数字信号习题7
- 格式:ppt
- 大小:145.50 KB
- 文档页数:3
《数字信号处理》习题集一. 填空题1、一线性时不变系统,输入为 x〔n〕时,输出为y〔n〕;则输入为2x〔n〕时,输出为;输入为x〔n-3〕时,输出为。
2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真复原,采样频率fs与信号最高频率f max关系为:。
3、已知一个长度为N的序列x(n),它的离散时间傅立叶变换为X〔e jw〕,它的N点离散傅立叶变换X〔K〕是关于X〔e jw〕的点等间隔。
4、有限长序列x(n)的8点DFT为X〔K〕,则X〔K〕= 。
5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的所产生的现象。
6、δ(n)的z变换是。
7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较,阻带衰减比较。
8、用双线性变法进行IIR数字滤波器的设计,从s平面向z平面转换的关系为s= 。
9、假设正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 。
10、序列x1〔n〕的长度为4,序列x2〔n〕的长度为3,则它们线性卷积的长度是,5点圆周卷积的长度是。
11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列的,而周期序列可以看成有限长序列的。
12.对长度为N的序列x(n)圆周移位m位得到的序列用x m(n)表示,其数学表达式为x m(n)= 。
13、无限长单位冲激响应〔IIR〕滤波器的结构是型的。
14.线性移不变系统的性质有、和分配律。
15.用DFT近似分析模拟信号的频谱时,可能出现的问题有、和。
16.无限长单位冲激响应滤波器的基本结构有型,型和。
17.如果通用电脑的速度为平均每次复数乘需要5μs,每次复数加需要1μs,则在此电脑上计算210点的基2 FFT需要级蝶形运算,总的运算时间是______μs。
18.用窗函数设计FIR滤波器时,滤波器频谱波动由什么决定 _____________,滤波器频谱过渡带由什么决定_______________。
习题及答案 4一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。
2.线性时不变系统的性质有 律、 律、 律。
3.对4()()x n R n =的Z 变换为 ,其收敛域为 。
4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。
5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。
6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。
7.因果序列x(n),在Z →∞时,X(Z)= 。
二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( ) A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 ( )A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( ) A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为 ( )A.有限长序列 B.无限长序列 C.反因果序列 D.因果序列9.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是 ( ) A.N≥M B.N≤M C.N≤2M D.N≥2M10.设因果稳定的LTI 系统的单位抽样响应h(n),在n<0时,h(n)= ( ) A.0 B .∞ C. -∞ D.1 三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。
一、单项选择题1.数字信号的特征是( )A.时间离散、幅值连续B.时间离散、幅值量化C.时间连续、幅值量化D.时间连续、幅值连续2.若一线性移不变系统当输入为x(n)=δ(n)时,输出为y(n)=R 2(n),则当输入为u(n)-u(n-2)时,输出为( )A.R 2(n)-R 2(n-2)B.R 2(n)+R 2(n-2)C.R 2(n)-R 2(n-1)D.R 2(n)+R 2(n-1)3.下列序列中z 变换收敛域包括|z|=∞的是( )A.u(n+1)-u(n)B.u(n)-u(n-1)C.u(n)-u(n+1)D.u(n)+u(n+1)4.下列对离散傅里叶变换(DFT )的性质论述中错误的是( )A.DFT 是一种线性变换B.DFT 具有隐含周期性C.DFT 可以看作是序列z 变换在单位圆上的抽样D.利用DFT 可以对连续信号频谱进行精确分析5.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是( )A.N ≥MB.N ≤MC.N ≥M/2D.N ≤M/2 6.基-2 FFT 算法的基本运算单元为( )A.蝶形运算B.卷积运算C.相关运算D.延时运算7.以下对有限长单位冲激响应(FIR )滤波器特点的论述中错误的是( )A.FIR 滤波器容易设计成线性相位特性B.FIR 滤波器的单位冲激抽样响应h(n)在有限个n 值处不为零C.系统函数H(z)的极点都在z=0处D.实现结构只能是非递归结构8.下列结构中不属于IIR 滤波器基本结构的是( )A.直接型B.级联型C.并联型D.频率抽样型9.下列关于用冲激响应不变法设计IIR 滤波器的说法中错误的是( )A.数字频率与模拟频率之间呈线性关系B.能将稳定的模拟滤波器映射为一个稳定的数字滤波器C.使用的变换是s 平面到z 平面的多值映射D.可以用于设计低通、高通和带阻等各类滤波器10.离散时间序列x (n )=cos(n 73π-8π)的周期是( ) A.7 B.14/3 C.14 D.非周期 11.下列系统(其中y(n)是输出序列,x(n)是输入序列)中______属于线性系统。
==============================绪论==============================1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统==================1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(-n)的波形图。
②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。
卷积和:①h(n)*求x(n),其他02n 0n 3,h(n)其他03n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。
第二章习题解答1、求下列序列的z 变换()X z ,并标明收敛域,绘出()X z 的零极点图。
(1) 1()()2nu n (2) 1()()4nu n - (3) (0.5)(1)nu n --- (4) (1)n δ+(5) 1()[()(10)]2nu n u n -- (6) ,01na a <<解:(1) 00.5()0.50.5nn n n zZ u n z z ∞-=⎡⎤==⎣⎦-∑,收敛域为0.5z >,零极点图如题1解图(1)。
(2) ()()014()1414n nn n z Z u n z z ∞-=⎡⎤-=-=⎣⎦+∑,收敛域为14z >,零极点图如题1解图(2)。
(3) ()1(0.5)(1)0.50.5nnn n zZ u n z z --=-∞-⎡⎤---=-=⎣⎦+∑,收敛域为0.5z <,零极点图如题1解图(3)。
(4) [](1Z n z δ+=,收敛域为z <∞,零极点图如题1解图(4)。
(5) 由题可知,101010910109(0.5)[()(10)](0.5)()(0.5)(10)0.50.50.50.50.50.5(0.5)n n nZ u n u n Z u n Z u n z z z z z z z z z z z --⎡⎤⎡⎤⎡⎤--=--⎣⎦⎣⎦⎣⎦⋅=-----==--收敛域为0z >,零极点图如题1解图(5)。
(6) 由于()(1)nn n a a u n a u n -=+--那么,111()(1)()()()nn n Z a Z a u n Z a u n z z z a z a z a a z a z a ----⎡⎤⎡⎤⎡⎤=---⎣⎦⎣⎦⎣⎦=----=-- 收敛域为1a z a <<,零极点图如题1解图(6)。
(1) (2) (3)(4) (5) (6)题1解图2、求下列)(z X 的反变换。
数字信号处理 重点习题(1-5章)第一章5.设系统分别用下面的差分方程描述, x(n)与y(n)分别表示系统输入和输出, 判断系统是否是线性非时变的。
(6)y(n)=x(n2)(7)y(n)= (8)y(n)=x(n)sin(ωn)6.给定下述系统的差分方程, 试判定系统是否是因果稳定系统, 并说明理由。
(3) y(n)= x(k) (5) y(n)=e x(n)13.有一连续信号x a(t)=cos(2πft+),式中,f =20 Hz,=π/2。
(1)求出x a(t)的周期;(2)用采样间隔T=0.02 s对x a(t)进行采样,试写出采样信号 的表达式;(3) 画出对应 的时域离散信号(序列)x(n)的波形, 并求出x(n)的周期。
14. 已知滑动平均滤波器的差分方程为(1)求出该滤波器的单位脉冲响应;(2)如果输入信号波形如题14图所示,试求出y(n)并画出它的波形。
第二章3.线性时不变系统的频率响应(频率响应函数)H(e jω)=|H(e jω)|e jθ(ω), 如果单位脉冲响应h(n)为实序列,试证明输入x(n)=A cos(ω0n+)的稳态响应为10.若序列h(n)是实因果序列, 其傅里叶变换的实部如下式:H R(e jω)=1+cosω,求序列h(n)及其傅里叶变换H(e jω)。
18.已知,分别求:(1) 收敛域0.5<|z|<2对应的原序列x(n);(2)收敛域|z|>2对应的原序列x(n)。
24.已知线性因果网络用下面差分方程描述: y(n)=0.9y(n-1)+x(n)+0.9x(n-1),(1)求网络的系统函数H(z)及单位脉冲响应h(n);(2) 写出网络频率响应函数H(e jω)的表达式, 并定性画出其幅频特性曲线; (3) 设输入x(n)=e jω0n, 求输出y(n)。
28.若序列h(n)是因果序列, 其傅里叶变换的实部如下式:,求序列h(n)及其傅里叶变换H(e jω).29.若序列h(n)是因果序列, h(0)=1, 其傅里叶变换的虚部为,求序列h(n)及其傅里叶变换H(e jω)。
2第五章数字滤波器、数字滤波器结构填空题:1. FIR 滤波器是否一定为线性相位系统?()。
解:不一定计算题:2. 设某FIR 数字滤波器的冲激响应,h (0) h ⑺1,h(1) h(6) 3,h(2)h(5) 5,h (3)h(4)6,其他n 值时h(n) 0。
试求H (J )的幅频响应和相频响应的表示式,并画出该滤波器流图的线性相位结构形式。
解:h( n)135,6,6,5,3,1,0 n 7N 1H(e j ) h(n)e j nn 0所以H (e j )的幅频响应为H (e j )的相频响应为作图题:3 •有人设计了一只数字滤波器,得到其系统函数为:1.8557 0.6303Z 1 0.9972 Z 10.2570Z1 3e J 5e J2 6e J3 J7 J 7 J7 Jie 2 e 2e 23e 26e j4 5e J 5.5.5 J2J 2e 2 e 26 J73e e.7 .3 2 J ?5e 2 e 2.3e J 2.76e J " .1 .1步e J 勺12cos2 10cos 36cos52cos 匚2.7 j- 2H( )e jH() 12co辽10 cos 32 6 cos 522 cos.7 j 2H(z)0.2871 0.4466Z 1 1 1.2971Z 1 0.6949Z2.1428 1.1455Z 1 1.0691Z0.3699Z请采用并联型结构实现该系统。
解:答案略4. 用级联型结构和并联型结构实现一下传递函数(1)H(z)3z 3 3.5z 22.5z(z 2z 1)(z 0.5)(2)H (z)3 24z 2.8284Z z 2(z 2 1.4142z 1)(z 0.7071)解:(1) H (z)3z 3 3.5z 2 2.5z (z 2 z 1)( z 0.5)3 3.5z 2.5z (z 2 z 1 1)(1 0.5z 1)(5z 1 3)(0.5z 1 1);~~21(z z21)(1 0.5z 1)1 0.5z 11 23 3.5z 12.5z 1231 1.5z 11.5z 20.5z 3级联型结构及并联型结构图略(2)H(z)2(z 1.4142z 1)( z 0.7071)14 2.8284z 2z2 (1 1.4142z z )(1 10.7071z )1 4.5857 0.4143z 10.58571 21 1.4142z z级联型结构及并联型结构图略5 •用横截型结构实现以下系统函1 1 1H(z) (12z )(1 6z )(12z 1)(1 -z 61)(1解:1 1 1 1 1 1 1H(z) (1 2z )(1 6z )(1 2z )(1 6z )(1 z )(1 Iz 1 2z 1 z 2)(1 -z 1 6z 1 z 2)(1 z 1)2 611 0.7071z4z 3 2.8284Z 2 z(1结构图略。
习题二1、求证:,()(,)x i j x i j xi xj R t t C t t m m =+。
证明:(,)(,)(,,,)x i j i j iji j i j i j R t t E x x x xp x x t t dx dx ==⎰⎰(,)[(),()](),()(,,,)()(,,,)(,)(,)i j i j j i i j i j j i i j i jx i j i x j x i x j x i j i j i ji j i x j x x x i j i j i j x i j x x x x x x x i j x x C t t E x m x m x m x m p x x t t dx dx x x x m x m m m p x x t t dx dx R t t m m m m m m R t t m m =--=--=--+=--+=-⎰⎰⎰⎰ 2、令()x n 和()y n 不是相关的随机信号,试证:若()()()w n x n y n =+,则w x y m m m=+和222w x y σσσ=+。
证明:(1)[()][()()][()][()]x ym E n E x n y n E x n E y n m m ωω==+=+=+ (2)2222222222[(())]{[()()()]}[(())(())][(())][(())]2[(())(())]2[]x y x y x y x y x y x y x y x y x y x yE n m E x n y n m m E x n m y n m E x n m E y n m E x n m y n m m m m m m m m m ωωσωσσσσ=-=+-+=-+-=-+-+--=++--+=+即222x y ωσσσ=+3、试证明平稳随机信号自相关函数的极限性质,即证明: ①当0τ=时,2(0),(0)x x x x R D C σ==; ②当τ=∞时,2(),()0x x x R m C ∞=∞=。