Duality of q-polynomials, orthogonal on countable sets of points
- 格式:pdf
- 大小:560.33 KB
- 文档页数:71
【生物化学:名词说明大全】之马矢奏春创作第一章蛋白质1.两性离子(dipolarion)2.必须氨基酸(essential amino acid)3.等电点(isoelectric point,pI)4.罕有氨基酸(rare amino acid)5.非蛋白质氨基酸(nonprotein amino acid) 6.构型(configuration)7.蛋白质的一级机关(protein primary structure)8.构象(conformation)9.蛋白质的二级机关(protein secondary structure)10.机关域(domain)11.蛋白质的三级机关(protein tertiary structure)12.氢键(hydrogen bond)13.蛋白质的四级机关(protein quaternary structure)14.离子键(ionic bond)15.超二级机关(super-secondary structure) 16.疏水键(hydrophobic bond)17.范德华力( van der Waals force) 18.盐析(salting out)19.盐溶(salting in)20.蛋白质的变性(denaturation)21.蛋白质的复性(renaturation)22.蛋白质的沉淀传染感动(precipitation) 23.凝胶电泳(gel electrophoresis)24.层析(chromatography)第二章核酸1.单核苷酸(mononucleotide)2.磷酸二酯键(phosphodiester bonds)3.不合错误称比率(dissymmetry ratio)4.碱基互补规律(complementary base pairing)5.反暗码子(anticodon)6.顺反子(cistron)7.核酸的变性与复性(denaturation、renaturation)8.退火(annealing)9.增色效应(hyper chromic effect)10.减色效应(hypo chromic effect)11.噬菌体(phage)12.发夹机关(hairpin structure)13.DNA 的熔解温度(melting temperature Tm)14.分子杂交(molecular hybridization)15.环化核苷酸(cyclic nucleotide)第三章酶与辅酶1.米氏常数(Km 值)2.底物专一性(substrate specificity)3.辅基(prosthetic group)4.单体酶(monomeric enzyme)5.寡聚酶(oligomeric enzyme)6.多酶系统(multienzyme system)7.激活剂(activator)8.抑制剂(inhibitor inhibiton)9.变构酶(allosteric enzyme)10.同工酶(isozyme)11.引导酶(induced enzyme)12.酶原(zymogen)13.酶的比活力(enzymatic compare energy)14.活性中心(active center)第四章生物氧化与氧化磷酸化1.生物氧化(biological oxidation)2.呼吸链(respiratory chain)3.氧化磷酸化(oxidative phosphorylation)4.磷氧比P/O(P/O)5.底物程度磷酸化(substrate level phosphorylation)6.能荷(energy charg第五章糖代谢1.糖异生(glycogenolysis)2.Q 酶(Q-enzyme)3.乳酸轮回(lactate cycle)4.发酵(fermentation)5.变构调节(allosteric regulation)6.糖酵解途径(glycolytic pathway)7.糖的有氧氧化(aerobic oxidation)8.肝糖原分化(glycogenolysis)9.磷酸戊糖途径(pentose phosphate pathway)10.D-酶(D-enzyme)11.糖核苷酸(sugar-nucleotide)第六章脂类代谢1.必须脂肪酸(essential fatty acid)2.脂肪酸的α-氧化(α- oxidation)3.脂肪酸的β-氧化(β- oxidation)4.脂肪酸的ω-氧化(ω- oxidation)5.乙醛酸轮回(glyoxylate cycle)6.柠檬酸穿梭(citriate shuttle)7.乙酰CoA 羧化酶系(acetyl-CoA carnoxylase)8.脂肪酸合成酶系统(fatty acid synthase system)第八章含氮化合物代谢1.蛋白酶(Proteinase)2.肽酶(Peptidase)3.氮平衡(Nitrogen balance)4.生物固氮(Biological nitrogen fixation)5.硝酸还原传染感动(Nitrate reduction)6.氨的同化(Incorporation of ammonium ions into organic molecules)7.转氨传染感动(Transamination)8.尿素轮回(Urea cycle)9.生糖氨基酸(Glucogenic amino acid)10.生酮氨基酸(Ketogenic amino acid)11.核酸酶(Nuclease)12.限制性核酸内切酶(Restriction endonuclease)13.氨基蝶呤(Aminopterin)14.一碳单位(One carbon unit)第九章核酸的生物合成1.半保存复制(semiconservative replication)2.不合错误称转录(asymmetric trancription)3.逆转录(reverse transcription)4.冈崎片段(Okazaki fragment)5.复制叉(replication fork)6.领头链(leading strand)7.随后链(lagging strand)8.有意义链(sense strand)9.恢复生(photoreactivation)10.重组修复(recombination repair)11.内含子(intron)12.外显子(exon)13.基因载体(genonic vector)14.质粒(plasmid)第十一章代谢调节1.引导酶(Inducible enzyme)2.标兵酶(Pacemaker enzyme)3.把持子(Operon)4.衰减子(Attenuator)5.隔断物(Repressor)6.辅隔断物(Corepressor)7.降解物基因活化蛋白(Catabolic gene activator protein)8.腺苷酸环化酶(Adenylate cyclase)9.共价修饰(Covalent modification)10.级联系统(Cascade system)11.反应抑制(Feedback inhibition)12.交叉调节(Cross regulation)13.前馈激活(Feedforward activation)14.钙调蛋白(Calmodulin)第十二章蛋白质的生物合成1.暗码子(codon)2.反义暗码子(synonymous codon)3.反暗码子(anticodon)4.变偶假说(wobble hypothesis)5.移码突变(frameshift mutant)6.氨基酸同功受体(isoacceptor)7.反义RNA(antisense RNA)8.旗子灯号肽(signal peptide)9.简并暗码(degenerate code)10.核糖体(ribosome)11.多核糖体(poly some)12.氨酰基部位(aminoacyl site)13.肽酰基部位(peptidy site)14.肽基转移酶(peptidyl transferase) 15.氨酰- tRNA 合成酶(amino acy-tRNA synthetase)16.蛋白质折叠(protein folding)17.核蛋白体轮回(polyribosome)18.锌指(zine finger)19.亮氨酸拉链(leucine zipper)20.顺式传染感动元件(cis-acting element) 21.反式传染感动因子(trans-acting factor) 22.螺旋-环-螺旋(helix-loop-helix)第一章蛋白质1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子.2.必须氨基酸:指人体(和其它哺乳动物)自身不克不及合成,机体又必须,需要从饮食中获得的氨基酸.3. 氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH 值,用符号pI暗示. 4.罕有氨基酸:指消掉于蛋白质中的20 种罕有氨基酸以外的其它罕有氨基酸,它们是正常氨基酸的衍生物.5.非蛋白质氨基酸:指不消掉于蛋白质分子中而以游离状态和结合状态消掉于生物体的各类组织和细胞的氨基酸.6.构型:指在立体异构体中不合错误称碳原子上相连的各原子或代替基团的空间排布.构型的修改陪伴着共价键的断裂和从新形成.7.蛋白质的一级机关:指蛋白质多肽链中氨基酸的排列次序,以及二硫键的地位.8.构象:指有机分子中,不修改共价键机关,仅单键周围的原子扭转所产生的原子的空间排布.一种构象修改成另一种构象时,不涉及共价键的断裂和从新形成.构象修改不会修改分子的光学活性.9.蛋白质的二级机关:指在蛋白质分子中的局部区域内,多肽链沿必定标的目的盘绕和折叠的办法.10.机关域:指蛋白质多肽链在二级机关的根本长进一步卷曲折叠成几个相对自力的近似球形的组装体.11.蛋白质的三级机关:指蛋白质在二级机关的根本上借助各类次级键卷曲折叠成特定的球状分子机关的构象.12.氢键:指蛋白质在二级机关的根本上借助各类次级键卷曲折叠成特定的球状分子机关的构象.13.蛋白质的四级机关:指多亚基蛋白质分子中各个具有三级机关的多肽链以适当办法聚合所呈现的三维机关.14.离子键:带相反电荷的基团之间的静电引力,也称为静电键或盐键.15.超二级机关:指蛋白质分子中相邻的二级机关单位组合在一路所形成的有规则的、在空间上能识此外二级机关组合体.16.疏水键:非极性分子之间的一种弱的、非共价的互相传染感动.如蛋白质分子中的疏水侧链避开水相而互相聚集而形成的传染感动力.17.范德华力:中性原子之间经由过程瞬间静电互相传染感动产生的一种弱的分子间的力.当两个原子之间的距离为它们的范德华半径之和时,范德华力最强.18.盐析:在蛋白质溶液中参加必定量的高浓度中性盐(如硫酸氨),使蛋白质消融度降低并沉淀析出的现象称为盐析.19.盐溶:在蛋白质溶液中参加少量中性盐使蛋白质消融度增加的现象.20.蛋白质的变性传染感动:蛋白质分子的自然构象遭到破坏导致其生物活性损掉落的现象.蛋白质在受到光照、热、有机溶剂以及一些变性剂的传染感动时,次级键遭到破坏导致自然构象的破坏,但其一级机关不产生修改.21.蛋白质的复性:指在必定前提下,变性的蛋白质分子恢复其原有的自然构象并恢复生物活性的现象.22.蛋白质的沉淀传染感动:在外界成分影响下,蛋白质分子掉落去水化膜或被中和其所带电荷,导致消融度降低从而使蛋白质变得不稳定而沉淀的现象称为蛋白质的沉淀传染感动. 23.凝胶电泳:以凝胶为介质,在电场传染感动下别离蛋白质或核酸等分子的别离纯化技能. 24.层析:按照在移动相(可所以气体或液体)和固定相(可所以液体或固体)之间的分拨比例将混淆成分分隔的技能.第二章核酸1. 单核苷酸(mononucleotide):核苷与磷酸缩合生成的磷酸酯称为单核苷酸.2. 磷酸二酯键(phosphodiester bonds):单核苷酸中,核苷的戊糖与磷酸的羟基之间形成的磷酸酯键.3. 不合错误称比率(dissymmetry ratio):不合生物的碱基组成由很大的差别,这可用不合错误称比率(A+T)/(G+C)示.4. 碱基互补规律(complementary base pairing):在形成双螺旋机关的过程中,因为各类碱基的大小与机关的不合,使得碱基之间的互补配对只能在GC(或CG)和AT(或TA)之间进行,这种碱基配对的规律就称为碱基配对规律(互补规律).5. 反暗码子(anticodon):在tRNA 链上有三个特定的碱基,组成一个暗码子,由这些反暗码子按碱基配对原则辨认mRNA 链上的暗码子.反暗码子与暗码子的标的目的相反.6. 顺反子(cistron):基因成效的单位;一段染色体,它是一种多肽链的暗码;一种机关基因.7. 核酸的变性、复性(denaturation、renaturation):当呈双螺旋机关的DNA 溶液迟缓加热时,个中的氢键便断开,双链DNA 便脱解为单链,这叫做核酸的“消融”或变性.在适合的温度下,别分开的两条DNA 链可以完整从新结合成和本来一样的双股螺旋.这个DNA 螺旋的重组过程称为“复性”.8. 退火(annealing):当将双股链呈别离状态的DNA 溶液迟缓冷却时,它们可以产生不合程度的从新结合而形成双链螺旋机关,这现象称为“退火”.9. 增色效应(hyper chromic effect):当DNA 从双螺旋机关变成单链的无规则卷曲状态时,它在260nm 处的吸收便增加,这叫“增色效应”.10. 减色效应(hypo chromic effect):DNA 在260nm 处的光密度比在DNA 分子中的各个碱基在260nm 处吸收的光密度的总和小得多(约少35%~40%), 这现象称为“减色效应”.11. 噬菌体(phage):一种病毒,它可破坏细菌,并在个中繁衍.也叫细菌的病毒.12. 发夹机关(hairpin structure):RNA 是单链线形分子,只有局部区域为双链机关.这些机关是因为RNA 单链分子经由过程自身回折使得互补的碱基对相遇,形成氢键结合而成的,称为发夹机关.13. DNA 的熔解温度(Tm 值):引起DNA 产生“熔解”的温度变更范围只不过几度,这个温度变更范围的中点称为熔解温度(Tm).14. 分子杂交(molecular hybridization):不合的DNA 片段之间,DNA 片段与RNA 片段之间,假如彼此间的核苷酸排列次序互补也可以复性,形成新的双螺旋机关.这种按照互补碱基配对而使不完整互补的两条多核苷酸互相结合的过程称为分子杂交.15. 环化核苷酸(cyclic nucleotide):单核苷酸中的磷酸基辨别与戊糖的3’-OH 及5’-OH形成酯键,这种磷酸内酯的机关称为环化核苷酸.第三章酶与辅酶1.米氏常数(Km 值):用Km值暗示,是酶的一个主要参数.Km 值是酶反应速度(V)达到最大反应速度(Vmax)一半时底物的浓度(单位M 或mM).米氏常数是酶的特色常数,只与酶的性质有关,不受底物浓度和酶浓度的影响.2.底物专一性:酶的专一性是指酶对底物及其催化反应的严格选择性.常日酶只能催化一种化学反应或一类相似的反应,不合的酶具有不合程度的专一性,酶的专一性可分为三种类型:绝对专一性、相对专一性、立体专一性.3.辅基:酶的辅因子或结合蛋白质的非蛋白部分,与酶或蛋白质结合得很是慎密,用透析法不克不及除去.4.单体酶:只有一条多肽链的酶称为单体酶,它们不克不及解离为更小的单位.分子量为13,000——35,000.5.寡聚酶:有几个或多个亚基组成的酶称为寡聚酶.寡聚酶中的亚基可所以相同的,也可所以不合的.亚基间以非共价键结合,随意马虎为酸碱,高浓度的盐或其它的变性剂别离.寡聚酶的分子量从35 000 到几百万.6.多酶系统:由几个酶彼此嵌合形成的复合体称为多酶系统.多酶复合体有利于细胞中一系列反应的中断进行,以提高酶的催化效率,同时便于机体对酶的调控.多酶复合体的分子量都在几百万以上.7.激活剂:但凡能提高酶活性的物质,都称激活剂,个中大部分是离子或简单的有机化合物. 8.抑制剂:能使酶的必须基团或酶活性部位中的基团的化学性质修改而降低酶的催化活性甚至使酶的催化活性完整损掉落的物质.9.变构酶:或称别构酶,是代谢过程中的关头酶,它的催化活性受其三维机关中的构象变更的调节.10.同工酶:是指有机体内能够催化同一种化学反应,但其酶蛋白本身的分子机关组成却有所不合的一组酶.11.引导酶:是指当细胞中参加特定引导物后引导产生的酶,它的含量在引导物存鄙人显著增高,这种引导物往往是该酶底物的相似物或底物本身.12.酶原:酶的无活性前体,常日在有限度的蛋白质水解传染感动后,修改成具有活性的酶. 13.酶的比活力:比活力是指每毫克蛋白质所具有的活力单位数,可以用下式暗示:活力单位数比活力= 蛋白质量(mg)14.活性中心:酶分子中直接与底物结合,并催化底物产生化学反应的部位,称为酶的活性中心.第四章生物氧化与氧化磷酸化1.生物氧化:生物体内有机物质氧化而产生大量能量的过程称为生物氧化.生物氧化在细胞内进行,氧化过程花费氧放出二氧化碳和水,所以有时也称之为“细胞呼吸”或“细胞氧化”.生物氧化包含:有机碳氧化变成CO2;底物氧化脱氢、氢及电子经由过程呼吸链传递、分子氧与传递的氢结成水;在有机物被氧化成CO2 和H2O的同时,释放的能量使ADP 修改成ATP. 2.呼吸链:有机物在生物体内氧化过程中所脱下的氢原子,经由一系列有严格排列次序的传递体组成的传递系统进行传递,最终与氧结合生成水,这样的电子或氢原子的传递系统称为呼吸链或电子传递链.电子在慢慢的传递过程中释放出能量被用于合成ATP,以作为生物体的能量来源.3.氧化磷酸化:在底物脱氢被氧化时,电子或氢原子在呼吸链上的传递过程中陪伴ADP 磷酸化生成ATP 的传染感动,称为氧化磷酸化.氧化磷酸化是生物体内的糖、脂肪、蛋白质氧化分化合成ATP 的主要办法.4、磷氧比:电子经由呼吸链的传递传染感动最终与氧结合生成水,在此过程中所释放的能量用于ADP 磷酸化生成ATP.经此过程花费一个原子的氧所要花费的无机磷酸的分子数(也是生成ATP 的分子数)称为磷氧比值(P/O).如NADH 的磷氧比值是3,FADH2 的磷氧比值是2. 5.底物程度磷酸化:在底物被氧化的过程中,底物分子内部能量从新分布产生高能磷酸键(或高能硫酯键),由此高能键供应能量使ADP(或GDP)磷酸化生成ATP(或GTP)的过程称为底物程度磷酸化.此过程与呼吸链的传染感动无关,以底物程度磷酸化办法只产生少量ATP.如在糖酵解(EMP)的过程中,3-磷酸甘油醛脱氢后产生的1,3-二磷酸甘油酸,在磷酸甘油激酶催化下形成ATP 的反应,以及在2-磷酸甘油酸脱水后产生的磷酸烯醇式丙酮酸,在丙酮酸激酶催化形成ATP 的反应均属底物程度的磷酸化反应.别的,在三羧酸环(TCA)中,也有一步反应属底物程度磷酸化反应,如α-酮戊二酸经氧化脱羧后生成高能化合物琥珀酰~CoA,其高能硫酯键在琥珀酰CoA 合成酶的催化下转移给GDP 生成GTP.然后在核苷二磷酸激酶传染感动下,GTP 又将末尾的高能磷酸根转给ADP 生成ATP.6.能荷:能荷是细胞中高能磷酸状态的一种数量上的衡量,能荷大小可以说明生物体中ATP-ADP-AMP 系统的能量状态.能荷=[ATP]+12 [ADP][ATP]+[ADP]+[AMP]第五章糖代谢1.糖异生:非糖物质(如丙酮酸乳酸甘油生糖氨基酸等)修改成葡萄糖的过程.2.Q 酶:Q 酶是介入支链淀粉合成的酶.成效是在直链淀粉分子上催化合成(α-1,6)糖苷键,形成支链淀粉.3.乳酸轮回乳:酸轮回是指肌肉缺氧时产生大量乳酸,大部分经血液运到肝脏,经由过程糖异生传染感动肝糖原或葡萄糖填补血糖,血糖可再被肌肉运用,这样形成的轮回称乳酸轮回. 4.发酵:厌氧有机体把糖酵解生成NADH 中的氢交给丙酮酸脱羧后的产品乙醛,使之生成乙醇的过程称之为酒精发酵.假如将氢交给病酮酸丙生成乳酸则叫乳酸发酵.5.变构调节:变构调节是指某些调节物能与酶的调节部位结合使酶分子的构象产生修改,从而修改酶的活性,称酶的变构调节.6.糖酵解途径:糖酵解途径指糖原或葡萄糖分子分化至生成丙酮酸的阶段,是体内糖代谢最主要途径.7.糖的有氧氧化:糖的有氧氧化指葡萄糖或糖原在有氧前提下氧化成水和二氧化碳的过程.是糖氧化的主要办法.8.肝糖原分化:肝糖原分化指肝糖原分化为葡萄糖的过程.9.磷酸戊糖途径:磷酸戊糖途径指机体某些组织(如肝、脂肪组织等)以6-磷酸葡萄糖为肇端物在6-磷酸葡萄糖脱氢酶催化下形成6-磷酸葡萄糖酸进而代谢生成磷酸戊糖为中心代谢物的过程,又称为磷酸已糖旁路.10.D-酶:一种糖苷转移酶,传染感动于α-1,4 糖苷键,将一个麦芽多糖的片段转移到葡萄糖、麦芽糖或其它多糖上.11.糖核苷酸:单糖与核苷酸经由过程磷酸酯键结合的化合物,是双糖和多糖合成中单糖的活化形式与供体.第六章脂类代谢1.必须脂肪酸:为人体成长所必须但有不克不及自身合成,必须从事物中摄取的脂肪酸.在脂肪中有三种脂肪酸是人体所必须的,即亚油酸,亚麻酸,花生四烯酸.2.α-氧化:α-氧化传染感动是以具有3-18碳原子的游离脂肪酸作为底物,有分子氧间接介入,经脂肪酸过氧化物酶催化传染感动,由α碳原子开始氧化,氧化产品是D-α-羟脂肪酸或少一个碳原子的脂肪酸.3. 脂肪酸的β-氧化:脂肪酸的β-氧化传染感动是脂肪酸在一系列酶的传染感动下,在α碳原子和β碳原子之间断裂,β碳原子氧化成羧基生成含2个碳原子的乙酰CoA 和比本来少2 个碳原子的脂肪酸.4. 脂肪酸ω-氧化:ω-氧化是C5、C6、C10、C12脂肪酸在远离羧基的烷基末尾碳原子被氧化成羟基,再进一步氧化而成为羧基,生成α,ω-二羧酸的过程.5. 乙醛酸轮回:一种被修改的柠檬酸轮回,在其异柠檬酸和苹果酸之间反应次序有修改,以及乙酸是用作能量和中心物的一个来源.某些植物和微生物体内有此轮回,他需要二分子乙酰辅酶A的介入;并导致一分子琥珀酸的合成.6. 柠檬酸穿梭:就是线粒体内的乙酰CoA 与草酰乙酸缩合成柠檬酸,然后经内膜上的三羧酸载体运至胞液中,在柠檬酸裂解酶催化下,需花费ATP 将柠檬酸裂解回草酰乙酸和,后者就可用于脂肪酸合成,而草酰乙酸经还原后再氧化脱羧成丙酮酸,丙酮酸经内膜载体运回线粒体,在丙酮酸羧化酶传染感动下从新生成草酰乙酸,这样就可又一次介入转运乙酰CoA 的轮回. 7.乙酰CoA 羧化酶系:大肠杆菌乙酰CoA 羧化酶含生物素羧化酶、生物素羧基载体蛋白(BCCP)和转羧基酶三种组份,它们合营传染感动催化乙酰CoA 的羧化反应,生成丙二酸单酰-CoA.8.脂肪酸合酶系统:脂肪酸合酶系统包含酰基载体蛋白(ACP)和6 种酶,它们辨别是:乙酰转酰酶;丙二酸单酰转酰酶;β-酮脂酰ACP 合成酶;β-酮脂酰ACP 还原酶;β-羟;脂酰ACP 脱水酶;烯脂酰ACP 还原酶.第八章含氮化合物代谢1.蛋白酶:以称肽链内切酶(Endopeptidase),传染感动于多肽链内部的肽键,生成较本来含氨基酸数少的肽段,不合来源的蛋白酶水解专一性不合.2.肽酶:只传染感动于多肽链的末尾,按照专一性不合,可在多肽的N-端或C-端水解下氨基酸,如氨肽酶、羧肽酶、二肽酶等.3.氮平衡:正常人摄入的氮与排出氮达到平衡时的状态,反应正常人的蛋白质代谢情况. 4.生物固氮:运用微生物中固氮酶的传染感动,在常温常压前提下将大气中的氮还原为氨的过程(N2 + 3H2→2 NH3).5.硝酸还原传染感动:在硝酸还原酶和亚硝酸还原酶的催化下,将硝态氮修改成氨态氮的过程,植物体内硝酸还原传染感动主要在叶和根进行.6.氨的同化:由生物固氮和硝酸还原传染感动产生的氨,进入生物体后被修改成含氮有机化合物的过程.7.转氨传染感动:在转氨酶的传染感动下,把一种氨基酸上的氨基转移到α-酮酸上,形成另一种氨基酸.8.尿素轮回:尿素轮回也称鸟氨酸轮回,是将含氮化合物分化产生的氨修改成尿素的过程,有解除氨危害的传染感动.9.生糖氨基酸:在分化过程中能修改成丙酮酸、α-酮戊二酸乙、琥珀酰辅酶A、延胡索酸和草酰乙酸的氨基酸称为生糖氨基酸.10.生酮氨基酸:在分化过程中能修改成乙酰辅酶A 和乙酰乙酰辅酶A 的氨基酸称为生酮氨基酸.11.核酸酶:传染感动于核酸分子中的磷酸二酯键的酶,分化产品为寡核苷酸或核苷酸,按照传染感动地位不合可分为核酸外切酶和核酸内切酶.12.限制性核酸内切酶:能传染感动于核酸分子内部,并对某些碱基次序有专一性的核酸内切酶,是基因工程中的主要器械酶.13.氨基蝶呤:对嘌呤核苷酸的生物合成起竞争性抑制作用的化合物,与四氢叶酸机关相似,又称氨基叶酸.14.一碳单位:仅含一个碳原子的基团如甲基(CH3-、亚甲基(CH2=)、次甲基(CH≡)、甲酰基(O=CH-)、亚氨甲基(HN=CH-)等,一碳单位可来源于甘氨酸、苏氨酸、丝氨酸、组氨酸等氨基酸,一碳单位的载体主假如四氢叶酸,成效是介入生物分子的修饰.第九章核酸的生物合成1.半保存复制:双链DNA 的复制办法,个中亲代链别离,每一子代DNA 分子由一条亲代链和一条新合成的链组成.2.不合错误称转录:转录常日只在DNA 的任一条链长进行,这称为不合错误称转录.3.逆转录:Temin 和Baltimore 各自发明在RNA 肿瘤病毒中含有RNA 指导的DNA 聚合酶,才证实产生逆向转录,即以RNA 为模板合成DNA.4.冈崎片段:一组短的DNA 片段,是在DNA 复制的肇端阶段产生的,随后又被连接酶连接形成较长的片段.在大肠杆菌成长时期,将细胞短时间地流露在氚标识表记标帜的胸腺嘧啶中,就可证实冈崎片段的消掉.冈崎片段的创造为DNA 复制的科恩伯格机理供应了按照.5.复制叉:复制DNA 分子的Y 形区域.在此区域产生链的别离及新链的合成.6.领头链:DNA 的双股链是反向平行的,一条链是5/→3/标的目的,另一条是3/→5/标的目的,上述的起点处合成的领头链,沿着亲代DNA 单链的3/→5/标的目的(亦即新合成的DNA沿5/→3/标的目的)不竭延长.所以领头链是中断的.7.随后链:已知的DNA 聚合酶不克不及催化DNA 链朝3/→5/标的目的延长,在两条亲代链起点的3/ 端一侧的DNA 链复制是不中断的,而分为多个片段,每段是朝5/→3/标的目的进行,所以随后链是不中断的.8.有意义链:即华森链,华森 克里格型DNA 中,在体内被转录的那股DNA 链.简写为Wstrand.9.恢复生:将受紫外线照射而引起损伤的细菌用可见光照射,大部分损伤细胞可以恢复,这种可见光引起的修复过程就是恢复生传染感动.10.重组修复:这个过程是前辈行复制,再进行修复,复制时,子代DNA 链损伤的对应部位消掉缺口,这可经由过程分子重组从完整的母链上,将一段响应的多核苷酸片段移至子链的缺口处,然后再合成一段多核昔酸键来填补母链的缺口,这个过程称为重组修复.11.内含子:真核生物的mRNA 前体中,除了贮存遗传序列外,还消掉非编码序列,称为内含子. 12.外显子:真核生物的mRNA 前体中,编码序列称为外显子.13.基因载体:外源DNA 片段(目的基因)要进入受体细胞,必须有一个适当的运载器械将带入细胞内,并载着外源DNA 一路进行复制与表达,这种运载器械称为载体.14.质粒:是一种在细菌染色体以外的遗传单元,一般由环形双链DNA 组成,其大小从1—200Kb.第十一章代谢调节1. 引导酶:因为引导物的消掉,使本来封锁的基因凋零,从而引起某些酶的合成数量显著增加,这样的酶称为引导酶2. 标兵酶:在多酶促系列反应中,受控制的部位常日是系列反应开首的酶,这个酶一般是变构酶,也称标兵酶.3. 把持子:在转录程度上控制基因表达的折衷单位,包含启动子(P)、把持基因(O)和在成效上相关的几个机关基因.4. 衰减子:位于机关基因上游前导区调节基因表达的成效单位,前导区转录的前导RNA经由过程构象变更终止或减弱转录.5. 隔断物:由调节基因产生的一种变构蛋白,当它与把持基因结应时,能够抑制转录的进行.6. 辅隔断物:能够与掉落活的阻碣蛋白结合,并恢复隔断蛋白与把持基因结合才能的物质.辅隔断物一般是酶反应的产品.7. 降解物基因活化蛋白:由调节基因产生的一种cAMP 受体蛋白,当它与cAMP 结应时被激活,并结合到启动子上促进转录进行.是一种正调节传染感动.8. 腺苷酸环化酶:催化ATP 焦磷酸裂解产生环腺苷酸(cAMP)的酶.9. 共价修饰:某种小分子基团可以共价结合到被修饰酶的特定氨基酸残基上,引起酶分子构象变更,从而调节代谢的标的目的和速度.10. 级联系统:在连锁代谢反应中一个酶被激活后,中断地产生其它酶被激活,导致原始调节旗子灯号的逐级缩小,这样的连锁代谢反应系统称为级联系统.11. 反应抑制:在代谢反应中,反应产品对反应过程中起传染感动的酶产生的抑制作用.12. 交叉调节:代谢产品不但对本身的反应过程有反应抑制作用,并且可以控制另一代谢物在不合途径中的合成.13. 前馈激活:在反应序列中,前身物质对后面的酶起激活传染感动,使反应向提高行.14. 钙调蛋白:一种依靠于钙的蛋白激酶,酶蛋白与钙结合引起酶分子构象变更,调解酶的活性.如磷酸化酶激酶是一种依靠于钙的蛋白激酶.第十二章蛋白质的生物合成。
化工进展Chemical Industry and Engineering Progress2024 年第 43 卷第 1 期离子液体强化不饱和键差异化合物分离的研究进展容凡丁1,丁泽相1,曹义风1,2,陈俐吭1,2,杨柳1,2,申福星1,2,杨启炜1,2,鲍宗必1,2(1 浙江大学化学工程与生物工程学院,浙江 杭州 310058;2 浙江大学衢州研究院,浙江 衢州 324000)摘要:结构相似物的分离是物耗和能耗最集中的化工过程之一。
对于具有不饱和键差异的化合物而言,它们的物化性质极为相近,高效分离极具挑战。
离子液体因其特殊的理化性质、结构可设计以及多重分子间相互作用位点等特点而广泛应用于不饱和键差异化合物的分子辨识分离。
本文综述了离子液体强化不饱和键差异化合物分离的研究进展,重点介绍了常温常压下为气态的低碳烃、液态的中等碳链烃及固态的天然活性同系物等代表性体系的分离,突出了离子液体分离不饱和键差异化合物的构效关系、分离机理及分离工艺流程评价,并展望了离子液体强化不饱和键差异化合物分离的未来方向。
关键词:离子液体;分子辨识分离;萃取;选择性;不饱和键中图分类号:TQ028.8 文献标志码:A 文章编号:1000-6613(2024)01-0198-17Progress in enhanced separation of compounds differing in unsaturatedbonds by ionic liquidsRONG Fanding 1,DING Zexiang 1,CAO Yifeng 1,2,CHEN Lihang 1,2,YANG Liu 1,2,SHEN Fuxing 1,2,YANG Qiwei 1,2,BAO Zongbi 1,2(1 College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China; 2 Institute ofZhejiang University-Quzhou, Quzhou 324000, Zhejiang, China)Abstract: The separation of structurally similar compounds represents one of the most energy-intensiveprocesses, particularly for compounds that differ in unsaturated bonds. This challenge arises from their extremely similar physicochemical properties. Ionic liquids (ILs) have emerged as promising candidates for the separation of compounds with different unsaturated bonds through molecular recognition, which is mainly attributed to the unique physicochemical properties of ILs, their designable structures, and their ability to facilitate multiple intermolecular interactions. This work aims to provide a comprehensive review of the progress of utilizing ILs for the separation of compounds with disparities in unsaturated bonds. It presents a detailed analysis of some representative systems, including gaseous light hydrocarbons, liquid-state medium-chain hydrocarbons, and solid-state natural active compounds. This review highlights the relationship between the molecular structure and separation efficiency, elucidates the underlyingseparation mechanisms, and evaluates the effectiveness of the separation process. Furthermore, it brieflydiscusses the future trend in the design and optimization of ILs for this specific area.特约评述DOI :10.16085/j.issn.1000-6613.2023-1489收稿日期:2023-08-28;修改稿日期:2023-12-01。
MONOMIAL ORTHOGONAL POLYNOMIALS OF SEVERALV ARIABLESYUAN XUAbstract.A monomial orthogonal polynomial of several variables is of the form x α−Q α(x )for a multiindex α∈N d +10and it has the least L 2norm among all polynomials of the form x α−P (x ),where P and Q αare polynomials ofdegree less than the total degree of x α.We study monomial orthogonal poly-nomials with respect to the weight function d +1i =1|x i |2κi on the unit sphere S d as well as for the related weight functions on the unit ball and on thestandard simplex.The results include explicit formula,L 2norm,and explicitexpansion in terms of known orthonormal basis.Furthermore,in the case ofκ1=...=κd +1,an explicit basis for symmetric orthogonal polynomials isalso given.1.IntroductionThe purpose of this paper is to study monomial orthogonal polynomials of several variables.Let W be a weight function defined on a set Ωin R d .Let α∈N d 0.The monomial orthogonal polynomials are of the form R α(x )=x α−Q α(x )withQ αbeing a polynomial of degree less than n =|α|:=α1+...+αd ,and it is orthogonal to all polynomials of degree less than n in L 2(W,Ω);in other words,they are orthogonal projections of x αonto the subspace of orthogonal polynomials of degree n .In the case of one variable,such a polynomial is just an orthogonal polynomial normalized with a unit leading coefficient and its explicit formula is known for many classical weight functions.For several variables,there are many linearly independent orthogonal polynomials of the same degree and the explicit formula of R αis not immediately known.Let Πd n denote the space of polynomials of degree at most n in d variables.The polynomial R αcan be considered as the error of the best approximation of x αbypolynomials from Πd n −1,n =|α|,in L 2(W,Ω).Indeed,a standard Hilbert spaceargument shows thatR α 2= x α−Q α 2=inf P { x α−P 2,P ∈Πd n −1,n =|α|},where · 2is the L 2(W,Ω)norm.In other words,R αhas the least L 2norm among all polynomials of the form x α−P ,where P ∈Πd n −1.Let dωbe the surface measure on the unit sphere S d ={x : x =1},where x is the Euclidean norm of x ∈R d +1.In the present paper we consider the monomial Date :Sept.2,2002,revised Nov.15,2004.1991Mathematics Subject Classification.33C50,42C10.Key words and phrases.h -harmonics,orthogonal polynomials of several variables,best L 2approximation,symmetric orthogonal polynomials.Work supported in part by the National Science Foundation under Grant DMS-0201669.12YUAN XU orthogonal polynomials in L2(h2κdω,S d),where(1.1)hκ(x)=d+1i=1|x i|κi,κi≥0,x∈R d+1.The homogeneous orthogonal polynomials with respect to this weight function are called h-harmonics;they are the simplest examples of the h-harmonics associated with the reflection groups(see,for example,[4,5,7]and the references therein).The weight function in(1.1)is invariant under the group Z d+12.Let P d+1ndenotethe space of homogeneous polynomials of degree n in d+1variables.The monomial homogeneous polynomials are of the form Rα(x)=xα− x 2Qα(x),where Qα∈P d+1 n−2and n=|α|.In this case,we define Rαthrough a generating function andderive their various ing a correspondence between the h-harmonics and orthogonal polynomials on the unit ball B d={x: x ≤1}of R d,this also gives the monomial orthogonal polynomials with respect to the weight function(1.2)W Bκ(x)=di=1|x i|2κi(1− x 2)κd+1−1/2,x∈B d,κi≥0.In the caseκi=0for1≤i≤d andκd+1=µ,the weight function W Bκis the classical weight function(1− x 2)µ−1/2for which the monomial polynomials are known already to Hermite(in special cases);see[8,Vol.2,Chapt12].There is also a correspondence between the h-harmonics and orthogonal polynomials on the simplex T d={x:x i≥0,1−|x|≥0}of R d,where|x|=x1+...+x d,which allows us to derive properties of the monomial orthogonal polynomials with respect to the weight function(1.3)W Tκ(x)=di=1|x i|κi−1/2(1−|x|)κd+1−1/2,x∈T d,κi≥0.For these families of the weight functions,we will define the monomial orthogo-nal polynomials using generating functions,and give explicit formulae for these polynomials in the next section.Ifκ1=...=κd+1,then the weight function is invariant under the action of the symmetric group.We can consider the subspace of h-harmonics invariant under the symmetric group.Recently,in[6],Dunkl gave an explicit basis in terms of monomial symmetric polynomials.Another explicit basis can be derived from the explicit formulae of Rα,which we give in Section3.Various explicit bases of orthogonal polynomials for the above weight functions have appeared in[7,11,16],some can be traced back to[2,8]in special cases. Our emphasis is on the monomial bases and explicit computation of the L2norm. The L2norms or the monomial orthogonal polynomials give the error of the best approximation to monomials by polynomials of lower degrees.We compute the norms in Section4.They are expressed as integrals of the product of the Jacobi or Gegenbauer polynomials.We mention two special cases of our general results,in which P n(t)denotes the Legendre polynomial of degree n:Theorem1.1.Forα∈N d0,let n=|α|.ThenminQ∈Πdn−11vol BB d|xα−Q(x)|2dx=dα!2(d/2)n1di=1Pαi(t)t n+d−1dt,MONOMIAL ORTHOGONAL POLYNOMIALS3 where vol B d=πd/2/Γ(d/2+1)is the volume of B d,andminQ∈Πdn−11d!T d|xα−Q(x)|2dx=dα!2(d)2n1di=1Pαi(2r−1)r n+d−1dr.As the best approximation to xα,the monomial orthogonal polynomials with respect to the unit weight function(Lebesgue measure)on B2have been studied recently in[3].Let us also mention[1],in which certain invariant polynomials with the least L p norm on S d are studied.For h-harmonics,the set{Rα:|α|=n}contains an orthogonal basis of h-harmonics of degree n but the set itself is not a basis.In general,two monomial orthogonal polynomials of the same degree are not orthogonal to each other.On the other hand,for each of the three families of the weight functions,an orthonormal basis can be given in terms of the Jacobi polynomials or the Gegenbauer polynomi-als.We will derive an explicit expansion of Rαin terms of this orthonormal basis in Section5,the coefficients of the expansion are given in terms of Hahn polynomials of several variables.Finally in Section6,we discuss another property of the polynomials defined by the generating function.It leads to an expansion of monomials in terms of monomial orthogonal polynomials.2.Monomial orthogonal polynomialsThroughout this paper we use the standard multiindex notation.Forα∈N m0we write|α|=α1+...+αm.Forα,β∈N m0we also writeα!=α1!···αm!and(α)β=(α1)β1···(αm)βm,where(a)n=a(a+1)...(a+n−1)is the Pochhammer symbol.Furthermore,forα∈N m and a,b∈R,we write aα+b1=(aα1+b,...,aαm+b) and denote1:=(1,1,...,1).Forα,β∈N m0,the inequalityα≤βmeans that αi≤βi for1≤i≤m.2.1.Monomial h-harmonics.First we recall relevant part of the theory of h-harmonics;see[4,5,7]and the reference therein.We shall restrict ourself to the case of hκdefined in(1.1);see also[16].Let H d+1n (h2κ)denote the space of homogeneous orthogonal polynomials of degreen with respect to h2κdωon S d.If allκi=0,then H d+1n (h2κ)is just the space of theordinary harmonics.It is known thatdim H d+1n (h2κ)=dim P d+1n−dim P d+1n−2=n+dd−n+d−2d.The elements of H d+1n (h2κ)are called h-harmonics since they can be defined throughan analog of Laplacian operator.The essential ingredient is Dunkl’s operators, which are a family offirst order differential-difference operators defined by(2.1)D i f(x)=∂i f(x)+κif(x)−f(x1,...,−x i,...,x d+1)i,1≤i≤d+1. These operators commute;that is,D i D j=D j D i.The h-Laplacian is defined by∆h=D21+...+D2d+1.Then∆h P=0,P∈P d+1nif and only if P∈H d+1n(h2κ).Thestructure of the h-harmonics and that of ordinary harmonic polynomials are paral-lel.Some of the properties of h-harmonics can be expressed using the intertwining4YUAN XUoperator ,V κ,which is a linear operator that acts between ordinary harmonics and h -harmonics.It is uniquely determined by the propertiesD i V κ=V κ∂i ,V κ1=1,V κP d +1n ⊂P d +1n .For the weight function h κin (1.1),V κis an integral operator defined by(2.2)V κf (x )= [−1,1]d +1f (x 1t 1,...,x d +1t d +1)d +1 i =1c κi (1+t i )(1−t 2i )κi −1dt,where c µ=Γ(µ+1/2)/(√πΓ(µ)).If any one of κi =0,the formula holds underthe limit (2.3)lim µ→0c µ 1−1f (t )(1−t 2)µ−1dµ=[f (1)+f (−1)]/2.The Poisson kernel,or reproducing kernel,P (h 2κ;x,y )of the h -harmonics is defined by the property (2.4)f (x )=c h S d f (y )P (h 2κ;x,y )f (y )h 2κ(y )dω(y ),c h =Γ(|κ|+d +12)2 i =1Γ(κi +12),for f ∈H d n (h 2κ)and y ≤1,where c h is thenormalization constant of the weight function h 2κon the unit sphere S d ,c h S d h 2κdω=1and dωis the surface measure.Using the intertwining operator,the Poisson kernel of the h -harmonics can be written as P (h 2κ;x,y )=V κ 1− y 2(1−2 y,· + y 2)ρ+1 (x ),ρ=|κ|+d −12,for y <1= x .If all κi =0,then V κ=id is the identity operator and P (h 20;x,y )is the classical Poisson kernel,which is related to the Poisson kernel of the Gegenbauer polynomials1−r 2(1−2rt +r 2)λ+1=∞ n =0n +λλC λn (t )r n .The above function can be viewed as a generating function for the Gegenbauerpolynomials C λn (t ).The usual generating function of C λn ,however,takes the fol-lowing form:(1−2rt +r 2)−λ= ∞n =0C λn (t )r n .Our definition of the monomialorthogonal polynomials is the analog of the generating function of C λn in severalvariables.Definition 2.1.Let ρ=|κ|+d −12>0.Define polynomials R α(x )by V κ 1(1−2 b,· + b 2 x 2)ρ (x )= α∈N d +10b α R α(x ),x ∈R d +1.Let F B be the Lauricella hypergeometric series of type B ,which generalizes the hypergeometric function 2F 1to several variables (cf.[10]),F B (α,β;c ;x )= γ(α)γ(β)γ|γ|x γ,α,β∈N d +10,c ∈R max 1≤i ≤d +1|x i |<1,where the summation is taken over γ∈N d +10.We derive properties of R αin the following.MONOMIAL ORTHOGONAL POLYNOMIALS5 Proposition2.2.The polynomials Rαsatisfy the following properties:(1) Rα∈P d+1nandRα(x)=2|α|(ρ)|α|α!γ(−α/2)γ(−(α+1)/2)γ(−|α|−ρ+1)|γ|γ!x 2|γ|Vκ(xα−2γ),where the series terminates as the summation is over allγsuch that2γ≤α;(2) Rα∈H d+1n(h2κ)and Rα(x)=2|α|(ρ)|α|α!Vκ[Sα(·)](x)for x =1,whereSα(y)=yαF B−α2,−α+12;−|α|−ρ+1;1y21,...,1y2d+1.Furthermore,|α|=nbα Rα(x)=ρn+ρP n(h2κ;b,x), x =1,where P n(h2κ;y,x)is the reproducing kernel of H d+1n(h2κ)in L2(h2κ,S d−1). ing the multinomial and binomial formula,we write(1−2 a,y + a 2)−ρ=(1−a1(2y1−a1)−···−a d(2y d+1−a d+1))−ρ=β(ρ)|β|β!aβ(2y1−a1)β1...(2y d+1−a d+1)βd+1=β(ρ)|β|β!γ(−β1)γ1...(−βd+1)γd+1γ!2|β|−|γ|yβ−γaγ+β.Changing summation indicesβi+γi=αi and using the formulae(ρ)m−k=(−1)k(ρ)m(1−ρ−m)kand(−m+k)k(m−k)!=(−1)k(−m)2km!as well as2−2k(−m)2k=(−m/2)k((1−m)/2)k,we can rewrite the formula as(1−2 a,y + a 2)−ρ=αaα2|α|(ρ)|α|α!γ(−α/2)γ((−α+1)/2)γ(−|α|−ρ+1)|γ|γ!yα−2γ=aα2|α|(ρ)|α|α!yαF B−α2,1−α2;−|α|−ρ+1;1y21,...,1y2d,Using thefirst equal sign of the expansion with the function (1−2 b,y + x 2 b 2)−ρ=(1−2 x b,y/ x +x b2)−ρand applying V with respect to y gives the expression of Rαin the part(1).If x =1,then the second equal sign gives the expression of Rαin the part(2).We still need to show that Rα∈H d+1n(h2κ).Let x =1.For y ≤1the generating function of the Gegenbauer polynomials gives(1−2 b,y + b 2)−ρ=(1−2 b b/ b ,y + b 2)−ρ=∞n=0b n Cρn( b/ b ,y ).Consequently,applying Vκon y in the above equation gives|α|=nbα Rα(x)= b n Vκ[Cρn( b/ b ,· )](x), x =1.6YUAN XUOn the other hand,it is known that the reproducing kernel P n(h2κ;x,y)of H d+1n (h2κ)is given by[7,p.190]P n(h2κ;x,y)=n+ρρy n Vκ[Cρn( y/ y ,· )](x), y ≤ x =1,so that|α|=nbα Rα(x)is a constant multiple of P n(h2κ;x,b).Consequently,forany b,bα Rα(x)is an element in H d+1n(h2κ);therefore,so is Rα.In the following let[x]denote the integer part of x.We also use[α/2]to denote ([α1/2],...,[αd+1/2])forα∈N d+1.Proposition2.3.Letρ=|κ|+(d−1)/2.ThenRα(x)=2|α|(ρ)|α|α!(1/2)α−β(κ+1/2)α−βRα(x),whereβ=α−α+12andRα(x)=xαF B−β,−α+β−κ+12;−|α|−ρ+1;x 2x21,...,x 2x2d+1.Proof.By considering m being even or odd,it is easy to verify thatcκ1−1t m−2k(1+t)(1−t2)κ−1dt=(12)[m+12](κ+12)[m+12](−[m+12]−κ+12)k(−[m+12]+12)kforκ≥0.Hence,using the explicit formula of Vκ,the formula of Rαin(1)of Proposition2.2becomes,Rα(x)=2|α|(ρ)|α|α!(1/2)[α+12] (κ+1/2)[α+12]×γ(−α/2)γ((−α+1)/2)γ(−|α|−ρ+1)|γ|γ!(−[(α+1)/2]−κ+1/2)γ(−[(α+1)/2]+1/2)γx 2|γ|xα−2γ.Using the fact that−α2γ−α+12γ=−α+α+12γ−α+12+12γ,the above expression of Rαcan be written in terms of F B as stated.Note that the F B function in the proposition is afinite series,since(−n)m=0if m>n.In particular,this shows that Rα(x)is the monomial orthogonal polynomial of the form Rα(x)=xα− x 2Qα(x),where Qα∈P d n−2.Another generalization of the hypergeometric series2F1to several variables is the Lauricella function of type A,defined by(cf.[10])F A(c,α;β;x)=γ(c)|γ|(α)γ(β)γγ!xγ,α,β∈N d+1,c∈R,where the summation is taken overγ∈N d+10.If all components ofαare even,thenwe can write Rαusing F A.MONOMIAL ORTHOGONAL POLYNOMIALS7Proposition2.4.Letβ∈N d+1.ThenR2β(x)=(−1)|β|(κ+1/2)β(n+ρ)|β|x |2β|F A−β,|β|+ρ;κ+12;x21x 2,...,x2d+1x 2.Proof.Forα=2βthe formula in terms of F B becomesR2β(x)=γ≤β(−β)γ(−β−κ+1/2)γ(−2|β|−ρ+1)|γ|γ!x 2|γ|x2β−2γ,whereγ≤βmeansγ1<β1,...,γd+1<βd+1;note that(−β)γ=0ifγ>β. Changing the summation index byγi→βi−γi and using the formula(a)n−m= (−1)m(a)n/(1−n−a)m to rewrite the Pochhammer symbols,for example,(κ+1/2)β−γ=(−1)γ(κ+1/2)β(−β−κ+1/2)γ,(β−γ)!=(1)β−γ=(−1)|γ|β!(−β)γ,we can rewrite the summation into the stated formula in F A.Let proj n:P d+1n →H d+1n(h2κ)denote the projection operator of polynomialsin P d+1n onto H d+1n(h2κ).It follows that Rαis the orthogonal projection of themonomial xα.Recall that D i is the Dunkl operator defined in(2.1).We define Dα=Dα11···Dαd+1d+1forα∈N d+1.Let e i=(0,...,0,1,0,...,0)denote the standard basisof R d+1.Proposition2.5.The polynomials Rαsatisfy the following properties:(1)Rα(x)=proj n xα,n=|α|,andRα(x)=(−1)n2n(ρ)nx 2ρ+2n Dαx −2ρ,ρ=|κ|+d−12.(2)Rαsatisfies the relationx 2D i Rα(x)=−2(n+ρ)[Rα+ei(x)−x i Rα(x)].(3)The set{Rα:|α|=n,αd+1=0,1}is a basis of H d+1n(h2κ).Proof.Since Rα∈H d+1n (h2κ)and Rα(x)=xα− x 2Q(x),where Q∈P d+1n−2,itfollows that Rα(x)=proj n xα.On the other hand,it is shown in[19]that thepolynomials Hα,defined byHα(x)= x 2ρ+2n Dα x −2ρ,satisfy the relation Hα(x)=(−1)n2n(ρ)n proj|α|xα,from which the explicit formula in the part(1)follows.The polynomials Hαsatisfy the recursive relationHα+ei(x)=−(2|α|+2ρ)x i Hα(x)+ x 2D i Hα(x),which gives the relation in part(2).Finally,it is proved in[19]that{Hα:|α|=n,αd+1=0,1}is a basis of H d+1n(h2κ).In the case ofα=ne i,Rαtakes a simple form.Indeed,let C(λ,µ)n(t)denote the generalized Gegenbauer polynomials defined byC(λ,µ) n (x)=cµ1−1Cλn(xt)(1+t)(1−t2)µ−1dt.These polynomials are orthogonal with respect to the weight function wλ,µ(t)= |t|2µ(1−t2)λ−1/2on[−1,1]and they become Gegenbauer polynomials whenµ=08YUAN XU (use (2.3));that is,C (λ,0)n (t )=C λn (t ).In terms of the Jacobi polynomials P (a,b )n(t ),the generalized Gegenbauer polynomials can be written as C (λ,µ)2n(x )=(λ+µ)n µ+12 nP (λ−1/2,µ−1/2)n (2x 2−1),C (λ,µ)2n +1(x )=(λ+µ)n +1 µ+12 n +1xP (λ−1/2,µ+1/2)n (2x 2−1).(2.5)Recall that the Jacobi polynomial P (a,b )n (t )can be written as a 2F 1function(2.6)P (a,b )n (t )=(a +1)n n !2F 1 −n,n +a +b +1a +1;1−t 2 .For α=ne i ,the F B formula of R αbecomes a single sum since (−m )j =0if m <j ,which can be written in terms of 2F 1.For example,if n =2m +1,thenR (2m +1)e 1(x )=m j =0(−m )j (−m −κ1−1/2)j (−2m −1−ρ+1)j j ! x 2j x 2m −2j +11=x 2m +112F 1 −m,−m −κ1−1/2−2m −1−ρ+1; x 2x 21.This can be written in terms of Jacobi polynomials (2.6),upon changing the sum-mation index by j →m −j ,and further in the generalized Gegenbauer polynomials using (2.5).The result isCorollary 2.6.Let n ∈N 0.Then R ne i (x )=proj n x n i satisfiesR ne i (x )= x n k (ρ−κi ,κi )n −1C (ρ−κi ,κi )n (x i x ),where k (λ,µ)ndenote the leading coefficient of C (λ,µ)n (t )given by k (λ,µ)2n =(λ+µ)2n µ+12 n n !and k (λ,µ)2n +1=(λ+µ)2n +1 µ+12 n +1n !.(2.7)In the case of ordinary harmonics,that is,κi =0,the polynomials R ne i are given in terms of the Gegenbauer polynomials.2.2.Monomial orthogonal polynomials on the unit ball.The h -spherical harmonics associated to (1.1)are closely related to orthogonal polynomials asso-ciated to the weight functions W B κin (1.2).In fact,if Y ∈H d +1n (h 2κ)is an h -harmonic associated with h κ(y )= d +1i =1|y i |κi that is even in its (d +1)-th variable,Y (y ,y d +1)=Y (y ,−y d +1),then the polynomial P αdefined by(2.8)Y (y )=r n P (x ),y =r (x,x d +1),r = y ,(x,x d +1)∈S d ,is an orthogonal polynomials with respect to W B κ.Moreover,this defines an one-to-one correspondence between the two sets of polynomials ([17]).Working with polynomials on B d ,the monomials are x αwith α∈N d 0,insteadof N d +10.Since x 2d +1=1− x 2for (x,x d +1)∈S d ,we only consider R αin Defini-tion 2.1with α=(α1,...,αd ,0).The correspondence (2.8)leads to the following definition:MONOMIAL ORTHOGONAL POLYNOMIALS9Definition2.7.Letρ=|κ|+d−12.Define polynomials R Bα(x),α∈N d0,bycκ[−1,1]d1(1−2(b1x1t1+...+b d x d t d)+ b 2)ρdi=1(1+t i)(1−t2i)κi−1dt=α∈N dbα R Bα(x),x∈B d.The polynomials R Bαform a basis of the subspace of orthogonal polynomials of degree n with respect to W Bκ.It is given by the explicit formulaProposition2.8.Letρ=|κ|+(d−1)/2.Forα∈N d0and x∈R d,R B α(x)=2|α|(ρ)|α|α!(1/2)α−β(κ+1/2)α−βR Bα(x),whereβ=α−α+12,andRα(x)=xαF B−β,−α+β−κ+12;−|α|−ρ+1;1x21,...,1x2d.In particular,R Bα(x)=xα−Qα(x),Qα∈Πd n−1,is the monomial orthogonal polynomial with respect to W Bκon B d.Proof.Setting b d+1=0and x =1in the generating function(2.1)shows that the generating function of R Bαis the same as the one for R(β,0)(x).Consequently, R Bα(x)= R(α,0)(x,x d+1)for(x,x d+1)∈S d.Since R(α,0)(x,x d+1)is even in its d+1 variable,the correspondence(2.8)shows that R Bαis orthogonal and its properties can be derived from those of Rα.In particular,ifκi=0for i=1,...,d andκd+1=µso that W Bκbecomes the classical weight function(1− x 2)µ−1/2,then the limit relation(2.3)shows that the generating function becomes simply(1−2 b,x + b 2)−µ−(d−1)/2=α∈N dbαR Bα(x),x∈R d.This is the generating function of one family of Appell’s biorthogonal polynomials and R Bα(x)is usually denoted by Vα(x)in the literature(see,for example,[8,Vol. II,Chapt12]or[7,Chapt2]).The definition of R Bαcomes from that of h-harmonics R(α,0)by the correspon-dence.If we consider Rβwithβ=(α,αd+1)and assume thatαd+1is an even inte-ger,then Rβleads to the orthogonal projection of the polynomial xα(1− x 2)αd+1/2 with respect to W Bκon B d.Furthermore,the correspondence also gives a generating function of these projections.2.3.Monomial orthogonal polynomials on the simplex.The h-spherical har-monics associated to(1.1)are also related to orthogonal polynomials associated tothe weight functions W Tκin(1.3).If Y∈H d+12n (h2κ)is an h-harmonic that is evenin each of its variables,then Y can be written as(2.9)Y(y)=r n P(x21,...,x2d),y=r(x1,...,x d,x d+1),r= y .The polynomial P(x),x=(x1,...,x d)∈R d is an orthogonal polynomial of degree n in d variables with respect to W Tκon T d.Moreover,this defines an one-to-one correspondence between the two sets of polynomials([18]).10YUAN XUSince the simplex T has a natural symmetry in terms of(x1,...,x d,x d+1), x d+1=1−|x|,we use the homogeneous coordinates X:=(x1,...,x d,x d+1).For the monomial h-harmonics defined in Definition2.1,the polynomial R2αis even in each of its variables,which corresponds to,under(2.9),monomial orthogonal polynomials R Tαin V d n(W Tκ)in the homogeneous coordinates X.This leads to the following definitionDefinition2.9.Letρ=|κ|+d−12.Define polynomials R Tα(x),α∈N d0,bycκ[−1,1]d+11(1−2(b1x1t1+...+b d+1x d+1t d+1)+ b 2)ρd+1i=1(1−t2i)κi−1dt=α∈N d+1b2α R Tα(x),x∈T d,x d+1=1−|x|.The main properties of R Tαare summarized in the following proposition. Proposition2.10.For eachα∈N d+1with|α|=n,the polynomialsR T α(x)=22|α|(ρ)2|α|(2α)!(1/2)α(κ+1/2)αR Tα(x),whereR Tα(x)=XαF B−α,−α−κ+12;−2|α|−ρ+1;1x1,...,1x d+1=(−1)n(κ+1)α(n+|κ|+d)nF A(|α|+|κ|+d,−α;κ+1;X)are orthogonal polynomials with respect to W Tκon the simplex T d.Moreover, R Tα(x)=Xα−Qα(x),where Qαis a polynomial of degree at most n−1,and {R Tα,α=(α ,0),|α|=n}is a basis for the subspace of orthogonal polynomials of degree n.Proof.We go back to the generating function of h-harmonics in Definition2.1. The explicit formula of Rαshows that Rα(x)is even in each of its variables only if eachαi is even for i=1,...,d+1.Letε∈{−1,1}d+1.Then Rα(xε)= Rα(ε1x1,...,εd+1x d+1)=εαRα(x).It follows thatβ∈N d+10b2βR2β(x)=12α∈N d+1bαε∈{−1,1}d+1Rα(xε).On the other hand,using the explicit formula of Vκ,the generating function gives1 2d+1ε∈{−1,1}d+1α∈N d+1bαRα(xε)=cκ[−1,1]d+1ε∈{−1,1}d+1d+1i=1(1+t i)(1−t2i)κi−1(1−2(b1x1t1ε1+...+b d+1x d+1t d+1εd+1)+ b 2)ρdtfor x =1.Changing variables t i→t iεi,the fact thatεd+1i=1(1+εi t i)=2d+1shows that the generating function of R2β(x)agrees with the generating function ofR Tβ(x21,...,x2d+1)in Definition2.9.Consequently,the formulae of R Tαfollow fromthe corresponding ones for R2α.The polynomial R Tαis homogeneous in ingMONOMIAL ORTHOGONAL POLYNOMIALS 11the correspondence (2.9)between orthogonal polynomials on S d and on T d ,we seethat R T αare orthogonal with respect to W T κ.If αd +1=0,then R Tα(x )=x α−Q α,which proves the last statement of the proposition.In the case of αd +1=0,the explicit formula of R T αshows that R T(α,0)(x )=x α−Q α(x );setting b d +1=0in Definition 2.9gives the generating function of R T (α,0).The explicit formula of R T (α,0)can be found in [7],which appeared earlierin the literature in some special cases.The generating function of R Tαappears to be new in all cases.We note that if all κi =0,then the integrals in the Definition 2.9disappear,so that the generating function in the case of the Chebyshev weight function W T (x )=(x 1...x d (1−|x |))−1/2is simply (1−2 b,x + b 2)−1.3.Symmetric monomial orthogonal polynomialsLet S d +1denote the symmetric group of d +1objects.For a permutation w ∈S d +1we write xw =(x w (1),...,x w (d +1))and define T (w )f (x )=f (xw ).If T (w )f =f for all w ∈S d +1,we say that f is invariant under S d +1.For α∈N d 0and w ∈S d +1,we define the action of w on αby (αw )i =αw −1(i ).Using this definition we have (xw )α=x αw .3.1.Symmetric monomial h -harmonics.In this section,we assume that κ1=...=κd +1=κ.Then the weight function h κin (1.1)is invariant under S d +1.LetH d +1n(h 2κ,S )denote the subspace of h -harmonics in H d +1n (h 2κ)invariant under the group S d +1.Our goal is to give an explicit basis for H d +1n (h 2κ,S ).A partition λof d +1parts is an element in N d +1such that λ1≥λ2≥...≥λd +1.Let Ωd +1denote the set of partitions of d +1parts.LetΩd +1n ={λ∈N d +10:λ1≥λ2≥...≥λd +1,|λ|=n },the set of d +1parts partitions of size n ,and let Λd +1n={λ∈Ωn :λ1=λ2}.For a partition λthe monomial symmetric polynomial m λis defined by ([14])m λ(x )={x α:αbeing distinct permutations of λ}.Let B d +1denote the hyperoctadedral group,which is a semi-direct product of Z d +12and S d +1.A function f is invariant under B d +1if f (x )=g (x 21,...,x 2d +1)and g is invariant under S d +1.Since the weight function h κ(x )= d +1i =1|x i |κis invariant under B d +1,the monomials x αand x βare automatically orthogonal whenever αand βare of different parity.Hence,closely related to H d +1n(h 2κ,S )is the space H d +1n (h 2κ,B ),the subspace of h -harmonics in H d +1n (h 2κ)invariant under B d +1.Re-cently Dunkl [6]gave an explicit basis for H d +1n (h 2κ,B )in the form of(3.1)p λ(x )=m λ(x 2)+ c µm µ(x 2):µ∈Ωd +1n ,µi ≤λi ,2≤i ≤d +1,µ=λ ,where x 2=(x 21,...,x 2d +1)and the coefficients c µwere determined explicitly,andproved that the set {p λ:λ∈Λd +1n }is a basis of H d +1n (h 2κ,B ).Using the explicit formula of R αwe give a basis for H d +1n (h 2κ,S )in this section.Let S d +1(λ)denote the stabilizer of λ,S d +1(λ)={w ∈S d +1:λw =λ}.Then we can write m λ= x λw with the summation over all coset representatives of the subgroup S d +1(λ)of S d +1,which we denote by S d +1/S d +1(λ),it contains all w such that λi =λj and i <j implies w (i )<w (j ).12YUAN XUDefinition3.1.Letλ∈Ωd+1.DefineSλ(x)=w∈S d+1/S d+1(λ)Rλw(x).Proposition3.2.Forλ∈Ωd+1n ,the polynomial Sλ=proj n mλis an element ofH d+1n (h2κ;S).Moreover,the set{Sλ:λ∈Λd+1n}is a basis of H d+1n(h2κ,S).Proof.The definition of Sλand the fact that Rα(x)=xα+ x 2Qα(x)shows Sλ(x)=w∈S d+1/S d+1(λ)(xλw+ x 2Qλw(x))=mλ(x)+ x 2Q(x),where Q∈Πd+1n−1.Also Sλ∈H d+1n(h2κ)since each Rαdoes.Hence,Sλ=proj n mλ.It follows from the part(2)of Proposition2.5that,Sλ(x)=(−1)n2n(λ)nx 2ρ+2n mλ(D)( x −2ρ),which shows that Sλis symmetric.Since dim H d+1n (h2κ,S)=#Λd+1n,we see that{Sλ:λ∈Λd+1n }is a basis of H d+1n(h2κ;S).The fact that Sλis a symmetric polynomial also follows from a general statement about the best approximation by polynomials,proved in[1]for L p(S d)and the proof carries over to the case L p(S d;h2κ).Since the proof is short,we repeat it here.Letf p=c hS d|f(y)|p h2κ(y)dω(y)1/p,for1≤p<∞and let f ∞be the uniform norm on S d.Proposition3.3.If f is invariant under S d+1then the best approximation of f in the space L p(S d,h2κ)by polynomials of degree less than n is attained by symmetric polynomials.Proof.Let P∈Πd+1n−1.Sinceκ1=...=κd+1,hκis invariant under the symmetric group,and so is the norms of the space L p(S d;h2κ).Hence the triangle inequality and the fact that f is symmetric givesf−P p=1(d+1)!w∈S d+1f(xw)−P(xw) p≥1(d+1)!w∈S d+1f(xw)−w∈S d+1P(xw)p= f−P∗ p,where P∗is the symmetrization of P.Since P∗∈Πd+1n ,this shows that thebest approximation of f can be attained by symmetric polynomials of the same degree.The best approximation in L2(S d;h2κ)by polynomials is unique,so that a best ap-proximation polynomial to a symmetric function must be a symmetric polynomial. Thus,the above proposition applies to Sλ,as Sλ−mλis the best approximation to mλin L2(S d;h2κ)by polynomials of lower degrees.From the definition of Sλ,it is not immediately clear that Sλis symmetric.Next we give an explicit formula of Sλin terms of monomial symmetric functions and powers of x .We start with the following simple observation:。
CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2017年第36卷第8期·2756·化 工 进展微混合与微反应技术在提升化工安全中的应用孙冰,朱红伟,姜杰,石宁(中国石化安全工程研究院,山东 青岛 266071)摘要:现代化工的发展对工艺过程的安全性提出了更高的要求,也为在反应安全性上具有独特优势的微化工技术提供了机遇。
本文从微通道内流体流动特点出发,解释了特征尺度微型化导致的通道内传递效率、流动行为的变化,同时选取有代表性的文献结果和应用实例,分析了微化工技术在提升工工艺本质安全性方面的作用,并将其归纳为3个方面:传热传质的强化能够迅速移除反应放热并保证物料浓度的均匀分布;对危险物料的约束作用能够减少有毒、不稳定物质的暴露风险和易燃物质的燃爆风险;对苛刻条件的耐受性能够保证反应在高温高压条件下安全进行。
最后,本文从微化工技术面临的制造成本高、平行分配难和催化剂担载方式的创新3个挑战出发,对其应用前景作出了展望。
关键词:微反应器;传热;传质;危险物质;本质安全中图分类号:O652.2 文献标志码:A 文章编号:1000–6613(2017)08–2756–08 DOI :10.16085/j.issn.1000-6613.2016-2391Application of micromixer and microreactor in improving process safetySUN Bing ,ZHU Hongwei ,JIANG Jie ,SHI Ning(SINOPEC Research Institute of Safety Engineering ,Qingdao 266071,Shandong ,China )Abstract :The development of modern industry has posed new demand for safer chemical processes ,which has also created new opportunities for micro chemical engineering technology considering its unique advantages in promoting reaction safety. Starting from the characteristics of fluids inside the microchannel ,in this review we have explained the change on transfer efficiency and fluid behavior due to the miniaturization in dimension. With literature reports and application cases chosen carefully ,we have summarized the function of microreactors in improving the inherent safety of chemical processes in three aspects—rapid heat removal and uniform concentration distribution due to intensified heat and mass transfer ,reduced exposure risk and explosion risk attributed to the confinement of hazardous material ,and guaranteed safety of reactions under extreme conditions. In the concluding remarks ,comments on challenges to microreactors such as high production cost ,mal-distribution in parallel unit and demand for new catalyst loading method have been provided ,as well as prospective overview of its future application.Key words :microreactor ;heat transfer ;mass transfer ;hazardous material ;inherent safety自20世纪80年代微通道的概念提出以来,微流体控制技术得到了长足发展。
Open Problems ListArising from MathsCSP Workshop,Oxford,March2006Version0.3,April25,20061Complexity and Tractability of CSPQuestion1.0(The Dichotomy Conjecture)Let B be a relational structure.The problem of deciding whether a given relational structure has a homomorphism to B is denoted CSP(B).For which(finite)structures is CSP(B)decidable in polynomial time?Is it true that for anyfinite structure B the problem CSP(B)is either decidable in polynomial time or NP-complete?Communicated by:Tomas Feder&Moshe Vardi(1993) Question1.1A relational structure B is called hereditarily tractable if CSP(B )is tractable for all substructures B of B.Which structures B are hereditarily tractable?Communicated by:Pavol Hell Question1.2A weak near-unanimity term is defined to be one that satisfies the following identities:f(x,...,x)=x and f(x,y,....y)=f(y,x,y,....y)=...=f(y,...,y,x).Is CSP(B)tractable for any(finite)structure B which is preserved by a weak near-unanimity term?Communicated by:Benoit Larose,Matt Valeriote Question1.3A constraint language1S is called globally tractable for a problem P,if P(S)is tractable,and it is called(locally)tractable if for everyfinite L⊆S,P(L)is tractable.These two notions of tractability do not coincide in the Abduction problem(see talk by Nadia Creignou).•For which computational problems related to the CSP do these two notions of tractability coincide?•In particular,do they coincide for the standard CSP decision problem?Communicated by:Nadia Creignou 1That is,a(possibly infinite)set of relations over somefixed set.1Question1.4(see also Question3.5)It has been shown that when a structure B has bounded pathwidth duality the corresponding problem CSP(B)is in the complexity class NL (see talk by Victor Dalmau).Is the converse also true(modulo some natural complexity-theoretic assumptions)?Communicated by:Victor Dalmau Question1.5Is there a good(numerical)parameterization for constraint satisfaction problems that makes themfixed-parameter tractable?Question1.6Further develop techniques based on delta-matroids to complete the com-plexity classification of the Boolean CSP(with constants)with at most two occurrences per variable(see talk by Tomas Feder).Communicated by:Tomas Feder Question1.7Classify the complexity of uniform Boolean CSPs(where both structure and constraint relations are specified in the input).Communicated by:Heribert Vollmer Question1.8The microstructure graph of a binary CSP has vertices for each variable/value pair,and edges that join all pairs of vertices that are compatible with the constraints.What properties of this graph are sufficient to ensure tractability?Are there properties that do not rely on the constraint language or the constraint graph individually?2Approximability and Soft ConstraintsQuestion2.1Is it true that Max CSP(L)is APX-complete whenever Max CSP(L)is NP-hard?Communicated by:Peter Jonsson Question2.2Prove or disprove that Max CSP(L)is in PO if the core of L is super-modular on some lattice,and otherwise this problem is APX-complete.The above has been proved for languages with domain size3,and for languages contain-ing all constants by a computer-assisted case analysis(see talk by Peter Jonsson).Develop techniques that allow one to prove such results without computer-assisted analysis.Communicated by:Peter Jonsson Question2.3For some constraint languages L,the problem Max CSP(L)is hard to approximate better than the random mindless algorithm on satisfiable or almost satisfiable instances.Such problems are called approximation resistant(see talk by Johan Hastad).Is a single random predicate over Boolean variables with large arity approximation resistant?What properties of predicates make a CSP approximation resistant?What transformations of predicates preserve approximation resistance?Communicated by:Johan Hastad2Question2.4Many optimisation problems involving constraints(such as Max-Sat,Max CSP,Min-Ones SAT)can be represented using soft constraints where each constraint is specified by a cost function assigning some measure of cost to each tuple of values in its scope.Are all tractable classes of soft constraints characterized by their multimorphisms?(see talk by Peter Jeavons)Communicated by:Peter Jeavons 3AlgebraQuestion3.1The Galois connection between sets of relations and sets of operations that preserve them has been used to analyse several different computational problems such as the satisfiability of the CSP,and counting the number of solutions.How can we characterise the computational goals for which we can use this Galois connection?Communicated by:Nadia Creignou Question3.2For any relational structure B=(B,R1,...,R k),let co-CSP(B)denote the class of structures which do not have a homomorphism to B.It has been shown that the question of whether co-CSP(B)is definable in Datalog is determined by P ol(B),the polymorphisms of the relations of B(see talk by Andrei Bulatov).Let B be a core,F the set of all idempotent polymorphisms of B and V the variety generated by the algebra(B,F).Is it true that co-CSP(B)is definable in Datalog if and only if V omits types1and2(that is,the local structure of anyfinite algebra in V does not contain a G-set or an affine algebra)?Communicated by:Andrei Bulatov Question3.3Does every tractable clone of polynomials over a group contain a Mal’tsev operation?Communicated by:Pascal Tesson Question3.4Classify(w.r.t.tractability of corresponding CSPs)clones of polynomials of semigroups.Communicated by:Pascal Tesson Question3.5Is it true that for any structure B which is invariant under a near-unanimity operation the problem CSP(B)is in the complexity class NL?Does every such structure have bounded pathwidth duality?(see also Question1.4)Both results are known to hold for a2-element domain(Dalmau)and for majority operations(Dalmau,Krokhin).Communicated by:Victor Dalmau,Benoit Larose3Question3.6Is it decidable whether a given structure is invariant under a near-unanimity function(of some arity)?Communicated by:Benoit Larose Question3.7Let L be afixedfinite lattice.Given an integer-valued supermodular func-tion f on L n,is there an algorithm that maximizes f in polynomial time in n if the function f is given by an oracle?The answer is yes if L is a distributive lattice(see“Supermodular Functions and the Complexity of Max-CSP”,Cohen,Cooper,Jeavons,Krokhin,Discrete Applied Mathemat-ics,2005).More generally,the answer is yes if L is obtained fromfinite distributive lattices via Mal’tsev products(Krokhin,Larose–see talk by Peter Jonsson).The smallest lattice for which the answer is not known is the3-diamond.Communicated by:Andrei Krokhin Question3.8Find the exact relationship between width and relational width.(It is known that one is bounded if and and only if the other is bounded.)Also,what types of width are preserved under natural algebraic constructions?Communicated by:Victor Dalmau 4LogicQuestion4.1The(basic)Propositional Circumscription problem is defined as fol-lows:Input:a propositional formulaφwith atomic relations from a set S,and a clause c.Question:is c satisfied in every minimal model ofφ?It is conjectured(Kirousis,Kolaitis)that there is a trichotomy for this problem,that it iseither in P,coNP-complete or inΠP2,depending on the choice of S.Does this conjecturehold?Communicated by:Nadia Creignou Question4.2The Inverse Satisfiability problem is defined as follows: Input:afinite set of relations S and a relation R.Question:is R expressible by a CNF(S)-formula without existential variables?A dichotomy theorem was obtained by Kavvadias and Sideri for the complexity of this problem with constants.Does a dichotomy hold without the constants?Are the Schaefer cases still tractable?Communicated by:Nadia Creignou4Question4.3Let LFP denote classes of structures definable infirst-order logic with a least-fixed-point operator,let HOM denote classes of structures which are closed under homomorphisms,and let co-CSP denote classes of structures defined by not having a homomorphism to somefixed target structure.•Is LFP∩HOM⊆Datalog?•Is LFP∩co-CSP⊆Datalog?(forfinite target structures)•Is LFP∩co-CSP⊆Datalog?(forω-categorical target structures)Communicated by:Albert Atserias,Manuel BodirskyQuestion4.4(see also Question3.2)Definability of co-CSP(B)in k-Datalog is a sufficient condition for tractability of CSP(B),which is sometimes referred to as having width k. There is a game-theoretic characterisation of definability in k-Datalog in terms of(∃,k)-pebble games(see talk by Phokion Kolaitis).•Is there an algorithm to decide for a given structure B whether co-CSP(B)is definable in k-Datalog(for afixed k)?•Is the width hierarchy strict?The same question when B isω-categorical,but not necessarilyfinite?Communicated by:Phokion Kolaitis,Manuel BodirskyQuestion4.5Find a good logic to capture CSP with“nice”(e.g.,ω-categorical)infinite templates.Communicated by:Iain Stewart 5Graph TheoryQuestion5.1The list homomorphism problem for a(directed)graph H is equivalent to the problem CSP(H∗)where H∗equals H together with all unary relations.•It is conjectured that the list homomorphism problem for a reflexive digraph is tractable if H has the X-underbar property(which is the same as having the bi-nary polymorphism min w.r.t.some total ordering on the set of vertices),and NP-complete otherwise.•It is conjectured that the list homomorphism problem for an irreflexive digraph is tractable if H is preserved by a majority operation,and NP-complete otherwise. Do these conjectures hold?Communicated by:Tomas Feder&Pavol Hell5Question5.2“An island of tractability?”Let A m be the class of all relational structures of the form(A,E1,...,E m)where each E i is an irreflexive symmetric binary relation and the relations E i together satisfy the following‘fullness’condition:any two distinct elements x,y are related in exactly one of the relations E i.Let B m be the single relational structure({1,...,m},E1,...,E m)where each E i is the symmetric binary relation containing all pairs xy except the pair ii.(Note that the relations E i are not irreflexive.)The problem CSP(A m,B m)is defined as:Given A∈A m,is there a homomorphism from A to B m?When m=2,this problem is solvable in polynomial time-it is the recognition problem for split graphs(see“Algorithmic Graph Theory and Perfect Graphs”,M.C.Golumbic, Academic Press,New York,1980)When m>3,this problem is NP-complete(see“Full constraint satisfaction problems”,T.Feder and P.Hell,to appear in SIAM Journal on Computing).What happens when m=3?Is this an“island of tractability”?Quasi-polynomial algorithms are known for this problem(see“Full constraint satisfaction problems”,T. Feder and P.Hell,,to appear in SIAM Journal on Computing,and“Two algorithms for list matrix partitions”,T.Feder,P.Hell,D.Kral,and J.Sgall,SODA2005).Note that a similar problem for m=3was investigated in“The list partition problem for graphs”, K.Cameron,E.E.Eschen,C.T.Hoang and R.Sritharan,SODA2004.Communicated by:Tomas Feder&Pavol Hell Question5.3Finding the generalized hypertree-width,w(H)of a hypergraph H is known to be NP-complete.However it is possible to compute a hypertree-decomposition of H in polynomial time,and the hypertree-width of H is at most3w(H)+1(see talk by Georg Gottlob).Are there other decompositions giving better approximations of the generalized hypertree-width that can be found in polynomial time?Communicated by:Georg Gottlob Question5.4It is known that a CSP whose constraint hypergraph has bounded fractional hypertree width is tractable(see talk by Daniel Marx).Is there a hypergraph property more general than bounded fractional hypertree width that makes the associated CSP polynomial-time solvable?Are there classes of CSP that are tractable due to structural restrictions and have unbounded fractional hypertree width?Communicated by:Georg Gottlob,Daniel Marx Question5.5Prove that there exist two functions f1(w),f2(w)such that,for every w, there is an algorithm that constructs in time n f1(w)a fractional hypertree decomposition of width at most f2(w)for any hypergraph of fractional hypertree width at most w(See talk by Daniel Marx).Communicated by:Daniel Marx6Question5.6Turn the connection between the Robber and Army game and fractional hypertree width into an algorithm for approximating fractional hypertree width.Communicated by:Daniel Marx Question5.7Close the complexity gap between(H,C,K)-colouring and (H,C,K)-colouring (see talk by Dimitrios Thilikos)Find a tight characterization for thefixed-parameter tractable(H,C,K)-colouring problems.•For the(H,C,K)-colouring problems,find nice properties for the non-parameterisedpart(H−C)that guaranteefixed-parameter tractability.•Clarify the role of loops in the parameterised part C forfixed-parameter hardnessresults.Communicated by:Dimitrios Thilikos6Constraint Programming and ModellingQuestion6.1In a constraint programming system there is usually a search procedure that assigns values to particular variables in some order,interspersed with a constraint propagation process which modifies the constraints in the light of these assignments.Is it possible to choose an ordering for the variables and values assigned which changes each problem instance as soon as possible into a new instance which is in a tractable class? Can this be done efficiently?Are there useful heuristics?Question6.2The time taken by a constraint programming system tofind a solution toa given instance can be dramatically altered by modelling the problem differently.Can the efficiency of different constraint models be objectively compared,or does it depend entirely on the solution algorithm?Question6.3For practical constraint solving it is important to eliminate symmetry,in order to avoid wasted search effort.Under what conditions is it tractable to detect the symmetry in a given problem in-stance?7Notes•Representations of constraints-implicit representation-effect on complexity•Unique games conjecture-structural restrictions that make it false-connectionsbetween definability and approximation•MMSNP-characterise tractable problems apart from CSP7•Migrate theoretical results to tools•What restrictions do practical problems actually satisfy?•Practical parallel algorithms-does this align with tractable classes?•Practically relevant constraint languages(”global constraints”)•For what kinds of problems do constraint algorithms/heuristics give good results?8。
AAbsolutely integrable 绝对可积绝对可积冲激响应Absolutely integrable impulse response绝对可和Absolutely summable绝对可和冲激响应Absolutely summable impulse response累加器Accumulator声学Acoustic加法器Adder可加性Additivity property混叠现象Aliasing全通系统All-pass systems幅度调制AM (Amplitude modulation )放大器Amplifier幅度调制Amplitude modulation (AM)幅度放大因子Amplitude-scaling factor模数转换器Analog-to-digital (A-to-D) converter分析公式(方程)Analysis equation复数的角度(相位)Angel (phase) of complex number角判据Angle criterion角度调制Angle modulationAnticausality 反因果AperiodicAperiodic convolution Aperiodic signal AsynchronousAudio systems Autocorrelation functions Automobile suspension system Averaging systemBBand-limitedBand-limited input signals Band-limited interpolation Bandpass filtersBandpass signalBandpass-sampling techniques BandwidthBartlett (triangular) window Bilateral Laplace transform BilinearBilinear transformationBit 非周期非周期卷积非周期信号异步的音频(声音)系统自相关函数汽车减震系统平滑系统带(宽)限的带限输入信号带限内插带通滤波器带通信号带通采样技术带宽巴特利特(三角形)窗双边拉普拉斯变换双线性的双线性变换(二进制)位,比特Block diagramsBode plotsBoundedBreak frequencyButterworth filtersC“ Chirp ” transform algorithm CapacitorCarrierCarrier frequencyCarrier signalCartesian (rectangular) form Cascade (series) interconnection Cascade-formCausal LTI systemChannelChannel equalizationChopper amplifierClosed-loopClosed-loop polesClosed-loop system 方框图波特图有界限的折转频率巴特沃斯滤波器“鸟声”变换算法电容器载波载波频率载波信号直角坐标形式串联,级联串联形式因果的线性时不变系统信道,频道信道均衡斩波器放大器闭环闭环极点闭环系统Closed-loop system function 闭环系统函数系数乘法器Coefficient multiplier系数Coefficients通信系统Communications systems交换性(交换律)Commutative property非理想元件的补偿Compensation for nonideal elements复数共轭Complex conjugate复指数载波Complex exponential carrier复指数信号Complex exponential signals复指数Complex exponential(s)复数Complex numbers条件稳定系统Conditionally stable systems共轭对称Conjugate symmetry共轭性质Conjugation property连续时间延迟Continuous-time delay连续时间滤波器Continuous-time filter连续时间傅立叶级数Continuous-time Fourier series连续时间傅立叶变换Continuous-time Fourier transform连续时间信号Continuous-time signalsContinuous-time systems 连续时间系统Continuous-to-discrete-time conversion 连续时间到离散时间转换Convergence 收敛卷积Convolution卷积积分Convolution integral卷积性质Convolution property卷积和Convolution sum相关函数Correlation function临界阻尼系统Critically damped systems互相关函数Crosss-correlation functions截至频率Cutoff frequenciesD阻尼正弦振荡Damped sinusoids阻尼系数Damping ratio直流偏移Dc offset直流序列Dc sequence临界阻尼反馈系统Deadbeat feedback systems分贝Decibels (dB)抽取Decimation抽取和内插Decimation and interpolation负反馈Degenerative (negative) feedback延迟DelayDelay time 延迟时间DemodulationDifference equations Differencing property Differential equations Differentiating filters Differentiation property DifferentiatorDigital-to-analog (D-to-A) converter Direct Form I realization Direct form II realization Direct-form Dirichlet conditions Dirichlet, P.L. Discontinuities Discrete-time filtersDiscrete-time Fourier series Discrete-time Fourier series pair Discrete-time Fourier transform ( DFT) Discrete-time LTI filters Discrete-time modulationDiscrete-time nonrecursive filters 解调差分方程差分性质微分方程微分滤波器微分性质微分器数模转换器直接I 型实现直接II 型实现直接型狄里赫利条件狄里赫利间断点,不连续离散时间滤波器离散时间傅立叶级数离散时间傅立叶级数对离散时间傅立叶变换离散时间线性时不变滤波器离散时间调制离散时间非递归滤波器Discrete-time signals 离散时间信号Discrete-time systems 离散时间系统Discrete-time to con ti nu ous-time conv ersion离散时间至U连续时间转换Dispersion 弥撒(现象)Distortion 扭曲,失真Distribution theory(property)分配律Dominant time constant 主时间常数Double-sideband modulation (DSB) 双边带调制Downsampling 减采样Duality 对偶性EEcho 回波Eigenfunctions 特征函数Eigenvalue 特征值Elliptic filters 椭圆滤波器Encirclement property 围线性质End points 终点—、八、、Energy of signals 信号的能量Energy-density spectrum 能量密度谱Envelope detector 包络检波器Envelope function 包络函数EqualizationEqualizer circuitsEquation for closed-loop poles Euler, L.Euler ' s relationEven signalsExponential signalsExponentialsFFast Fourier transform (FFT) FeedbackFeedback interconnection Feedback pathFilter(s)Final-value theoremFinite impulse response (FIR) Finite impulse response (FIR) filters Finite sum formulaFinite-duration signalsFirst differenceFirst harmonic components 均衡化均衡器电路闭环极点方程欧拉欧拉关系(公式)偶信号指数信号指数快速傅立叶变换反馈反馈联结反馈路径滤波器终值定理有限长脉冲响应有限长脉冲响应滤波器有限项和公式有限长信号一阶差分基波分量(一次谐波分量)First-order continuous-time systems 一阶连续时间系统一阶离散时间系统First-order discrete-time systems一阶递归离散时间滤波器First-order recursive discrete-time filters一阶系统First-order systems受迫响应Forced response正向通路Forward path傅立叶级数Fourier series傅立叶变换Fourier transform傅立叶变换对Fourier transform pairsFourier, Jean Baptiste Joseph 傅立叶(法国数学家,物理学家)频率响应Frequency response线性时不变系统的频率响应Frequency response of LTI systemsFreque ncy scali ng of contin uous-time连续时间傅立叶变化的频率尺度Fourier transform (变换性质)Frequency shift keying (FSK) 频移键控Frequency shifting property 频移性质Frequency-division multiplexing (FDM) 频分多路复用Frequency-domain characterization 频域特征Frequency-selective filter 频率选择滤波器Frequency-shaping filters 频率成型滤波器Fundamental components 基波分量Fundamental periodGGainGain and phase margin General complex exponentials Generalized functions Gibbs phenomenon Group delayHHalf-sample delay Hanning window Harmonic analyzerHarmonic components Harmonically relatedHeat propagation and diffusion Higher order holds Highpass filterHighpass-to-lowpass transformations Hilbert transformHomogeneity (scaling) propertyFundamental frequency 基波频率 基波周期增益 增益和相位裕度 一般复指数信号 广义函数 吉伯斯现象 群延迟半采样间隔时延 汉宁窗 谐波分析议 谐波分量 谐波关系 热传播和扩散现象 高阶保持 高通滤波器 高通到低通变换 希尔波特滤波器 齐次性(比例性)IIdeal 理想的理想带阻特征Ideal bandstop characteristic理想频率选择滤波器Ideal frequency-selective filter理想化Idealization恒等系统Identity system虚部Imaginary part冲激响应Impulse response冲激串Impulse train增量线性系统Incrementally linear systems独立变量Independent variable无限长脉冲响应Infinite impulse response (IIR)无限长脉冲响应滤波器Infinite impulse response (IIR) filters无限项和公式Infinite sum formula无限项泰勒级数Infinite taylor series初值定理Initial-value theorem冲激串采样Inpulse-train sampling瞬时的Instantaneous瞬时频率Instantaneous frequency时域积分Integration in time-domainIntegration property 积分性质Integrator 积分器Linear 线性InterconnectionIntermediate-frequency (IF) stage Intersymbol interference (ISI) Inverse Fourier transform Inverse Laplace transform Inverse LTI system Inverse system design Inverse z-transformInverted pendulum Invertibility of LTI systems Invertible systemsLLag network Lagrange, J.L.Laplace transform Laplace, P.S. de lead network互联 中频级 码间干扰 傅立叶反变换 拉普拉斯反变换 逆线性时不变系统 逆系统设计 z 反变换 倒立摆 线性时不变系统的可逆性 逆系统滞后网络 拉格朗日(法国数学家,力学家) 拉普拉斯变换 拉普拉斯(法国天文学家, 数学家) 超前网络left-half plane 左半平面 left-sided signal左边信号Linear constant-coefficient difference 线性常系数差分方程equationsLinear constant-coefficient differential线性常系数微分方程equations线性反馈系统Linear feedback systems线性插值Linear interpolation线性性Linearity对数幅-相图Log magnitude-phase diagram对数模图Log-magnitude plots无损失码Lossless coding低通滤波器Lowpass filters低通到高通的转换Lowpass-to-highpass transformation线性时不变系统响应LTI system response线性时不变系统分析LTI systems analysisM幅度和相位Magnitude and phase匹配滤波器Matched filter测量仪器Measuring devices记忆Memory无记忆系统Memoryless systemsModulating signal 调制信号Modulation 调制Modulation index 调制指数Modulation property 调制性质Moving-average filters移动平均滤波器Multiplexing 多路技术Multiplication property 相乘性质Multiplicities 多样性NNarrowband 窄带Narrowband frequency modulation 窄带频率调制Natural frequency 自然响应频率Natural response 自然响应Negative (degenerative) feedback 负反馈Nonanticipatibe system 不超前系统Noncausal averaging system非因果平滑系统Nonideal 非理想的Nonideal filters 非理想滤波器Nonmalized functions 归一化函数Nonrecursive 非递归Nonrecursive filters 非递归滤波器Non recursive lin ear con sta nt-coefficie nt 非递归线性常系数差分方程difference equationsNyquist frequency 奈奎斯特频率奈奎斯特率Nyquist rate奈奎斯特稳定性判据Nyquist stability criterionO奇次谐波Odd harmonic奇信号Odd signal开环Open-loop开环频率响应Open-loop frequency response开环系统Open-loop system运算放大器Operational amplifier正交函数Orthogonal functions正交信号Orthogonal signals示波器Oscilloscope过阻尼系统Overdamped system过采样Oversampling超量OvershootP并联Parallel interconnection并联型框图Parallel-form block diagramsParity check 奇偶校验检查Parseval ' s renlatioPartial-fraction expansionParticular and homogeneous solution PassbandPassband edgePassband frequencyPassband ripplePendulumPercent modulationPeriodicPeriodic complex exponentials Periodic convolutionPeriodic signalsPeriodic square wavePeriodic square-wave modulating signal Periodic train of impulsesPhase (angle) of complex number Phase lagPhase leadPhase marginPhase shift 帕斯伐尔关系(定理)部分分式展开特解和齐次解通频带通带边缘通带频率通带起伏(或波纹)钟摆调制百分数周期的周期复指数周期卷积周期信号周期方波周期方波调制信号周期冲激串复数相位(角度)相位滞后相位超前相位裕度相移Phase-reversal Phase modulation Plant Polar form PolesPole-zero plot(s) PolynomialsPositive (regenerative) feedback Power of signalsPower-series expansion method Principal-phase function Proportional (P) control Proportional feedback system Proportional-plus-derivative(PID) controlPulse-amplitude modulation Pulse-code modulation Pulse-train carrierProportional-plus-derivative feedback Proportional-plus-integral-plus-differential 相位倒置 相位调制 工厂 极坐标形式 极点 零极点图 多项式 正(再生)反馈 信号功率 幂级数展开的方法 主值相位函数 比例控制 比例反馈系统 比例加积分 比例加积分反馈比例-积分-微分控制脉冲幅度调制 脉冲编码调制 冲激串载波QQuadrature distortion Quadrature multiplexing Quality of circuitRRaised consine frequency responseRational frequency responses Rational transform RC highpass filter RC lowpass filter RealReal exponential signals Real partRectangular (Cartesian) form Rectangular pulse Rectangular pulse signal Rectangular windowRecursive (infinite impulse response) filters递归(无时限脉冲响应)滤波器Recursive linear constant-coefficient 递归的线性常系数差分方程 difference equationsRegenerative (positive) feedback正交失真 正交多路复用 电路品质(因数)升余弦频率响应 有理型频率响应 有理变换RC 高阶滤波器RC 低阶滤波器 实数 实指数信号 实部 直角(卡笛儿)坐标形式 矩形脉冲 矩形脉冲信号 矩形窗口再生(正)反馈Region of comvergence 收敛域right-sided signal 右边信号上升时间Rise time根轨迹分析(方法)Root-locus analysis动求和Running sumSS域S domain采样数据反馈系统Sampled-data feedback systems采样数据系统Sampled-data systems采样Sampling采样频率Sampling frequency采样函数Sampling function采样示波器Sampling oscilloscope采样周期Sampling period采样定理Sampling theorem比例性(齐次性)性质Scaling (homogeneity) propertyScaling in z domain z 域尺度变换扰频器Scrambler二次谐波分量Second harmonic components二阶Second-orderSecond-order continuous-time system 二阶连续时间系统Second-order discrete-time system 二阶离散时间系统Second-order systems 二阶系统序列sequenceSeries (cascade)级联(串联)interconnection筛选性质Sifting propertySinc functions sinc 函数单边带Single-sidebandSingle-sideband sinusoidal amplitude单边带正弦幅度调制modulation奇异函数Singularity functions正弦(信号)SinusoidalSinusoidal amplitude正弦幅度调制modulation正弦载波Sinusoidal carrierSinusoidal frequency正弦频率调制modulation滑动Sliding频谱系数Spectral coefficient频谱Spectrum语音加密器Speech scramblerS-plane S 平面方波Square waveStability 稳定性Step responseStep-invariant transformation StopbandStopband edgeStopband frequency Stopband ripple Stroboscopic effect SummerSuperposition integral Superposition property Superposition sum Suspension system Symmetric periodic SymmetrySynchronousSynthesis equationSystem function(s)T Table of propertiesTaylor series不稳定系统的稳定性(度)阶跃响应阶跃响应不定的变换阻带阻带边缘阻带频率阻带起伏(或波纹)频闪响应加法器叠加积分叠加性质叠加和减震系统周期对称对称性同步的综合方程系统方程性质列表泰勒级数Stabilization of unstable systemsTime advance property of unilateralz-transform单边z 变换的时间超前性质Time constants时间常数Time delay property z-transform ofunilateral单边z 变换的时间延迟性质Time expansion property时间扩展性质Time invariance时间变量Time reversal property时间反转(反褶)性Time scaling property时间尺度变换性Time shifting property时移性质Time window时间窗口Time-division multiplexing(TDM)时分复用Time-domain时域Time-domain properties时域性质Tracking system (s)跟踪系统Transfer function转移函数transform pairs变换对Transformation变换(变形)Transition band 过渡带Time 时间,时域Transmodulation (transmultiplexing) 交叉调制Triangular (Barlett) windowTrigonometric seriesTwo-sided signalType l feedback systemUUint impulse responseUint ramp function Undamped natural frequency Undamped system Underdamped systems UndersamplingUnilateralUnilateral Laplace transform Unilateral z-transformUnit circleUnit delayUnit doubletsUnit impulseUnit step functionsUnit step response Unstable systems 三角型(巴特利特)窗口三角级数双边信号l 型反馈系统单位冲激响应单位斜坡函数无阻尼自然相应无阻尼系统欠阻尼系统欠采样单边的单边拉普拉斯变换单边z 变换单位圆单位延迟单位冲激偶单位冲激单位阶跃函数单位阶跃响应不稳定系统VUnwrapped phaseUpsamplingVariableWWalsh functions Wave Wavelengths Weighted average WidebandWideband frequency modulation WindowingzZ domainZero force equalizer Zero-Input response Zero-Order holdZeros of Laplace transform Zero-state response z-transform z-transform pairs展开的相位特性增采样变量沃尔什函数 波形 波长 加权平均 宽带 宽带频率调制 加窗z 域置零均衡器 零输入响应零阶保持 拉普拉斯变换的零点 零状态响应 z 变换 z 变换对。