2-3b .由已知可得f ′(x )=3x 2-3b 在(0,1)上与x 轴有交点,且满足⎩⎨⎧f ′(0)<0,f ′(1)>0,即⎩⎨⎧b >0,3-3b >0.∴0<b <1.∴b 的取值范围是(0,1). 答案 (0,1)4.(2015·扬州模拟)已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,则a -b =________.解析 由题意得f ′(x )=3x 2+6ax +b ,则 ⎩⎨⎧a 2+3a -b -1=0,b -6a +3=0,解得⎩⎨⎧a =1,b =3或⎩⎨⎧a =2,b =9,经检验当a =1,b =3时,函数f (x )在x =-1处无法取得极值,而a =2,b =9满足题意,故a -b =-7. 答案 -75.(2016·长沙模拟)已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是________. 解析 ∵f ′(x )=3x 2+2ax +(a +6), 由已知可得f ′(x )=0有两个不相等的实根, ∴Δ=4a 2-4×3×(a +6)>0,即a 2-3a -18>0. ∴a >6或a <-3.答案 (-∞,-3)∪(6,+∞)6.设a ∈R ,若函数y =e x +ax ,x ∈R 有大于零的极值点,则a 的取值范围是________.解析 ∵y =e x +ax ,∴y ′=e x +a . ∵函数y =e x +ax 有大于零的极值点, 则方程y ′=e x +a =0有大于零的解, ∵x >0时,-e x <-1,∴a =-e x <-1. 答案 (-∞,-1)7.已知函数f (x )=x 3-12x +8在区间[-3,3]上的最大值与最小值分别为M ,m ,则M -m =________.解析 由题意,得f ′(x )=3x 2-12,令f ′(x )=0,得x =±2,又f (-3)=17,f (-2)=24,f (2)=-8,f (3)=-1,所以M =24,m =-8,M -m =32. 答案 328.(2015·苏、锡、常、镇模拟)函数f (x )=ax 3+bx 2+cx +d 在x =0处有极大值1,在x =2处有极小值0,则常数a ,b ,c ,d 分别为________,________,________,________.解析 f ′(x )=3ax 2+2bx +c ,则⎩⎨⎧f (2)=0,f ′(2)=0,f (0)=1,f ′(0)=0,即⎩⎨⎧8a +4b +2c +d =0,12a +4b +c =0,d =1,c =0,解得a =14,b =-34,c =0,d =1.答案 14 34 0 1 二、解答题9.(2016·徐州一检)当a ∈⎝ ⎛⎭⎪⎫-∞,-1e 时,函数f (x )=ax -1+ln x 在区间(0,e)上的最大值为-4,求a 的值.解 由题意f ′(x )=a +1x ,令f ′(x )=0,解得x =-1a .∵a ∈⎝ ⎛⎭⎪⎫-∞,-1e ,∴0<-1a <e ,由f ′(x )>0,解得0<x <-1a,由f ′(x )<0,解得-1a <x <e.从而f (x )的单调增区间为⎝ ⎛⎭⎪⎫0,-1a ,减区间为⎝ ⎛⎭⎪⎫-1a ,e .∴f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1-1+ln ⎝ ⎛⎭⎪⎫-1a =-4,解得a =-e 2.10.(2015·安徽卷)已知函数f (x )=ax(x +r )2(a >0,r >0).(1)求f (x )的定义域,并讨论f (x )的单调性; (2)若ar =400,求f (x )在(0,+∞)内的极值.解 (1)由题意知x ≠-r ,所求的定义域为(-∞,-r )∪(-r ,+∞). f (x )=ax (x +r )2=axx 2+2rx +r 2,f ′(x )=a (x 2+2rx +r 2)-ax (2x +2r )(x 2+2rx +r 2)2=a (r -x )(x +r )(x +r )4.所以当x <-r 或x >r 时,f ′(x )<0, 当-r <x <r 时,f ′(x )>0.因此,f (x )的单调递减区间为(-∞,-r ),(r ,+∞); f (x )的单调递增区间为(-r ,r ).(2)由(1)的解答可知f ′(r )=0,f (x )在(0,r )上单调递增,在(r ,+∞)上单调递减.因此,x =r 是f (x )的极大值点,所以f (x )在(0,+∞)内的极大值为f (r )=ar (2r )2=a 4r =4004=100.能力提升题组 (建议用时:25分钟)11.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ,n ∈[-1,1],则f (m )+f ′(n )的最小值是________.解析 对函数f (x )求导得f ′(x )=-3x 2+2ax , 由函数f (x )在x =2处取得极值知f ′(2)=0, 即-3×4+2a ×2=0,∴a =3.由此可得f (x )=-x 3+3x 2-4,f ′(x )=-3x 2+6x , 易知f (x )在(-1,0)上单调递减,在(0,1)上单调递增, ∴当m ∈[-1,1]时,f (m )min =f (0)=-4. 又∵f ′(x )=-3x 2+6x 的图象开口向下, 且对称轴为x =1,∴当n ∈[-1,1]时, f ′(n )min =f ′(-1)=-9. 故f (m )+f ′(n )的最小值为-13. 答案 -1312.(2016·南通调研)若函数f (x )=x 33-a 2x 2+x +1在区间⎝ ⎛⎭⎪⎫12,3上有极值点,则实数a 的取值范围是________.解析 若函数f (x )在区间⎝ ⎛⎭⎪⎫12,3上无极值,则当x ∈⎝ ⎛⎭⎪⎫12,3时,f ′(x )=x 2-ax +1≥0恒成立或当x ∈⎝ ⎛⎭⎪⎫12,3时,f ′(x )=x 2-ax +1≤0恒成立.当x ∈⎝ ⎛⎭⎪⎫12,3时,y =x +1x 的值域是⎣⎢⎡⎭⎪⎫2,103;当x ∈⎝ ⎛⎭⎪⎫12,3时,f ′(x )=x 2-ax +1≥0,即a ≤x +1x 恒成立,a ≤2;当x ∈⎝ ⎛⎭⎪⎫12,3,f ′(x )=x 2-ax +1≤0,即a ≥x +1x 恒成立,a ≥103.因此要使函数f (x )在⎝ ⎛⎭⎪⎫12,3上有极值点,实数 a 的取值范围是⎝ ⎛⎭⎪⎫2,103.答案 ⎝ ⎛⎭⎪⎫2,10313.(2015·太原二模)已知f ′(x )=a (x +1)(x -a )是函数f (x )的导函数,若f (x )在x =a 处取得极大值,则实数a 的取值范围是________.解析 ∵f ′(-1)=f ′(a )=0,∴当a <-1时,x <a 时,f ′(x )<0,f (x )单调递减;a <x <-1时,f ′(x )>0,f (x )单调递增;x >-1时,f ′(x )<0,f (x )单调递减,此时f (x )在x =a 处取得极小值,不符合题意.当-1<a <0时,x <-1时,f ′(x )<0,f (x )单调递减;-1<x <a 时,f ′(x )>0,f (x )单调递增;x >a 时,f ′(x )<0,f (x )单调递减,此时f (x )在x =a 处取得极大值,符合题意.当a >0时,x <-1时,f ′(x )>0,f (x )单调递增;-1<x <a 时,f ′(x )<0,f (x )单调递减;x >a 时,f ′(x )>0,f (x )单调递增,此时f (x )在x =a 处取得极小值,不符合题意.∴实数a 的取值范围是(-1,0). 答案 (-1,0)14.(2015·南京、盐城调研)已知a ∈R ,函数f (x )=a x +ln x -1. (1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)求f (x )在区间(0,e]上的最小值.解 (1)当a =1时,f (x )=1x +ln x -1,x ∈(0,+∞), 所以f ′(x )=-1x 2+1x =x -1x 2,x ∈(0,+∞).因此f ′(2)=14,即曲线y =f (x )在点(2,f (2))处的切线斜率为14. 又f (2)=ln 2-12,所以曲线y =f (x )在点(2,f (2))处的切线方程为 y -⎝ ⎛⎭⎪⎫ln 2-12=14(x -2),即x -4y +4ln 2-4=0. (2)因为f (x )=ax +ln x -1,所以f ′(x )=-a x 2+1x =x -ax 2,x ∈(0,+∞). 令f ′(x )=0,得x =a .①若a ≤0,则f ′(x )>0,f (x )在区间(0,e]上单调递增,此时函数f (x )无最小值. ②若0<a <e ,当x ∈(0,a )时,f ′(x )<0, 函数f (x )在区间(0,a )上单调递减,当x ∈(a ,e]时, f ′(x )>0,函数f (x )在区间(a ,e]上单调递增,所以当x=a时,函数f(x)取得最小值ln a.③若a≥e,则当x∈(0,e]时,f′(x)≤0,函数f(x)在区间(0,e]上单调递减,所以当x=e时,函数f(x)取得最小值a e.综上可知,当a≤0时,函数f(x)在区间(0,e]上无最小值;当0<a<e时,函数f(x)在区间(0,e]上的最小值为ln a;当a≥e时,函数f(x)在区间(0,e]上的最小值为a e.。
§3.1 导数的运算及几何意义[知识梳理]1.导数与导函数的概念(1)当x 1趋于x 0,即Δx 趋于0时,如果平均变化率趋于一个固定的值,那么这个值就是函数y =f (x )在x 0点的瞬时变化率.在数学中,称瞬时变化率为函数y =f (x )在x 0点的导数,通常用符号f ′(x 0)表示,记作f ′(x 0)=lim x 1→x 0f (x 1)-f (x 0)x 1-x 0=lim Δx →0f (x 0+Δx )-f (x 0)Δx.(2)如果一个函数f (x )在区间(a ,b )上的每一点x 处都有导数,导数值记为f ′(x ):f ′(x )=limΔx →0 f (x +Δx )-f (x )Δx,则f ′(x )是关于x 的函数,称f ′(x )为f (x )的导函数,通常也简称为导数.2.导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )(x 0,f (x 0))处的切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).3.基本初等函数的导数公式4.若f ′(x ),g ′(x )存在,则有 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)与(f (x 0))′表示的意义相同.( ) (2)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( ) (5)函数f (x )=sin(-x )的导数是f ′(x )=cos x .( ) 答案:(1)× (2)× (3)√ (4)× (5)×[基础自测]1.(教材改编)f ′(x )是函数f (x )=13x 3+2x +1的导函数,则f ′(-1)的值为( )A .0B .3C .4D .-73解析:选B.∵f (x )=13x 3+2x +1,∴f ′(x )=x 2+2. ∴f ′(-1)=3.2.如图所示为函数y =f (x ),y =g (x )的导函数的图像,那么y =f (x ),y =g (x )的图像可能是( )解析:选D.由y =f ′(x )的图像知y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )的切线的斜率在(0,+∞)上也单调递减,故可排除A ,C.又由图像知y =f ′(x )与y =g ′(x )的图像在x =x 0处相交,说明y =f (x )与y =g (x )的图像在x =x 0处的切线的斜率相同,故可排除B.故选D.3.设函数f (x )的导数为f ′(x ),且f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,则f ′⎝ ⎛⎭⎪⎫π4=________.解析:因为f (x )=f ′⎝ ⎛⎭⎪⎫π2sin x +cos x ,所以f ′(x )=f ′⎝ ⎛⎭⎪⎫π2cos x -sin x ,所以f ′⎝ ⎛⎭⎪⎫π2=f ′⎝ ⎛⎭⎪⎫π2cos π2-sin π2,即f ′⎝ ⎛⎭⎪⎫π2=-1,所以f (x )=-sin x +cos x .f ′(x )=-cos x -sin x .故f ′⎝ ⎛⎭⎪⎫π4=-cos π4-sin π4=- 2.答案:- 24.(2016·高考全国甲卷)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.解析:分别求出两个对应函数的导数,设出两个切点坐标,利用导数得到两个切点坐标之间的关系,进而求出切线斜率,求出b的值.求得(ln x+2)′=1x ,[ln(x+1)]′=1x+1.设曲线y=ln x+2上的切点为(x1,y1),曲线y=ln(x+1)上的切点为(x2,y2),则k=1x1=1x2+1,所以x2+1=x1.又y1=ln x1+2,y2=ln(x2+1)=ln x1,所以k=y1-y2x1-x2=2,所以x1=1k =12,y1=ln 12+2=2-ln 2,所以b=y1-kx1=2-ln 2-1=1-ln 2.答案:1-ln 25.(2016·高考全国丙卷)已知f (x)为偶函数,当x<0时,f (x)=ln(-x)+3x,则曲线y=f (x)在点(1,-3)处的切线方程是________.解析:先利用函数奇偶性求出x>0时f (x)的解析式,再求切线方程.因为f (x)为偶函数,所以当x>0时,f (x)=f (-x)=ln x-3x,所以f ′(x)=1x -3,则f ′(1)=-2.所以y=f (x)在点(1,-3)处的切线方程为y+3=-2(x-1),即y=-2x-1.答案:y=-2x-1类型一导数的运算[例1]求下列函数的导数.(1)y=x2sin x;(2)y=ln x+1 x;(3)y =cos x e x ;(4)y =x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2.解 (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (2)y ′=⎝ ⎛⎭⎪⎫ln x +1x ′=(ln x )′+⎝ ⎛⎭⎪⎫1x ′=1x -1x 2. (3)y ′=⎝ ⎛⎭⎪⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos xe x.(4)∵y =x sin ⎝ ⎛⎭⎪⎫2x +π2cos ⎝ ⎛⎭⎪⎫2x +π2=12x sin(4x +π)=-12x sin 4x , ∴y ′=-12sin 4x -12x ·4cos 4x =-12sin 4x -2x cos 4x .[方法引航] 求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错;遇到函数的商的形式时,如能化简则化简,这样可避免使用商的求导法则,减少运算量.1.(1)f (x )=x (2 016+ln x ),若f ′(x 0)=2 017,则x 0等于( ) A .e 2 B .1 C .ln 2D .e解析:选B.f ′(x )=2 016+ln x +x ×1x =2 017+ln x ,故由f ′(x 0)=2 017得2 017+ln x 0=2 017,则ln x 0=0,解得x 0=1.(2)若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( ) A .-1B .-2C .2D .0解析:选B.f ′(x )=4ax 3+2bx ,∵f ′(x )为奇函数,且f ′(1)=2,∴f ′(-1)=-2.类型二 导数的几何意义题点1 已知切点的切线方程问题[例2] (1)(2017·云南昆明一检)函数f (x )=ln x -2xx 的图像在点(1,-2)处的切线方程为( )A .2x -y -4=0B .2x +y =0C .x -y -3=0D .x +y +1=0解析 f ′(x )=1-ln xx 2,则f ′(1)=1, 故该切线方程为y -(-2)=x -1, 即x -y -3=0. 答案 C(2)曲线y =e -2x +1在点(0,2)处的切线与直线y =0和y =x 围成的三角形的面积为________.解析 ∵y ′=-2e -2x ,曲线在点(0,2)处的切线斜率k =-2,∴切线方程为y =-2x +2,该直线与直线y =0和y =x 围成的三角形如图所示,其中直线y =-2x +2与y =x 的交点为A ⎝ ⎛⎭⎪⎫23,23,∴三角形的面积S =12×1×23=13.答案 13题点2 未知切点的切线方程问题[例3] (1)(2017·山东威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A .x +y -1=0B .x -y -1=0C .x +y +1=0D .x -y +1=0解析 ∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0).又∵f ′(x )=1+ln x ,∴⎩⎪⎨⎪⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0. ∴切点为(1,0), ∴f ′(1)=1+ln 1=1. ∴直线l 的方程为y =x -1, 即x -y -1=0.故选B. 答案 B(2)(2016·高考山东卷)若函数y =f (x )的图像上存在两点,使得函数的图像在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( )A .y =sin xB .y =ln xC .y =e xD .y =x 3解析 设函数y =f (x )图像上的两点分别为(x 1,y 1),(x 2,y 2),且x 1≠x 2,则由题意知只需函数y =f (x )满足f ′(x 1)·f ′(x 2)=-1即可.y =f (x )=sin x 的导函数为f ′(x )=cos x ,则f ′(0)·f ′(π)=-1,故函数y =sin x 具有T 性质;y =f (x )=ln x 的导函数为f ′(x )=1x ,则f ′(x 1)·f ′(x 2)=1x 1x 2>0,故函数y =ln x 不具有T 性质;y =f (x )=e x 的导函数为f ′(x )=e x ,则f ′(x 1)·f ′(x 2)=e x 1+x 2>0,故函数y =e x 不具有T 性质;y =f (x )=x 3的导函数为f ′(x )=3x 2,则f ′(x 1)·f ′(x 2)=9x 21x 22≥0,故函数y =x 3不具有T 性质.故选A.答案 A题点3 和切线有关的参数问题[例4] 已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图像都相切,且与f (x )图像的切点为(1,f (1)),则m 等于( )A .-1B .-3C .-4D .-2解析 ∵f ′(x )=1x ,∴直线l 的斜率为k =f ′(1)=1. 又f (1)=0,∴切线l 的方程为y =x -1. g ′(x )=x +m ,设直线l 与g (x )的图像的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0, 于是解得m =-2.故选D. 答案 D[方法引航] 导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面:(1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值:k =f ′(x 0). (2)已知斜率k ,求切点A (x 1,f (x 1)),即解方程f ′(x 1)=k .(3)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎪⎨⎪⎧y 1=f (x 1),y 0-y 1=f ′(x 1)(x 0-x 1)求解即可. (4)函数图像在每一点处的切线斜率的变化情况反映函数图像在相应点处的变化情况,由切线的倾斜程度可以判断出函数图像升降的快慢.2.(1)若直线y =2x +m 是曲线y =x ln x 的切线,则实数m 的值为________. 解析:设切点为(x 0,x 0ln x 0), 由y ′=(x ln x )′=ln x +x ·1x =ln x +1, 得切线的斜率k =ln x 0+1,故切线方程为y -x 0ln x 0=(ln x 0+1)(x -x 0), 整理得y =(ln x 0+1)x -x 0,与y =2x +m 比较得 ⎩⎪⎨⎪⎧ln x 0+1=2,-x 0=m ,解得x 0=e ,故m =-e. 答案:-e(2)已知函数f (x )的图像在点M (1,f (1))处的切线方程2x -3y +1=0,则f (1)+f ′(1)=________.解析:依题意得2×1-3f (1)+1=0,即f (1)=1,由切线的斜率k =23,则f ′(1)=23,则f (1)+f ′(1)=53.答案:53[易错警示系列]求曲线的切线方程条件审视不准致误(四)典例 (12分)若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a都相切,求a 的值.[易错] 由于题目中没有指明点O (0,0)的位置情况,容易忽略点O 在曲线y =x 3-3x 2+2x 上这个隐含条件,进而不考虑O 点为切点的情况.[解] 易知点O (0,0)在曲线y =x 3-3x 2+2x 上. (1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x . 由⎩⎪⎨⎪⎧y =2x ,y =x 2+a ,得x 2-2x +a =0,依题意Δ=4-4a =0,得a =1.[4分](2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0),则y 0=x 30-3x 20+2x 0,且k =y ′|x =x 0=3x 20-6x 0+2,①又k =y 0x 0=x 20-3x 0+2,②联立①②得,得x 0=32(x 0=0舍去),所以k =-14, 故直线l 的方程为y =-14x .[7分]由⎩⎨⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0,依题意,Δ=116-4a =0,得a =164.[10分] 综上,a =1或a =164.[12分][警示] 对于求曲线的切线方程没有明确切点的情况,要先判断切线所过点是否在曲线上;若所过点在曲线上,要求该点是否为切点进行讨论.思想方法感悟提高[方法与技巧]1.f ′(x0)代表函数f (x)在x=x0处的导数值;(f (x0))′是函数值f (x0)的导数,而函数值f (x0)是一个常数,其导数一定为0,即(f (x0))′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.3.未知切点的曲线切线问题,一定要先设切点,利用导数的几何意义表示切线的斜率建立方程.[失误与防范]1.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.复合函数的导数要正确分解函数的结构,由外向内逐层求导.2.求曲线切线时,要分清在点P处的切线与过P点的切线的区别,前者只有一条,而后者包括了前者.3.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别.课时规范训练[单独成册][A组基础演练](时间:40分钟)1.若曲线f (x)=a cos x与曲线g(x)=x2+bx+1在交点(0,m)处有公切线,则a+b=()A.-1B.0C.1 D.2解析:选C.依题意得,f ′(x)=-a sin x,g′(x)=2x+b,于是有f ′(0)=g′(0),即-a sin 0=2×0+b,b=0,m=f (0)=g(0),即m=a=1,因此a+b=1.2.已知函数f (x)=(x2+2)(ax2+b),且f ′(1)=2,则f ′(-1)=()A.-1 B.-2C.2 D.0解析:选B.f (x)=(x2+2)(ax2+b)=ax4+(2a+b)x2+2b,f ′(x)=4ax3+2(2a +b)x为奇函数,所以f ′(-1)=-f ′(1)=-2.3.已知直线y=x+1与曲线y=ln(x+a)相切,则a的值为()A.1 B.2C.-1 D.-2解析:选B.设直线y=x+1与曲线y=ln(x+a)的切点为(x0,y0),则y0=1+x0,y0=ln(x0+a).又y′=1x+a ,所以y′|x=x0=1x0+a=1,即x0+a=1.又y0=ln(x0+a),所以y0=0,则x0=-1,所以a=2.4.给出定义:设f ′(x)是函数y=f (x)的导函数,f ″(x)是函数f ′(x)的导函数,若方程f ″(x)=0有实数解x0,则称点(x0,f (x0))为函数y=f (x)的“拐点”.已知函数f (x)=3x+4sin x-cos x的拐点是M(x0,f (x0)),则点M() A.在直线y=-3x上B.在直线y=3x上C.在直线y=-4x上D.在直线y=4x上解析:选B.f ′(x)=3+4cos x+sin x,f ″(x)=-4sin x+cos x,由题意知4sin x0-cos x0=0,所以f (x0)=3x0,故M(x0,f (x0))在直线y=3x上.故选B.5. 已知y=f (x)是可导函数,如图,直线y=kx+2是曲线y=f (x)在x=3处的切线,令g(x)=xf (x),g′(x)是g(x)的导函数,则g′(3)等于()A .-1B .0C .2D .4解析:选B.由题图可知曲线y =f (x )在x =3处的切线斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3),又由题图可知f (3)=1,∴g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0. 6.已知曲线y =1e x +1,则曲线的切线斜率取得最小值时的直线方程为( ) A .x +4y -2=0 B .x -4y +2=0C .4x +2y -1=0D .4x -2y -1=0解析:选A.y ′=-e x (e x +1)2=-1e x +1e x +2, 因为e x >0,所以e x +1e x ≥2e x ×1e x =2(当且仅当e x =1e x ,即x =0时取等号),则e x +1e x +2≥4,故y ′=-1e x +1e x +2≥-14当(x =0时取等号). 当x =0时,曲线的切线斜率取得最小值,此时切点的坐标为⎝ ⎛⎭⎪⎫0,12,切线的方程为y-12=-14(x-0),即x+4y-2=0.故选A.7.已知f (x)=x ln x,若过曲线y=f (x)上的点P的切线斜率为2,则点P的坐标为________.解析:设P(m,n),易知f ′(x)=1+ln x,则切线斜率为1+ln m=2,解得m=e,∴n=m ln m=eln e=e.答案:(e,e)8.已知函数f (x)=x3-3x,若过点A(0,16)且与曲线y=f (x)相切的直线方程为y=ax+16,则实数a的值是________.解析:先设切点为M(x0,y0),则切点在曲线上有y0=x30-3x0,①求导数得到切线的斜率k=f ′(x0)=3x20-3,又切线l过A、M两点,所以k=y0-16 x0,则3x20-3=y0-16x0,②联立①②可解得x0=-2,y0=-2,从而实数a的值为a=k=-2-16-2=9.答案:99.求下列函数的导数.(1)y=x·tan x;(2)y=(x+1)(x+2)(x+3);(3)y =ln x x 2+1. 解:(1)y ′=(x ·tan x )′=x ′tan x +x (tan x )′=tan x +x ·⎝ ⎛⎭⎪⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +x cos 2x .(2)y ′=(x +1)′[(x +2)(x +3)]+(x +1)[(x +2)(x +3)]′=(x +2)(x +3)+(x +1)(x +2)+(x +1)(x +3)=3x 2+12x +11.(3)y ′=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x (x 2+1)-2x ln x(x 2+1)2=x 2+1-2x 2ln x x (x 2+1)2. 10.设函数f (x )=ax -b x ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y-12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.解:(1)方程7x -4y -12=0可化为y =74x -3.当x =2时,y =12.又f ′(x )=a +b x 2,于是⎩⎪⎨⎪⎧ 2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3. 故f (x )=x -3x .(2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0), 即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0). 令x =0,得y =-6x 0, 从而得切线与直线x =0的交点的坐标为⎝ ⎛⎭⎪⎫0,-6x 0. 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,且此定值为6.[B 组 能力突破](时间:25分钟)11.已知曲线C :f (x )=x 3-ax +a ,若过曲线C 外一点A (1,0)引曲线C 的两条切线,它们的倾斜角互补,则a 的值为( )A.278B .-2C .2D .-278解析:选A.设切点坐标为(t ,t 3-at +a ).由题意知,f ′(x )=3x 2-a ,切线的斜率k =y ′|x =t =3t 2-a ①,所以切线方程为y -(t 3-at +a )=(3t 2-a )(x -t )②.将点A (1,0)代入②式得-(t 3-at +a )=(3t 2-a )(1-t ),解得t =0或t =32.分别将t =0和t =32代入①式,得k =-a 和k =274-a ,由题意得它们互为相反数,故a =278.12.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,则x 1·x 2·…·x n 的值为( )A.1nB .1n +1 C.n n +1 D .1解析:选B.对y =x n +1(n ∈N *)求导得y ′=(n +1)x n ,令x =1得在点(1,1)处的切线的斜率k =n +1,在点(1,1)处的切线方程为y -1=(n +1)(x -1),由切线与x 轴的交点横坐标为x n ,不妨设y =0,所以x n =n n +1,则x 1·x 2·…·x n =12×23×34×…×n -1n ×n n +1=1n +1,故选B. 13.若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析:∵f (x )=12x 2-ax +ln x ,∴f ′(x )=x -a +1x .∵f (x )存在垂直于y 轴的切线,∴f ′(x )存在零点,即x +1x -a =0有解,∴a =x +1x ≥2.答案:[2,+∞)14.设函数f (x )=(x -a )(x -b )(x -c )(a ,b ,c 是两两不等的常数),则a f ′(a )+b f ′(b )+c f ′(c )=________. 解析:∵f (x )=x 3-(a +b +c )x 2+(ab +bc +ca )x -abc ,∴f ′(x )=3x 2-2(a +b +c )x +ab +bc +ca ,f ′(a )=(a -b )(a -c ),f ′(b )=(b -a )(b -c ),f ′(c )=(c -a )(c -b ).∴a f ′(a )+b f ′(b )+c f ′(c )=a (a -b )(a -c )+b (b -a )(b -c )+c (c -a )(c -b )=a (b -c )-b (a -c )+c (a -b )(a -b )(a -c )(b -c )=0. 答案:015.已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.(1)求a 的值;(2)是否存在k ,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由.解:(1)由已知得f ′(x )=3ax 2+6x -6a ,∵f ′(-1)=0,∴3a -6-6a =0,∴a =-2.(2)存在.由已知得,直线m 恒过定点(0,9),若直线m 是曲线y =g (x )的切线,则设切点为(x 0,3x 20+6x 0+12).∵g ′(x 0)=6x 0+6,∴切线方程为y -(3x 20+6x 0+12)=(6x 0+6)(x -x 0),将(0,9)代入切线方程,解得x 0=±1.当x 0=-1时,切线方程为y =9;当x0=1时,切线方程为y=12x+9.由(1)知f (x)=-2x3+3x2+12x-11,①由f ′(x)=0得-6x2+6x+12=0,解得x=-1或x=2.在x=-1处,y=f (x)的切线方程为y=-18;在x=2处,y=f (x)的切线方程为y=9.∴y=f (x)与y=g(x)的公切线是y=9.②由f ′(x)=12得-6x2+6x+12=12,解得x=0或x=1.在x=0处,y=f (x)的切线方程为y=12x-11;在x=1处,y=f (x)的切线方程为y=12x-10;∴y=f (x)与y=g(x)的公切线不是y=12x+9.综上所述,y=f (x)与y=g(x)的公切线是y=9,此时k=0.§3.2导数的应用[知识梳理]1.函数的单调性如果在某个区间内,函数y=f (x)的导数f ′(x)>0,则在这个区间上,函数y =f (x)是增加的;如果在某个区间内,函数y=f (x)的导数f ′(x)<0,则在这个区间上,函数y=f (x)是减少的.2.函数的极值如果函数y=f (x)在区间(a,x0)上是增加的,在区间(x0,b)上是减少的,则x0是极大值点,f (x0)是极大值.如果函数y=f (x)在区间(a,x0)上是减少的,在区间(x0,b)上是增加的,则x0是极小值点,f (x0)是极小值.3.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.(3)设函数f (x )在[a ,b ]上连续,在(a ,b )内可导,求f (x )在[a ,b ]上的最大值和最小值的步骤如下:①求f (x )在(a ,b )内的极值;②将f (x )的各极值与f (a ),f (b )进行比较,其中最大的一个是最大值,最小的一个是最小值.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)若函数f (x )在(a ,b )内单调递增,那么一定有f ′(x )>0.( )(2)如果函数f (x )在某个区间内恒有f ′(x )=0,则f (x )在此区间内没有单调性.( )(3)函数的极大值不一定比极小值大.( )(4)对可导函数f (x ),f ′(x 0)=0是x 0点为极值点的充要条件.( )(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( ) 答案:(1)× (2)√ (3)√ (4)× (5)√[基础自测]1.函数f (x )=ln x -ax (a >0)的单调递增区间为( )A.⎝ ⎛⎭⎪⎫0,1a B .⎝ ⎛⎭⎪⎫1a ,+∞ C.⎝ ⎛⎭⎪⎫-∞,1a D .(-∞,a )解析:选A.由f ′(x )=1x -a >0,得0<x <1a ,∴f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,1a . 2.如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处开始下降,已知下降飞行轨迹为某三次函数图像的一部分,则该函数的解析式为( )A .y =1125x 3-35x B .y =2125x 3-45x C .y =3125x 3-xD .y =-3125x 3+15x解析:选A.函数在[-5,5]上为减函数,所以在[-5,5]上y ′≤0,经检验只有A 符合.故选A.3.已知e 为自然对数的底数,设函数f (x )=(e x -1)(x -1)k (k =1.2),则( ) A .当k =1时,f (x )在x =1处取到极小值 B .当k =1时,f (x )在x =1处取到极大值 C .当k =2时,f (x )在x =1处取到极小值 D .当k =2时,f (x )在x =1处取到极大值解析:选C.当k =1时,f ′(x )=e x ·x -1,f ′(1)≠0, ∴x =1不是f (x )的极值点.当k =2时,f ′(x )=(x -1)(x e x +e x -2),显然f ′(1)=0,且在x =1附近的左侧,f ′(x )<0, 当x >1时,f ′(x )>0,∴f (x )在x =1处取到极小值,故选C.4.(教材改编)如图是f (x )的导函数f ′(x )的图像,则f (x )的极小值点的个数为________.解析:由题意知在x =-1处f ′(-1)=0,且其左右两侧导数符号为左负右正.答案:15.设1<x <2,则ln x x ,⎝ ⎛⎭⎪⎫ln x x 2,ln x 2x 2的大小关系是________.(用“<”连接)解析:令f (x )=x -ln x (1<x <2), 则f ′(x )=1-1x =x -1x >0, ∴函数y =f (x )(1<x <2)为增函数, ∴f (x )>f (1)=1>0,∴x >ln x >0⇒0<ln xx <1, ∴⎝ ⎛⎭⎪⎫ln x x 2<ln x x . 又ln x 2x 2-ln x x =2ln x -x ln x x 2=(2-x )ln x x 2>0,∴⎝ ⎛⎭⎪⎫ln x x 2<ln x x <ln x 2x 2. 答案:⎝ ⎛⎭⎪⎫ln x x 2<ln x x <ln x2x 2课时1 导数与函数的单调性类型一 不含参数的函数的单调性[例1] 求函数f (x )=ln xx 的单调区间. 解 函数f (x )的定义域为(0,+∞). 因为f (x )=ln xx , 所以f ′(x )=1-ln xx 2.当f ′(x )>0,即0<x <e 时,函数f (x )单调递增; 当f ′(x )<0,即x >e 时,函数f (x )单调递减.故函数f (x )的单调递增区间为(0,e), 单调递减区间为(e ,+∞).[方法引航] 确定函数单调区间的步骤: (1)确定函数f (x )的定义域; (2)求f ′(x );(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间; (4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.1.函数y =12x 2-ln x 的单调递减区间为( ) A .(-1,1] B .(0,1] C .[1,+∞)D .(0,+∞)解析:选B.y =12x 2-ln x ,y ′=x -1x =x 2-1x =(x -1)(x +1)x(x >0).令y ′≤0,得0<x ≤1,∴递减区间为(0,1].类型二 含参数的函数的单调性[例2] (2017·山东青岛模拟)已知函数f (x )=ln x +ax +a +1x -1. (1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)当-12≤a ≤0时,讨论f (x )的单调性. 解 (1)当a =1时,f (x )=ln x +x +2x -1, 此时f ′(x )=1x +1-2x 2, f ′(2)=12+1-24=1.又因为f (2)=ln 2+2+22-1=ln 2+2, 所以切线方程为y -(ln 2+2)=x -2,整理得x -y +ln 2=0. (2)f ′(x )=1x +a -1+a x 2=ax 2+x -a -1x 2=(ax +a +1)(x -1)x 2.当a =0时,f ′(x )=x -1x 2.此时,在(0,1)上,f ′(x )<0,f (x )单调递减; 在(1,+∞)上,f ′(x )>0,f (x )单调递增. 当-12≤a <0时, f ′(x )=a ⎝⎛⎭⎪⎫x +a +1a (x -1)x 2.当-1+a a =1,即a =-12时,f ′(x )=-(x -1)22x 2≤0在(0,+∞)上恒成立, 所以f (x )在(0,+∞)上单调递减.当-12<a <0时,-1+a a >1,此时在(0,1)或⎝ ⎛⎭⎪⎫-1+a a ,+∞上,f ′(x )<0,f (x )单调递减,在⎝⎛⎭⎪⎫1,-1+a a 上,f ′(x )>0,f (x )单调递增. 综上,当a =0时,f (x )在(0,1)上单调递减,在(1,+∞)上单调递增; 当-12<a <0时,f (x )在(0,1)或⎝ ⎛⎭⎪⎫-1+a a ,+∞上单调递减,在⎝ ⎛⎭⎪⎫1,-1+a a 上单调递增;当a =-12时,f (x )在(0,+∞)上单调递减.[方法引航] (1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.(3)个别导数为0的点不影响所在区间的单调性,如 f (x )=x 3,f ′(x )=3x 2≥0(f ′(x )=0在x =0时取到),f (x )在R 上是增函数.2.(2017·陕西西安模拟)讨论函数f (x )=(a -1)·ln x +ax 2+1的单调性. 解:f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x .①当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; ②当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减; ③当0<a <1时,令f ′(x )=0,解得x =1-a2a ,则当x ∈⎝⎛⎭⎪⎫0, 1-a 2a 时,f ′(x )<0;当x ∈⎝⎛⎭⎪⎫1-a2a ,+∞时,f ′(x )>0,故f (x )在⎝⎛⎭⎪⎫0,1-a 2a 上单调递减,在⎝⎛⎭⎪⎫1-a2a ,+∞上单调递增.类型三 利用函数单调性求参数[例3] (2017·辽宁锦州质检)设函数f (x )=13x 3-a2x 2+bx +c ,曲线y =f (x )在点(0,f (0))处的切线方程为y =1.(1)求b ,c 的值;(2)若a >0,求函数f (x )的单调区间;(3)设函数g (x )=f (x )+2x ,且g (x )在区间(-2,-1)内存在单调递减区间,求实数a 的取值范围.解 (1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧ f (0)=1,f ′(0)=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0), 当x ∈(-∞,0)时,f ′(x )>0; 当x ∈(0,a )时,f ′(x )<0; 当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞), 单调递减区间为(0,a ). (3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1),使不等式 g ′(x )=x 2-ax +2<0成立,即x ∈(-2,-1)时,a <⎝ ⎛⎭⎪⎫x +2x max =-22,当且仅当x =2x 即x =-2时等号成立.所以满足要求的a 的取值范围是(-∞,-22). [引申探究] 在本例3(3)中,1.若g (x )在(-2,-1)内为减函数,如何求解? 解:∵g ′(x )=x 2-ax +2, 且g (x )在(-2,-1)内为减函数, ∴g ′(x )≤0,即x 2-ax +2≤0 在(-2,-1)内恒成立,∴⎩⎪⎨⎪⎧ g ′(-2)≤0,g ′(-1)≤0,即⎩⎪⎨⎪⎧4+2a +2≤0,1+a +2≤0,解之得a≤-3,即实数a的取值范围为(-∞,-3].2.若g(x)在单调减区间为(-2,-1),求a的值.解:∵g(x)的单调减区间为(-2,-1),∴x1=-2,x2=-1是g′(x)=0的两个根,∴(-2)+(-1)=a,即a=-3.3.若g(x)在(-2,-1)上不单调,求a的取值范围.解:由引申探究1知g(x)在(-2,-1)上为减函数,a的范围是(-∞,-3],在(-2,-1)上恒成立,又y 若g(x)在(-2,-1)上为增函数,可知a≥x+2x的值域为(-3,-22],=x+2x∴a的范围是[-22,+∞),∴函数g(x)在(-2,-1)上单调时,a的取值范围是(-∞,-3]∪[-22,+∞),故g(x)在(-2,-1)上不单调时,实数a的取值范围是(-3,-22).[方法引航]已知函数单调性,求参数范围的两个方法(1)利用集合间的包含关系处理:y=f (x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集.(2)转化为不等式的恒成立问题:即“若函数单调递增,则f ′(x)≥0;若函数单调递减,则f ′(x)≤0”来求解.3.已知函数f (x)=x3-ax-1,求下列条件下实数a的取值范围.(1)若f (x)在区间(1,+∞)上为增函数,求a的取值范围.(2)若f (x)在区间(-1,1)上为减函数,试求a的取值范围.解:(1)因为 f ′(x)=3x2-a,且f (x)在区间(1,+∞)上为增函数,所以f ′(x)≥0在(1,+∞)上恒成立,即3x2-a≥0在(1,+∞)上恒成立,所以a≤3x2在(1,+∞)上恒成立,所以a≤3,即a的取值范围为(-∞,3].(2)由f ′(x)=3x2-a≤0在(-1,1)上恒成立,得a≥3x2在(-1,1)上恒成立.因为-1<x<1,所以3x2<3,所以a≥3.即当a的取值范围为[3,+∞)时,f (x)在(-1,1)上为减函数.[思想与方法系列]分类讨论思想研究函数的单调性(五)典例(12分)(2017·甘肃兰州市、张掖市联考)已知函数f (x)=ln x,g(x)=f (x)+ax2+bx,其中函数g(x)的图像在点(1,g(1))处的切线平行于x轴.(1)确定a与b的关系;(2)若a≥0,试讨论函数g(x)的单调性.思维点拨依据g(x)的切线条件可得g′(1)=0得a,b关系,代g(x)后消去b,对a进行分类讨论确定g′(x)的符号.[解](1)依题意得g(x)=ln x+ax2+bx,则g′(x)=1+2ax+b.[2分]x由函数g(x)的图像在点(1,g(1))处的切线平行于x轴得:g′(1)=1+2a+b =0,∴b=-2a-1.[4分](2)由(1)得g ′(x )=2ax 2-(2a +1)x +1x=(2ax -1)(x -1)x.∵函数g (x )的定义域为(0,+∞), ∴当a =0时,g ′(x )=-x -1x .由g ′(x )>0,得0<x <1,由g ′(x )<0,得x >1,[6分] 当a >0时,令g ′(x )=0,得x =1或x =12a ,[7分] 若12a <1,即a >12,由g ′(x )>0,得x >1或0<x <12a ,由g ′(x )<0,得12a <x <1,若12a >1,即0<a <12, 由g ′(x )>0,得x >12a或0<x <1, 由g ′(x )<0,得1<x <12a ;[9分]若12a =1,即a =12,在(0,+∞)上恒有g ′(x )≥0.[11分]综上可得:当a =0时,函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减;当0<a <12时,函数g (x )在(0,1)上单调递增, 在⎝ ⎛⎭⎪⎫1,12a 上单调递减,在⎝ ⎛⎭⎪⎫12a ,+∞上单调递增; 当a =12时,函数g (x )在(0,+∞)上单调递增; 当a >12时,函数g (x )在⎝ ⎛⎭⎪⎫0,12a 上单调递增,在⎝ ⎛⎭⎪⎫12a ,1上单调递减,在(1,+∞)上单调递增.[12分] [警示] (1)含参数的函数的单调性问题一般要分类讨论,常见的分类讨论标准有以下几种可能:①方程f ′(x )=0是否有根;②若f ′(x )=0有根,求出根后是否在定义域内;③若根在定义域内且有两个,比较根的大小是常见的分类方法.(2)本题求解先分a =0或a >0两种情况,再比较12a 和1的大小.思想方法 感悟提高[方法与技巧]1.已知函数解析式求单调区间,实质上是求f ′(x )>0,f ′(x )<0的解区间,并注意定义域.2.含参函数的单调性要分类讨论,通过确定导数的符号判断函数的单调性. 3.已知函数单调性可以利用已知区间和函数单调区间的包含关系或转化为恒成立问题的两种思路解决.[失误与防范]1.f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.2.注意两种表述“函数f (x )在(a ,b )上为减函数”与“函数f (x )的减区间为(a ,b )”的区别.3.讨论函数单调性要在定义域内进行,不要忽略函数的间断点.课时规范训练[单独成册][A 组 基础演练](时间:40分钟)1.已知函数f (x)=12x3+ax+4,则“a>0”是“f (x)在R上单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.f ′(x)=32x2+a,当a≥0时,f ′(x)≥0恒成立,故“a>0”是“f (x)在R上单调递增”的充分不必要条件.2.若f (x)=ln xx,e<a<b,则()A.f (a)>f (b) B.f (a)=f (b) C.f (a)<f (b) D.f (a)f (b)>1解析:选A.f ′(x)=1-ln xx2,当x>e时,f ′(x)<0,f (x)为减函数.∴f (a)>f (b).3.已知f (x)=x3-ax在[1,+∞)上是增函数,则a的最大值是()A.0 B.1C.2 D.3解析:选D.f ′(x)=3x2-a≥0在[1,+∞)上恒成立,即a≤3x2在[1,+∞)上恒成立,而(3x2)min=3×12=3.∴a≤3,故a max=3.4.定义在R上的函数f (x)满足:f ′(x)>f (x)恒成立,若x1<x2,则e x1f (x2)与e x2f (x1)的大小关系为()A.e x1f (x2)>e x2f (x1)B.e x1f (x2)<e x2f (x1)C.e x1f (x2)=e x2f (x1)D.e x1f (x2)与e x2f (x1)的大小关系不确定解析:选A.设g(x)=f(x)e x,则g′(x)=f′(x)e x-f(x)e x(e x)2=f′(x)-f(x)e x,由题意得g ′(x )>0,所以g (x )单调递增,当x 1<x 2时,g (x 1)<g (x 2),即f (x 1)e x 1<f (x 2)e x 2,所以e x 1f (x 2)>e x 2f (x 1).5.若函数f (x )=x +bx (b ∈R )的导函数在区间(1,2)上有零点,则f (x )在下列区间上单调递增的是( )A .(-2,0)B .(0,1)C .(1,+∞)D .(-∞,-2)解析:选D.由题意知,f ′(x )=1-b x 2,∵函数f (x )=x +bx (b ∈R )的导函数在区间(1,2)上有零点,∴当1-bx 2=0时,b =x 2,又x ∈(1,2),∴b ∈(1,4),令f ′(x )>0,解得x <-b 或x >b ,即f (x )的单调递增区间为(-∞,-b ),(b ,+∞),∵b ∈(1,4),∴(-∞,-2)符合题意.6.若函数f (x )=ax 3+x 恰有三个单调区间,则a 的取值范围是________. 解析:f (x )=ax 3+x 恰有三个单调区间,即函数f (x )恰有两个极值点,即f ′(x )=0有两个不等实根.∵f (x )=ax 3+x ,∴f ′(x )=3ax 2+1. 要使f ′(x )=0有两个不等实根,则a <0. 答案:(-∞,0)7.已知函数f (x )(x ∈R )满足f (1)=1,且f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________.解析:设F (x )=f (x )-12x ,∴F ′(x )=f ′(x )-12,∵f ′(x )<12,∴F ′(x )=f ′(x )-12<0,即函数F (x )在R 上单调递减.∵f (x 2)<x 22+12,∴f (x 2)-x 22<f (1)-12,∴F (x 2)<F(1),而函数F (x )在R 上单调递减,∴x 2>1,即x ∈(-∞,-1)∪(1,+∞).答案:(-∞,-1)∪(1,+∞)8.已知函数f (x )=3xa -2x 2+ln x (a >0).若函数f (x )在[1,2]上为单调函数,则a 的取值范围是________.解析:f ′(x )=3a -4x +1x , 若函数f (x )在[1,2]上为单调函数,即f ′(x )=3a -4x +1x ≥0或f ′(x )=3a -4x +1x ≤0在[1,2]上恒成立, 即3a ≥4x -1x 或3a ≤4x -1x 在[1,2]上恒成立. 令h (x )=4x -1x ,则h (x )在[1,2]上单调递增, 所以3a ≥h (2)或3a ≤h (1),即3a ≥152或3a ≤3,又a >0,所以0<a ≤25或a ≥1. 答案:⎝ ⎛⎦⎥⎤0,25∪[)1,+∞9.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.解:(1)对f (x )求导得f ′(x )=14-a x 2-1x , 由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,解得a =54. (2)由(1)知f (x )=x 4+54x -ln x -32, 则f ′(x )=x 2-4x -54x 2.令f ′(x)=0,解得x=-1或x=5.因为x=-1不在f (x)的定义域(0,+∞)内,故舍去.当x∈(0,5)时,f ′(x)<0,故f (x)在(0,5)内为减函数;当x∈(5,+∞)时,f ′(x)>0,故f (x)在(5,+∞)内为增函数.综上,f (x)的单调增区间为(5,+∞),单调减区间为(0,5).10.已知函数f (x)=ln x,g(x)=12ax+b.(1)若f (x)与g(x)在x=1处相切,求g(x)的表达式;(2)若φ(x)=m(x-1)x+1-f (x)在[1,+∞)上是减函数,求实数m的取值范围.解:(1)由已知得f ′(x)=1x,∴f ′(1)=1=12a,a=2.又∵g(1)=0=12a+b,∴b=-1,∴g(x)=x-1.(2)∵φ(x)=m(x-1)x+1-f (x)=m(x-1)x+1-ln x在[1,+∞)上是减函数.∴φ′(x)=-x2+(2m-2)x-1x(x+1)2≤0在[1,+∞)上恒成立,即x2-(2m-2)x+1≥0在[1,+∞)上恒成立,则2m-2≤x+1x,x∈[1,+∞),∵x+1x∈[2,+∞),∴2m-2≤2,m≤2.故实数m的取值范围是(-∞,2].[B 组 能力突破] (时间:25分钟)11.已知a ≥0,函数f (x )=(x 2-2ax )e x ,若f (x )在[-1,1]上是单调减函数,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,34 B .⎝ ⎛⎭⎪⎫12,34C.⎣⎢⎡⎭⎪⎫34,+∞ D .⎝ ⎛⎭⎪⎫0,12解析:选C.f ′(x )=(2x -2a )e x +(x 2-2ax )e x =[x 2+(2-2a )x -2a ]e x ,由题意知当x ∈[-1,1]时,f ′(x )≤0恒成立,即x 2+(2-2a )x -2a ≤0恒成立.令g (x )=x 2+(2-2a )x -2a ,则有⎩⎪⎨⎪⎧ g (-1)≤0.g (1)≤0,即⎩⎪⎨⎪⎧(-1)2+(2-2a )·(-1)-2a ≤0,12+2-2a -2a ≤0,解得a ≥34.12.已知f (x )是可导的函数,且f ′(x )<f (x )对于x ∈R 恒成立,则( ) A .f (1)<e f (0),f (2 016)>e 2 016f (0) B .f (1)>e f (0),f (2 016)>e 2 016f (0) C .f (1)>e f (0),f (2 016)<e 2 016f (0) D .f (1)<e f (0),f (2 016)<e 2 016f (0) 解析:选D.令g (x )=f (x )e x , 则g ′(x )=⎝ ⎛⎭⎪⎫f (x )e x ′=f ′(x )e x-f (x )e xe 2x=f ′(x )-f (x )e x<0,所以函数g (x )=f (x )e x 是单调减函数, 所以g (1)<g (0),g (2 016)<g (0),即f (1)e 1<f (0)1,f (2 016)e 2 016<f (0)1, 故f (1)<e f (0),f (2 016)<e 2 016f (0).13.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则a的取值范围是________.解析:对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝ ⎛⎭⎪⎫x -122+14+2a .当x ∈⎣⎢⎡⎭⎪⎫23,+∞时,f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a .令29+2a >0,解得a >-19. 所以a 的取值范围是⎝ ⎛⎭⎪⎫-19,+∞.答案:⎝ ⎛⎭⎪⎫-19,+∞14.已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范围是________.解析:由题意知f ′(x )=-x +4-3x =-(x -1)(x -3)x,由f ′(x )=0得函数f (x )的两个极值点为1和3, 则只要这两个极值点有一个在区间(t ,t +1)内, 函数f (x )在区间[t ,t +1]上就不单调, 由t <1<t +1或t <3<t +1,得0<t <1或2<t <3. 答案:(0,1)∪(2,3)15.已知函数f (x )=a ln x -ax -3(a ∈R ). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图像在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2⎣⎢⎡⎦⎥⎤f ′(x )+m 2在区间(t,3)上总不是单调函数,求m 的取值范围.解:(1)函数f (x )的定义域为(0,+∞), 且f ′(x )=a (1-x )x ,当a >0时,f (x )的增区间为(0,1), 减区间为(1,+∞);当a <0时,f (x )的增区间为(1,+∞), 减区间为(0,1);当a =0时,f (x )不是单调函数.(2)由(1)及题意得f ′(2)=-a2=1,即a =-2, ∴f (x )=-2ln x +2x -3,f ′(x )=2x -2x . ∴g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x ,∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t,3)上总不是单调函数, 即g ′(x )=0在区间(t,3)上有变号零点. 由于g ′(0)=-2,∴⎩⎪⎨⎪⎧g ′(t )<0,g ′(3)>0.当g ′(t )<0,即3t 2+(m +4)t -2<0时对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0,即m <-5且m <-9,即m <-9; 由g ′(3)>0,得m >-373. 所以-373<m <-9.即实数m 的取值范围是⎝ ⎛⎭⎪⎫-373,-9.课时2 导数与函数的极值、最值类型一 用导数解决函数极值问题题点1 根据函数图像判断极值[例1] 设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图像如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2) 解析 由题图可知,当x <-2时,f ′(x )>0; 当-2<x <1时,f ′(x )<0; 当1<x <2时,f ′(x )<0; 当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 答案 D题点2 求函数的极值[例2] (2017·山东济南模拟)已知函数f (x )=x -a ln x (a ∈R ). (1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.解 由题意知函数f (x )的定义域为(0,+∞),f ′(x )=1-a x . (1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x (x >0), 因为f (1)=1,f ′(1)=-1,所以曲线y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0.(2)由f ′(x )=1-a x =x -ax ,x >0知:①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值;②当a >0时,由f ′(x )=0,解得x =a .又当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0,从而函数f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值.题点3 已知极值求参数[例3] (1)(2017·广州模拟)已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,则a -b =________.解析 由题意得 f ′(x )=3x 2+6ax +b ,则⎩⎪⎨⎪⎧a 2+3a -b -1=0,b -6a +3=0,解得⎩⎪⎨⎪⎧ a =1,b =3或⎩⎪⎨⎪⎧a =2,b =9,经检验当a =1,b =3时,函数f (x )在x =-1处无法取得极值,而a =2,b =9满足题意,故a -b =-7.答案 -7(2)(2017·福建福州质量检测)若函数f (x )=x 33-a 2x 2+x +1在区间⎝ ⎛⎭⎪⎫12,3上有极值点,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫2,52 B .⎣⎢⎡⎭⎪⎫2,52C.⎝ ⎛⎭⎪⎫2,103 D .⎣⎢⎡⎭⎪⎫2,103解析 若函数f (x )在区间⎝ ⎛⎭⎪⎫12,3上无极值,则当x ∈⎝ ⎛⎭⎪⎫12,3时,f ′(x )=x 2-ax +1≥0恒成立或当x ∈⎝ ⎛⎭⎪⎫12,3时,f ′(x )=x 2-ax +1≤0恒成立.当x ∈⎝ ⎛⎭⎪⎫12,3时,y =x +1x 的值域是⎣⎢⎡⎭⎪⎫2,103;当x ∈⎝ ⎛⎭⎪⎫12,3时,f ′(x )=x 2-ax +1≥0,即a ≤x +1x 恒成立,a ≤2;当x ∈⎝ ⎛⎭⎪⎫12,3时,f ′(x )=x 2-ax +1≤0,即a ≥x +1x 恒成立,a ≥103.因此要使函数f (x )在⎝ ⎛⎭⎪⎫12,3上有极值点,实数a 的取值范围应是⎝ ⎛⎭⎪⎫2,103.答案 C[方法引航] (1)求函数f (x )极值的步骤:。