最新生物变异、育种知识点
- 格式:doc
- 大小:146.50 KB
- 文档页数:8
专题07 生物的变异、育种和进化→教材必背知识1、DNA分子中发生碱基对的替换、增添和缺失,而引起的基因结构的改变,叫做基因突变。
(P81)2、由于自然界诱发基因突变的因素很多,基因突变还可以自发产生,因此,基因突变在生物界中是普遍存在的。
(P82)3、基因突变是随机发生的、不定向的。
(P83)4、在自然状态下,基因突变的频率是很低的。
(P84)5、基因重组是指在生物体进行有性生殖的过程中,控制不同性状的基因的重新组合。
(P85)6、染色体结构的改变,都会使排列在染色体上的基因的数目或排列顺序发生改变,可能导致性状的变异。
(P86)7、染色体数目的变异可以分为两类:一类是细胞内个别染色体的增加或减少,另一类是细胞内染色体数目以染色体组的形式成倍地增加或减少。
(P87)8、杂交育种是将两个或多个品种的优良性状通过交配集中在一起,再经过选择和培育,获得新品种的方法。
(P99)9、诱变育种是利用物理因素(如X射线、γ射线、紫外线、激光等)或化学因素(如亚硝酸、硫酸二乙酯等)来处理生物,使生物发生基因突变。
(P100)10、基因工程,又叫做基因拼接技术或DNA重组技术。
通俗地说,就是按照人们的意愿,把一种生物的某种基因提取出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状。
(P102)11、生活在一定区域的同种生物的全部个体叫做种群。
(P114)12、一个种群中全部个体所含有的全部基因,叫做这个种群的基因库。
(P115)13、在一个种群基因库中,某个基因占全部等位基因数的比率,叫做基因频率。
(P116)14、基因突变产生新的等位基因,这就可能使种群的基因频率发生变化。
(P116)15、在自然选择的作用下,种群的基因频率会发生定向改变,导致生物朝着一定的方向不断进化。
(P118)16、能够在自然状态下相互交配并且产生可育后代的一群生物称为一个物种。
(P119)17、不同物种之间、生物与无机环境之间在相互影响中不断进化和发展,这就是共同进化。
生物的变异总结知识点1. 生物变异的概念和意义生物变异是指生物个体之间或个体内部的基因型和表型表现出的差异。
它是生物个体间差异的重要表现,是生物种群适应环境和地域环境变异的重要途径,对物种的生存和繁衍具有重要的意义。
生物变异是生物进化的基础和原动力,它是生物种群适应环境和地域的策略,对于种群的持续生存和进化具有重要作用。
2. 生物变异的类型生物变异可以分为两种类型:遗传变异和非遗传变异。
遗传变异是指由于基因型的差异导致的表型差异,是生物个体间遗传信息的不同表达。
而非遗传变异是指生物个体在生长与发育过程中受到外部环境因素的影响而引起的差异,它是一种可逆的、可塑性的变异。
遗传变异和非遗传变异都是生物适应环境和地域的重要方式,它们共同促进了物种的进化和繁衍。
3. 生物变异的原因生物变异的产生有多种原因,其中包括基因突变、基因重组、基因重组和基因突变的自然选择等。
基因突变是生物变异的一种重要方式,它是指由于生物DNA分子的突变而引起的个体间遗传信息差异。
而基因重组则是指生物个体间遗传信息在生殖过程中的重新组合,它是生物变异的另一种重要方式。
除此之外,自然选择也是生物变异的一个重要原因,它是指生物种群面对环境变异时,适应环境变异的生存策略。
4. 生物变异的检测方法生物变异的检测是生物学研究的重要内容之一,它是帮助科学家识别和分析生物物种变异的重要手段。
当前,生物变异的检测方法主要包括传统的分子生物学方法、基因组学和比较基因组学方法等。
传统的分子生物学方法包括了PCR、DNA测序、基因克隆等技术;而基因组学和比较基因组学方法则是通过对生物基因组的整体分析和比较,帮助科学家更全面地了解生物变异的策略。
5. 生物变异的应用价值生物变异不仅对生物进化具有重要意义,同时还有着广泛的应用价值。
在农业方面,生物变异是改良作物品种和家畜种群的重要途径,它可以帮助科学家在短时间内产生更适应环境和产品性能更好的新品种。
在医学方面,生物变异可以帮助科学家识别和治疗遗传性疾病,促进生物医学的发展。
育种学基础知识点总结一、遗传变异1. 遗传变异的概念和类型遗传变异是指生物个体之间存在着遗传性状的不同,主要包括遗传变异的概念、形态性状遗传变异、生理性状遗传变异和生态性状遗传变异等。
2. 遗传变异的成因遗传变异的成因主要包括基因突变、基因重组、基因重组和基因型环境互作等。
3. 遗传变异的检测方法遗传变异的检测方法包括表型观察法、遗传学分析法、分子生物学技术分析和生物信息学方法等。
二、遗传育种原理1. 自然选择和人工选择自然选择是指适者生存,不适者淘汰的生存选择过程,而人工选择是由人类根据需求,对有用性状进行有计划的选择。
2. 群体遗传学基本原理群体遗传学原理主要包括哈代平衡定律、硬型和软型一级亲缘关系、硬型和软型二级亲缘关系、扩散均衡等。
3. 遗传育种的基本原理遗传育种的基本原理包括遗传变异和选择、遗传育种的遗传效应、选择强度和选择差异、育种方法和原则等。
三、育种方法1. 选择育种选择育种是指根据种植者的需要,从种质资源中选择具有优良性状的个体,用来作为亲本进行育种。
2. 杂交育种杂交育种是指通过组合杂交群体的不同优秀特征基因,以获取杂种优势,达到育种目的。
3. 杂交优势利用杂交优势利用是指利用杂种的杂种优势,改良植物和动物的生产性状,提高作物产量和品质。
4. 同源选择育种同源选择育种是指通过选材、组合、评价、培育等繁育技术手段,改良植物和动物的生产性状和适应性。
五、分子标记辅助育种1. 分子标记辅助育种的原理分子标记辅助育种是利用分子标记对育种个体进行筛选、选择和配组,以加快育种进程。
2. 分子标记的类型和应用分子标记的类型包括DNA标记、蛋白质标记和RNA标记等,应用主要包括遗传图谱构建、基因定位、品种鉴定等。
3. 分子标记辅助选育技术分子标记辅助选育技术包括分子标记种质资源评价、分子标记亲缘关系分析、分子标记选择育种和分子标记种质资源创新等。
六、生物技术育种1. 转基因育种转基因育种是利用转基因技术,将外源基因导入植物或动物基因组中,从而改良其性状和性能。
一、生物的变异(1)生物变异的类型(2)三种可遗传变异的比较项目基因突变基因重组染色体变异适用范围生物种类所有生物自然状态下能进行有性生殖的生物真核生物生殖方式无性生殖、有性生殖有性生殖无性生殖、有性生殖(3)三种可遗传变异的判断类型自然突变、诱发突变交叉互换、自由组合染色体结构变异、染色体数目变异原因DNA复制(有丝分裂间期、减数分裂第一次分裂的间期)过程出现差错减数分裂时非同源染色体上的非等位基因自由组合或同源染色体的非姐妹染色单体间发生交叉互换内外因素影响使染色体结构出现异常,或细胞分裂过程中,染色体的分(4)染色体组和基因组染色体组:细胞中的一组非同源染色体,它们在形态和功能上各不相同,但是携带着控制一种生物生长发育、遗传和变异的全部信息。
其特点:①一个染色体组中所含的染色体大小、形态和功能各不相同。
②一个染色体组中不含有同源染色体,当然也就不含有等位基因。
③一个染色体组中含有控制该物种生物性状的一整套基因。
④二倍体生物的生殖细胞中所含有的一组染色体可看成一个染色体组。
⑤不同种的生物,每个染色体组所包括的染色体数目、形态和大小是不同的。
基因组:一般的定义是二倍体生物的单倍体细胞中的全套染色体为一个基因组,或是二倍体生物的单倍体细胞中的全部基因为一个基因组。
对二倍体生物而言,基因组计划则为测定单倍体细胞中全部DNA分子的脱氧核苷酸序列,有性染色体的生物其基因组包括一个染色体组的常染色体加上两条性染色体。
没有性染色体的生物其基因组与染色体组相同。
(5)单倍体和多倍体的比较单倍体是指体细胞中含有本物种配子染色体数目的个体。
多倍体由合子发育而来,体细胞中含有三个或三个以上染色体组。
对于体细胞中含有三个染色体组的个体,是属于单倍体还是三倍体,要依据其来源进行判断:若直接来自配子,就为单倍体;若来自受精卵,则为三倍体。
二、生物变异在育种中的应用(1)常见的几种育种方法的比较(2)关于育种方案的选取①单一性状类型:生物的优良性状是由某对基因控制的单一性状,其呈现方式、育种方式、原理及举例列表如下:②两个或多个性状类型:两个或多个性状分散在不同的品种中,首先要实现控制不同性状基因的重组,再选育出人们所需要的品种,这可以从不同的水平上加以分析:a.个体水平上:运用杂交育种方法实现控制不同优良性状基因的重组。
生物育种技术知识点总结一、概述生物育种是利用生物学原理和育种方法改良植物和动物的遗传性状的过程。
通过人工选择、杂交配制、基因工程等手段,以达到改善植物和动物的生长性状、抗逆性、品质和产量的目的。
二、生物育种的种类1. 传统育种:包括选择育种和杂交育种,是人们在长期生产实践中总结出的一套传统育种方法,主要借助于自然界中自身遗传变异和杂交变异产生的新种质。
2. 分子育种:是利用分子生物学和基因工程技术,选择和改良植物和动物遗传的目标性状。
3. 细胞工程育种:采用细胞生物学的理论和技术,直接调整生物体细胞和基因的组合。
三、生物育种技术知识点1. 杂交育种杂交育种是指将两个不同亲本的组合相结合,从而利用它们的互补优势和杂种优势,以改良植物和动物的遗传性状。
杂交育种主要包括选择亲本、配制杂交组合、杂交和选择后代等步骤。
杂交育种有利于提高生物的抗逆性、生长速度、产量和品质等性状。
例如,将两个高产的水稻品种杂交可能产生杂种优势,使产量比亲本高出30%以上。
2. 基因工程基因工程是指通过创造和改变生物体的遗传物质,来改良植物和动物的特性。
基因工程主要包括了基因克隆、基因转移和转基因等技术。
基因工程可以使植物和动物具有抗病、耐旱、耐盐、抗虫能力等特性。
例如,利用基因工程技术插入一定的基因到植物体内,可使植物对特定害虫具有抗性,能够减少农业投入和农药使用量,降低环境污染。
3. 组织培养组织培养是指利用植物细胞、组织和器官在含有适当营养盐的培养基上生长和分化的过程。
组织培养主要包括了植物愈伤组织培养、芽切培养和离体受精等技术。
组织培养可用于植物的无性繁殖、解决生物体某些特殊性状的难以遗传和纯合分离、缩短育种周期和提高育种效率等方面。
例如,将优良植株的组织培养成愈伤组织,并进行诱导增殖和再生,可以快速繁殖大批量无病害的优良植株。
克隆育种是指利用植物和动物体细胞的无性繁殖性质,直接产生与母本完全一样的后代。
主要包括植物的愈伤组织培养、组织培养再生和移植、动物的体细胞核移植等技术。
生物的变异知识点总结一、生物变异的定义生物变异是指基因组中某段DNA序列发生改变,导致个体或群体的遗传信息发生变化。
变异可以是点突变、染色体片段丢失和重复、基因重组等。
变异会导致物种的进化和遗传多样性,是生物进化的重要因素。
二、生物变异的分类1. 根据变异的程度,生物变异可分为微观变异和宏观变异。
微观变异是指基因组中某些基因座位点的碱基序列发生改变,包括单核苷酸多态性(SNP)、插入突变、缺失突变等。
宏观变异是指染色体水平上的大片段DNA序列发生改变,包括染色体结构异常、染色体数量异常等。
2. 根据变异的性质,生物变异可分为有害变异、有利变异和中性变异。
有害变异是指变异导致个体的生存或繁殖能力下降,包括致命突变和严重缺陷等。
有利变异是指变异导致个体的生存或繁殖能力提高,包括适应性突变和新功能基因的出现等。
中性变异是指变异对个体的生存或繁殖能力没有显著影响,包括一些基因型和表型上的微小变化。
3. 根据变异的遗传方式,生物变异可分为突变和重组。
突变是指DNA序列发生突发性的改变,包括点突变、插入突变、缺失突变等。
重组是指染色体间或染色体内DNA序列的重新组合,包括同源重组、非同源重组等。
三、生物变异的成因生物变异的成因包括自发变异、诱发变异和人为诱发变异等。
1. 自发变异是指因自然修复系统的故障或DNA复制错误导致DNA序列发生突变或重组,是生物遗传变异的主要成因。
2. 诱发变异是指环境因素如辐射、化学物质、高温等诱发细胞DNA损伤,导致DNA序列发生改变。
辐射和化学物质常常是诱发变异的主要原因。
3. 人为诱发变异是指人类利用基因工程技术或人为选择培育新品种,通过诱发变异来创造新的生物体。
四、生物变异的影响生物变异会对个体和群体的性状、适应性和遗传多样性产生影响。
1. 变异对个体的性状产生影响。
在变异基因型的群体中,不同基因型的个体可能会表现出不同的性状,包括外观特征、生理特性、行为方式等。
2. 变异对个体的适应性产生影响。
生物的变异知识点整理必修Ⅱ第四章生物的变异§1、生物变异的来源1、不遗传的变异:环境因素引起的变异,遗传物质没有改变,不能进一步遗传给后代。
2、可遗传的变异:遗传物质所引起的变异。
3、可遗传的变异来源:基因突变、基因重组、染色体畸变。
4、基因突变:是指基因结构的改变,包括DNA碱基对的增添、缺失或改变。
5、基因突变①类型:包括形态突变、生化突变和致死突变。
②特点:普遍性;多方向性;稀有性;可逆性;有害性。
③意义:它是生物变异的根本来源,也为生物进化提供了最初的原材料。
④原因:在一定的外界条件或者生物内部因素的作用下,使得DNA复制过程出现差错,造成了基因中脱氧核苷酸排列顺序的改变,最终导致原来的基因变为它的等位基因。
⑤实例:a、人类镰刀型贫血病、白化病、太空椒(利用宇宙空间强烈辐射而发生基因突变培育的新品种。
)。
⑥引起基因突变的因素: a、物理因素:主要是各种射线。
b、化学因素:主要是各种能与DNA发生化学反应的化学物质。
c、生物因素:主要是某些寄生在细胞内的病毒。
6、基因重组:指控制不同性状基因的重新组合,导致后代不同于亲本类型的现象或过程。
①类型:基因自由组合(非同源染色体上的非等位基因)、基因交换(同源染色体上的非姐妹染色单体间的交换)。
②意义:是通过有性生殖过程实现的,导致生物性状的多样性。
7、基因突变和基因重组的不同点:基因重组是原有基因的重新组合,产生了新的基因型;基因突变是基因结构的改变,产生了新的基因。
基因重组是生物变异的主要来源。
8、染色体畸变:光学显微镜下可见染色体结构的变异或者染色体数目变异。
9、染色体数目的变异:指细胞内染色体数目增添或缺失,可分为整倍体变异和非整倍体变异。
10、染色体组:一般的,生殖细胞中形态、结构和功能各不相同的一组染色体。
细胞内形态相同的染色体有几条就说明有几个染色体组。
11、二倍体:凡是体细胞中含有两个染色体组的个体。
如.人、果蝇、玉米;绝大部分的动物和高等植物都是二倍体12、多倍体:凡是体细胞中含有三个以上染色体组的个体。