(试题2)《分式》能力提升卷
- 格式:doc
- 大小:160.50 KB
- 文档页数:6
一、选择题1.关于分式2634m nm n--,下列说法正确的是( )A .分子、分母中的m 、n 均扩大2倍,分式的值也扩大2倍B .分子、分母的中m 扩大2倍,n 不变,分式的值扩大2倍C .分子、分母的中n 扩大2倍,m 不变,分式的值不变D .分子、分母中的m 、n 均扩大2倍,分式的值不变D 解析:D 【分析】根据分式的基本性质即可求出答案. 【详解】 解:A 、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,故该说法不符合题意;B 、22623=23432m n m nm n m n ⨯--⨯--,故分子、分母的中m 扩大2倍,n 不变,分式的值没有扩大2倍,故该说法不符合题意;C 、226212=32438m n m nm n m n -⨯--⨯-,故分子、分母的中n 扩大2倍,m 不变,分式的值发生变化,故该说法不符合题意;D 、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,此说法正确,符合题意; 故选:D . 【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型. 2.关于x 的分式方程5222m x x +=--有增根,则m 的值为( ) A .2m = B .2m =- C .5m = D .5m =- D解析:D 【分析】先把分式方程化为整式方程,再把增根代入整式方程,即可求解. 【详解】5222mx x+=-- 去分母得:52(2)x m +-=-,∵关于x 的分式方程5222m x x+=--有增根,且增根x=2, ∴把x=2代入52(2)x m +-=-得,5m =-,即:m=-5,故选D . 【点睛】本题主要考查分式方程的增根,掌握分式方程增根的定义:使分式方程的分母为零的根,叫做分式方程的增根,是解题的关键.3.2020年新冠肺炎疫情影响全球,各国感染人数持续攀升,医用口罩供不应求,很多企业纷纷加入生产口罩的大军中来,重庆某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.设乙厂房每天生产x 箱口罩.根据题意可列方程为( )A .6000600052x x -= B .6000600052x x-= C .6000600052x x -=+ D .6000600052x x-=+ A 解析:A 【分析】设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天列分式方程. 【详解】设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 根据题意得:6000600052x x-=, 故选:A . 【点睛】此题考查分式方程的实际应用,正确理解题意找到等量关系从而列出方程是解题的关键.4.如果分式11m m -+的值为零,则m 的值是( ) A .1m =- B .1m = C .1m =±D .0m = B解析:B 【分析】先根据分式为零的条件列出关于m 的不等式组并求解即可. 【详解】 解:∵11m m -+=0 ∴m-1=0,m+1≠0,解得m=1. 故选B . 【点睛】本题主要考查了分式为零的条件,掌握分式为零的条件是解答本题的关键,同时分母不等于零是解答本题的易错点.5.如图,若x 为正整数,则表示3211327121(1)(1)543x x x x x x x x x--++--÷++++的值的点落在( ).A .段①B .段②C .段③D .段④B解析:B 【分析】将原式分子分母因式分解,再利用分式的混合运算法则化简,最后根据题意求出化简后分式的取值范围,即可选择. 【详解】原式221(1)71211543(1)x x x x x x x-++=-++++ 1(3)(4)11(1)(4)3xx x x xx x x x -++=-++++ 1111x x x-=-++ 1x x =+ 又因为x 为正整数,所以1121x x ≤<+, 故选B . 【点睛】本题考查分式的化简及分式的混合运算,最后求出化简后的分式的取值范围是解答本题关键.6.小红用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完)已知每本硬面笔记本比软面笔记本贵3元,且小红和小丽买到相同数量的笔记本.设硬面笔记本每本售价为x 元,根据题意可列出的方程为( ) A .1524x x 3=+ B .1524x x 3=- C .1524x 3x=+ D .1524x 3x=- D 解析:D【分析】由设硬面笔记本每本售价为x 元,可得软面笔记本每本售价为()x 3-元,根据小红和小丽买到相同数量的笔记本列得方程. 【详解】解:设硬面笔记本每本售价为x 元,则软面笔记本每本售价为()x 3-元, 根据题意可列出的方程为:1524x 3x=-. 故选:D . 【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程是解题的关键.7.若2x 11x x 1+--的值小于3-,则x 的取值范围为( ) A .x 4>- B .x 4<-C .x 2>D .x 2< C解析:C 【分析】根据题意列得2x 131x x 1+<---,求解即可得到答案.【详解】∵2x 131x x 1+<---, ∴2x 131x-<--, ∴()()x 1x 131x+-<--,即x 13--<-,∴x 2-<-, 解得x 2>. 又x 1≠, ∴x 2>符合题意. 故选:C. 【点睛】此题考查列式计算,掌握分式的加减法计算法则,整式的因式分解方法,解一元一次不等式是解题的关键.8.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每名同学比原来少分摊3元车费.设原来参加游览的学生共x 人.则所列方程是( )A .18018032x x -=- B .18018032x x -=+ C .18018032x x -=- D .18018032x x -=+ D 解析:D 【分析】设原来参加游览的学生共x 人,增加2人后的人数为(x+2)人,用租价180元除以人数,根据后来每名同学比原来少分摊3元车费列方程. 【详解】设原来参加游览的学生共x 人,由题意得18018032x x -=+, 故选:D . 【点睛】此题考查分式的实际应用,正确理解题意是解题的关键. 9.计算221(1)(1)x x x +++的结果是( )A .1B .1+1x C .x +1 D .21(+1)x B 解析:B 【分析】根据同分母分式加法法则计算. 【详解】221(1)(1)x x x +++=211(1)1x x x +=++,故选:B . 【点睛】此题考查同分母分式加法,熟记加法法则是解题的关键. 10.下列各式中错误的是( ) A .2c d c d c d c d da a a a-+-----== B .5212525aa a +=++ C .1x y x y y x-=--- D .2211(1)(1)1x x x x -=--- C解析:C 【分析】按同分母分式加减法则计算即可. 【详解】 A.2c d c d c d c d da a a a-+-----==,正确;B.52521252525a aa a a ++==+++,正确; C.x y x y x y x y y x x y x y x y +-=+=-----,错误; D.222111(1)(1)(1)1x x x x x x --==----,正确.故选:C 【点睛】此题考查同分母分式的加减法的法则:同分母分式相加减,分母不变,分子相加减.二、填空题11.当m=______时,解分式方程1m 233(2x 1)2x 1+=--会出现增根.6【分析】分式方程的增根使分式中分母为0所以分式方程会出现增根只能是x=增根不符合原分式方程但是适合分式方程去分母后的整式方程于是将x=代入该分式方程去分母后的整式方程中即可求出m 的值【详解】解:由解析:6 【分析】分式方程的增根使分式中分母为0,所以分式方程1m 233(2x 1)2x 1+=--会出现增根只能是x=12,增根不符合原分式方程,但是适合分式方程去分母后的整式方程,于是将x=12代入该分式方程去分母后的整式方程中即可求出m 的值. 【详解】解:由题意知分式方程()1m 2332x 12x 1+=--会出现增根是x=12,去分母得7-2x=m 将x=12代入得m=6 即当m=6时,原分式方程会出现增根. 故答案为6. 【点睛】本题考查了分式方程增根的性质,增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.12.计算:(﹣2a ﹣2b )2÷2a ﹣8b ﹣3=_____.2a4b5【分析】直接利用积的乘方运算法则化简再利用整式的除法运算法则计算得出答案【详解】解:(﹣2a ﹣2b )2÷2a ﹣8b ﹣3=4a ﹣4b2÷2a ﹣8b ﹣3=2a-4-(-8)b2-(-3)=2a解析:2a 4b 5. 【分析】直接利用积的乘方运算法则化简,再利用整式的除法运算法则计算得出答案. 【详解】解:(﹣2a ﹣2b )2÷2a ﹣8b ﹣3=4a ﹣4b 2÷2a ﹣8b ﹣3 =2a -4-(-8)b 2-(-3), =2a 4b 5. 故答案为:2a 4b 5. 【点睛】本题考查了整数指数幂的运算,熟练应用法则是解题关键.13.我们可以将一些只含有一个字母且分子、分母的次数都为一次的分式变形,转化为整数与新的分式的和的形式,其中新的分式的分子中不含字母,如:3(1)441111a a a a a +-+==+---,212(1)332111a a a a a -+-==-+++.参考上面的方法,解决下列问题:(1)将1a a +变形为满足以上结果要求的形式:1aa =+_________; (2)①将321a a +-变形为满足以上结果要求的形式:321a a +=-_________;②若321a a +-为正整数,且a 也为正整数,则a 的值为__________.2或6【分析】(1)根据材料中分式转化变形的方法即可把变形为满足要求的形式;(2)①根据材料中分式转化变形的方法即可把变形为满足要求的形式;②令可先求出a 与x 是整数时的对应值再从所得结果中找出符合条解析:111a -+ 531a +- 2或6 【分析】(1)根据材料中分式转化变形的方法,即可把1aa +变形为满足要求的形式; (2)①根据材料中分式转化变形的方法,即可把321a a +-变形为满足要求的形式;②令325311a x a a +==+--,可先求出a 与x 是整数时的对应值,再从所得结果中找出符合条件的a ,x 的值,即可得出结论. 【详解】 解:(1)1111111a a a a a +-==-+++; 故答案为:111a -+; (2)①323(1)553111a a a a a +-+==+---;故答案为:531a +-; ②∵323(1)553111a a a a a +-+==+--- 令531x a =+-, 当x , a 都为整数时,11a -=±或15a -=±, 解得a =2或a =0或a =6或a =-4, 当a =2时,x =8; 当a =0时,x =-2; 当a =6时,x =4; 当a =-4时,x =2; ∵x , a 都为正整数, ∴符合条件的a 的值为2或6. 故答案为:2或6. 【点睛】此题考查了分式的加减及求分式的值等知识,理解题意并熟练掌握分式的基本性质及运算法则是解本题的关键. 14.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m 值再根据分式方程无解的条件得出一个m 值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4 【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m 值,再根据分式方程无解的条件得出一个m 值即可. 【详解】解:去分母得:2x-3- mx+9 =x-3, 整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3, 把x=3代入(m-1)x=9, 解得:m=4,综上,m 的值为1或4. 故答案为:1或4. 【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键. 15.席卷全世界的新型冠状病毒是个肉眼看不见的小个子,它的身高(直径)约为0.0000012米,将数0.0000012用科学记数法表示为_________.【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指整数数幂指数n 由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:000 解析:61.210-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指整数数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.0000012=1.2×10-6. 故答案为:1.2×10-6. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定. 16.当x _______时,分式22x x-的值为负.且【分析】分式有意义x2≠0分式的值为负数只有分子x-2<0由此求x 的取值范围【详解】解:依题意得解得x <2且x≠0故答案为:x <2且x≠0【点睛】本题考查了分式的值求分式的值必须同时满足分母不为0解析:2x <且0x ≠ 【分析】分式有意义,x 2≠0,分式的值为负数,只有分子x-2<0,由此求x 的取值范围. 【详解】 解:依题意,得220x x -<⎧⎨≠⎩ 解得x <2且x≠0, 故答案为:x <2且x≠0. 【点睛】本题考查了分式的值.求分式的值,必须同时满足分母不为0. 17.若13x x +=,则231x x x ++的值是_______.【分析】把原分式分子分母除以x 然后利用整体代入的方法计算【详解】当原式=故答案为:【点睛】本题考查了分式的化简求值:解决本题的关键是利用整体代入的方法计算解析:34【分析】把原分式分子分母除以x ,然后利用整体代入的方法计算. 【详解】233111x x x x x=++++,当13x x +=,原式=33314=+. 故答案为:34. 【点睛】本题考查了分式的化简求值:解决本题的关键是利用整体代入的方法计算.18.已知0534x y z==≠,则2222x y z xy xz yz -+=+-______.1【分析】设从而可得再代入所求的分式化简求值即可得【详解】由题意设则因此故答案为:1【点睛】本题考查了分式的求值根据已知等式将字母用同一个字母表示出来是解题关键解析:1 【分析】设0534x y zk ===≠,从而可得5,3,4x k y k z k ===,再代入所求的分式化简求值即可得. 【详解】由题意,设0534x y zk ===≠,则5,3,4x k y k z k ===, 因此22222222(3)(4(5))535434x y z k k xy x k z yz k k k k k k -+-⋅+=+-⋅+⋅-⋅,222222181615201252k k k k k k -+=+-, 222323k k =, 1=,故答案为:1. 【点睛】本题考查了分式的求值,根据已知等式,将字母,,x y z 用同一个字母表示出来是解题关键.19.计算:11|1|3-⎛⎫-= ⎪⎝⎭______.【分析】根据实数的性质即可化简求解【详解】解:故答案为:【点睛】本题主要考查了实数的运算解题的关键是掌握负指数幂的运算解析:4【分析】根据实数的性质即可化简求解.【详解】解:1|131(14)3--==-故答案为:4【点睛】本题主要考查了实数的运算,解题的关键是掌握负指数幂的运算. 20.方程2111x x x =--的解是___________.【分析】根据分式方程的性质求解即可得到答案【详解】∵∴∴∵时即分母为0故舍去∴故答案为:【点睛】本题考查了分式方程一元二次方程的知识;解题的关键是熟练掌握分式方程的性质从而完成求解解析:1x =-【分析】根据分式方程的性质求解,即可得到答案.【详解】 ∵2111x x x =-- ∴21x =∴1x =±∵1x =时,10x -=,即分母为0,故舍去∴1x =-故答案为:1x =-.【点睛】本题考查了分式方程、一元二次方程的知识;解题的关键是熟练掌握分式方程的性质,从而完成求解.三、解答题21.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为30元,用80元购进甲种玩具的件数与用70元购进乙种玩具的件数相同. (1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共50件,其中甲种玩具不低于22件,商场决定此次进货的总资金不超过750元,求商场共有几种进货方案?解析:(1)甲,乙两种玩具分别是16元/件,14元/件;(2)4种【分析】(1)设甲种玩具进价x 元/件,则乙种玩具进价为(30﹣x )元/件,然后根据用80元购进甲种玩具的件数与用70元购进乙种玩具的件数相同列分式方程求解,注意结果要检验;(2)设购进甲种玩具y 件,则购进乙种玩具(50﹣y )件,然后利用甲种玩具不低于22件,商场决定此次进货的总资金不超过750元列不等式求解,从而确定y 的取值【详解】解:(1)设甲种玩具进价x 元/件,则乙种玩具进价为(30﹣x )元/件依题意得:80x =7030x- 解得:x =16, 经检验x =16是原方程的解.∴30﹣x =14.甲,乙两种玩具分别是16元/件,14元/件;(2)设购进甲种玩具y 件,则购进乙种玩具(50﹣y )件,依题意得: 16y +14(50-y )≤750,解得:y≤25,又∵y≥22∴22≤y≤25因为y 为非负整数,∴y 取22,23,24, 25共有4种方案.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式组. 22.先化简,再求值:21111a a a ⎛⎫-÷ ⎪+-⎝⎭,其中1a =解析:1a -【分析】先把括号里分式通分,后变除法为乘法,因式分解后进行约分即可,将a 的值代入.【详解】原式=11(1)(1)1a a a a a +-+-⎛⎫⨯⎪+⎝⎭ =(1)(1)(1)a a a a a+-⨯+ 1a =-,当1a =时,原式=【点睛】本题考查了分式的化简求值,按照运算顺序,通分,因式分解,约分是解题的关键. 23.(1)解分式方程:23193x x x +=--(2)先化简代数式+⎛⎫+÷⎪---+⎝⎭2a 11a a 1a 1a 2a 1,然后选取一个使原式有意义的a 值代入求值. 解析:(1)x=-4(2)化简为:1a a -,当a=2时,原式=2 【分析】 (1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(2)先算括号内的加减,把除法变成乘法,再根据分式的乘法法则求出答案即可.【详解】解:(1)两边都乘最简公分母(x 2-9)得:3+x (x+3)=x 2-9,解这个整式方程得:x=-4,经检验x=-4时,x 2-9≠0,所以,x=-4是分式方程的解.(2)原式=()()()()22a 1a 11a a 1a 1a 1⎛⎫+- ⎪+÷ ⎪---⎝⎭ ()()=222a 11a a 1a 1a 1⎛⎫- ⎪+÷ ⎪---⎝⎭()=22a a 1aa 1-⋅- =a a 1- 当a=2时,原式=2.【点睛】本题考查了分式的混合运算及解分式方程,能正确根据分式的运算法则进行化简以及掌握解分式方程的方法是解答此题的关键,注意解分式方程要验根.24.解分式方程:(1)1171.572x x += (2)21533x x x-+=-- 解析:(1)1207x =;(2)无解 【分析】(1)先去分母,解整式方程,求解后检验是否为原分式方程的解即可;(2)先去分母,解整式方程,求解后检验是否为原分式方程的解即可.【详解】(1)解:1171.572x x +=方程两边都乘72x , 得:72+48=7x , 解得:1207x =, 经检验:1207x =是原方程的解; (2)21533x x x-+=--方程两边都乘(3x -), 得:x-2-1=5(x-3),解得:3x =,检验:当3x =时,x-3=3-3=0,是增根,故原方程无解.【点睛】此题考查解分式方程,掌握解分式方程的步骤:去分母化为整式方程,解整式方程,检验解的情况.25.先化简,再求值:21122m m m m ⎭-+÷-⎛⎫ ⎪-⎝,其中12m =-. 解析:11m m -+,3-. 【分析】 原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将m 的值代入计算即可求出值.【详解】 解:21122m m m m ⎭-+÷-⎛⎫ ⎪-⎝ ()()2212211m m m m m m -+-=⋅-+- ()()()212211m m m m m --=⋅-+- 11m m -=+; 当12m =-时,原式1123112--==--+. 【点睛】考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算. 26.计算与求值(1)计算:)01π; (2)求)(2316x +=中x 的值.解析:(15;(2)1x =或7x =-【分析】(1)先进行绝对值、开方、0指数运算,再相加即可;(1)先开方,再解一元一次方程即可.【详解】解:(1))01π+1515=++= (2))(2316x +=开方得,34x +=±, 343-4x x +=+=或,解得,1x =或7x =-.【点睛】本题考查了绝对值、平方根和0指数,掌握基本知识点,熟练运用绝对值法则、0指数的意义和开平方运算是解题关键.27.先化简,再求值:22131x x x x x ---+-,其中2x =. 解析:()11x x -,12【分析】此题需先根据分式的混合运算顺序和法则把22131x x x x x ---+-进行化简,然后把x 代入即可.【详解】 解:原式=()13(1)(1)1x x x x x x ---++- =()(1)(1)(3)(1)(1)(1)1x x x x x x x x x x ----+-+- =22(1)(11)23x x x x x x x -+--++ ()11x x =- 当2x =时,原式12=【点睛】此题考查了分式的化简求值,分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.28.先化简,再求值:22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭,其中5x =. 解析:21(2)x -,19【分析】先计算括号内的运算,然后进行化简,得到最简分式,再把5x =代入计算,即可得到答案.【详解】 解:22214244x x x x x x x x +--⎛⎫-÷⎪--+⎝⎭ =221[](2)(2)4x x x x x x x +--⨯--- =22224[](2)(2)4x x x x x x x x x ---⨯--- =24(2)4x x x x x -⨯-- =21(2)x -; 当5x =时,原式=211(52)9=-. 【点睛】本题考查了分式的混合运算,分式的化简求值,解题的关键是熟练掌握运算法则,正确的进行化简.。
人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。
鲁教版八年级数学上册第二章分式与分式方程自主学习能力达标测试题A 卷(附答案详解)1.温州某生态示范园计划种植一批桔树,原计划总产值为20万千克,为满足市场需求,现决定改良种植技术,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了4万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意列方程为( )A .2420101.5x x -=B .2024101.5x x -=C .2024101.5x x -=D .2420101.5x x -= 2.如果关于x 的方程1022m x x x --=--无解,则m 的值是( ) A .-1 B .1 C .0 D .2 3.对于实数a 、b ,定义一种新运算“⊗”为:23a b a ab⊗=-,这里等式右边是通常的四则运算.若32x x ⊗⊗(﹣)=,则x 的值为( )A .-2B .-1C .1D .24.无论取什么数,总有意义的分式是( )A .B .C .D .5.分式2x 4x 2-+的值为0,则 A .x=-2 B .x=±2 C .x=2 D .x=06.甲、乙两人同时从圆形跑道(圆形跑道的总长小于700m )上一直径两端A ,B 相向起跑.第一次相遇时离A 点100m ,第二次相遇时离B 点60m ,则圆形跑道的总长为( )A .240mB .360mC .480mD .600m7.把-0.000236用科学计数法表示,应是( )A .42.3610-⨯B .42.3610-⨯C .42.3610--⨯D .52.3610--⨯ 8.下列分式是最简分式的( )A .223a a b B .3a a a - C .22a b + D .2a9.已知分式1x y xy+-,若给x ,y 都添加一个负号,得到新分式()()1()()x y x y -+----,则分式的值( ) A .为原来的相反数 B .变大C .变小D .不变 10.下列方程中,是分式方程的为( )A .12x -=B 1= C 10-= D 1= 11.在分式275x y -,233b a +,2411x x --,222a ab ab b--中,最简分式有__________个. 12.若分式211x x --的值为零,则x =_____. 13.已知对于37(4)(3)43x A B x x x x +=-++++成立,则A=_________,B=__________。
1.化简:b b a a 3)43(4---.2.求比多项式22325b ab a a +--少ab a -25的多项式.3.先化简、再求值)432()12(3)34(222a a a a a a --+-+-- (其中2-=a )4、先化简、再求值)]23()5[(42222y xy x y xy x xy -+--+- (其中21,41-=-=y x )5、计算a a a ⋅+2433)(2)(36、(1)计算1092)21(⋅-=(2)计算532)(x x ÷(3)下列计算正确的是 ( ).(A)3232a a a =+ (B)a a 2121=- (C)623)(a a a -=⋅- (D)aa 221=-计算: (1))3()32()23(32232b a ab c b a -⋅-⋅-; (2))3)(532(22a a a -+-;(3))8(25.123x x -⋅ ; (4))532()3(2+-⋅-x x x ;(5)())2(32y x y x +-; (6)利用乘法公式计算:()()n m n m 234234+--+(7)()()x y y x 5225--- (8)已知6,5-==+ab b a ,试求22b ab a +-的值(9)计算:2011200920102⨯-(10)已知多项式3223-++x ax x 能被122+x 整除,商式为3-x ,试求a 的值1、 b a c b a 232232÷-2、 )2(23)2(433y x y x +÷+3、22222335121)433221(y x y x y x y x ÷+-4、当5=x 时,试求整式()()13152322+--+-x x x x 的值5、已知4=+y x ,1=xy ,试求代数式)1)(1(22++y x 的值6、计算:)()532(222223m m n n m n m a a b a a-÷-+-++7、一个矩形的面积为ab a 322+,其宽为a ,试求其周长8、试确定2011201075⋅的个位数字1.(辨析题)不改变分式的值,使分式115101139x y x y -+的各项系数化为整数,分子、分母应乘以(• )A .10B .9C .45D .902.(探究题)下列等式:①()a b c --=-a b c -;②x y x -+-=x y x -;③a b c -+=-a b c +; ④m n m --=-m n m-中,成立的是( ) A .①② B .③④ C .①③ D .②④3.(探究题)不改变分式2323523x x x x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• )A .2332523x x x x +++-B .2332523x x x x -++-C .2332523x x x x +--+D .2332523x x x x ---+ 4.(辨析题)分式434y x a+,2411x x --,22x xy y x y -++,2222a ab ab b +-中是最简分式的有( ) A .1个 B .2个 C .3个 D .4个5.(技能题)约分:(1)22699x x x ++-; (2)2232m m m m-+-.6.(技能题)通分:(1)26x ab ,29y a bc ; (2)2121a a a -++,261a -.7.(妙法求解题)已知x+1x=3,求2421x x x ++的值计算能力训练(分式2)1.根据分式的基本性质,分式a a b--可变形为( ) A .a a b -- B .a a b + C .-a a b - D .a a b + 2.下列各式中,正确的是( )A .x y x y -+--=x y x y -+;B .x y x y -+-=x y x y ---;C .x y x y -+--=x y x y +-;D .x y x y -+-=x y x y-+ 3.下列各式中,正确的是( )A .a m a b m b +=+B .a b a b ++=0C .1111ab b ac c --=-- D .221x y x y x y -=-+ 4.(2005·天津市)若a=23,则2223712a a a a ---+的值等于_______. 5.(2005·广州市)计算222a ab a b+-=_________. 6.公式22(1)x x --,323(1)x x --,51x -的最简公分母为( ) A .(x-1)2 B .(x-1)3 C .(x-1) D .(x-1)2(1-x )37.21?11x x x -=+-,则?处应填上_________,其中条件是__________.拓展创新题8.(学科综合题)已知a 2-4a+9b 2+6b+5=0,求1a -1b 的值.9.(巧解题)已知x 2+3x+1=0,求x 2+21x 的值.计算能力训练(分式方程1)选择1、(2009年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是……………【 】A .8 B.7 C .6 D .52、(2009年上海市)3.用换元法解分式方程13101x x x x --+=-时,如果设1x y x -=,将原方程化为关于y 的整式方程,那么这个整式方程是( )A .230y y +-=B .2310y y -+=C .2310y y -+=D .2310y y --= 3、(2009襄樊市)分式方程131x x x x +=--的解为( ) A .1 B .-1 C .-2 D .-34、(2009柳州)5.分式方程3221+=x x 的解是( ) A .0=x B .1=x C .2=x D .3=x5、(2009年孝感)关于x 的方程211x a x +=-的解是正数,则a 的取值范围是 A .a >-1B .a >-1且a ≠0C .a <-1D .a <-1且a ≠-26、(2009泰安)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为(A )18%)201(400160=++x x (B )18%)201(160400160=+-+xx (C )18%20160400160=-+x x (D )18%)201(160400400=+-+x x7、(2009年嘉兴市)解方程x x -=-22482的结果是( ) A .2-=xB .2=xC .4=xD .无解8、(2009年漳州)分式方程211x x =+的解是( ) A .1B .1-C .13D .13- 9、(09湖南怀化)分式方程2131=-x 的解是( ) A .21=x B .2=x C .31-=x D . 31=x10、(2009年安徽)甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是【 】A .8 B.7 C .6 D .511、(2009年广东佛山)方程121x x=-的解是( ) A .0 B .1 C .2 D .312、(2009年山西省)解分式方程11222x x x-+=--,可知方程( ) A .解为2x = B .解为4x = C .解为3x = D .无解13、(2009年广东佛山)方程121x x=-的解是( ) A .0 B .1 C .2 D .314、(2009年山西省)解分式方程11222x x x-+=--,可知方程( ) A .解为2x = B .解为4x = C .解为3x = D .无解计算能力训练(分式方程2)填空1、(2009年邵阳市)请你给x 选择一个合适的值,使方程2112-=-x x 成立,你选择的x =________。
北师大版八年级数学下册第五章分式与分式方程专项测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列变形正确的是( )A .33y y x x +=+B .y y x x -=-C .22y y x x =D .y x x y= 2、关于x 的分式方程231x m x -=+的解是正数,则字母m 的取值范围是( ) A .3m <-B .3m <C .3m >且2m ≠D .3m >-且2m ≠ 3、分式12x x --有意义,则x 满足的条件是( ) A .1x ≠ B .2x ≠ C .2x = D .2x >4、x 满足什么条件时分式211x x --有意义( ). A .1x ≠ B .1x ≠- C .0x ≠ D .1x ≠±5、下列各式从左到右变形正确的是( )A .2362x x x =B .11n n m mC .n m n m m n mn --=D .22n n m m= 6、把0.0813写成科学记数法的形式,正确的是( )A .28.1310-⨯B .38.1310-⨯C .28.1310⨯D .381.310-⨯7、如果把223xy x y-中的x 和y 都扩大到原来的5倍,那么分式的值( ) A .扩大到原来的5倍 B .不变 C .缩小为原来的15 D .无法确定8、若把x 、y 的值同时扩大为原来的2倍,则下列分式的值保持不变的是( )A .11x y ++B .2x y x y -+C .2x yD .xy x y+ 9、PM 2.5是大气中直径小于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为( )A .50.2510-⨯B .60.2510-⨯C .62.510-⨯D .52.510-⨯ 10、若a b ,则下列分式化简正确的是( )A .22a a b b +=+B .22a a b b -=-C .0.20.2a a b b =D .22a a b b= 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若2x =5y ,则x y x+=_____. 2、开学在即,由于新冠疫情学校决定共用8000元分两次购进口罩6000个免费发放给学生.若两次购买口罩的费用相同,且第一次购买口罩的单价是第二次购买口罩单价的1.5倍,则第二次购买口罩的单价是 __元.3、分式方程1213x x=+的解是______. 4、当x =______ 时,分式21(3)(1)x x x ---的值为零 5、若0ab ≠,且5a b ab +=,则11a b+的值为________. 三、解答题(5小题,每小题10分,共计50分)1、一粥一饭当思来之不易,半丝半缕恒念物力维艰.开展“光盘行动”,拒绝“舌尖上的浪费”,已经成为一种时尚. 某学校食堂为了鼓励同学们做到光盘不浪费,针对每餐后光盘的学生奖励苹果或砂糖橘一份.近日,学校食堂花了1500 元和1800元分别采购了砂糖橘和苹果,采购的砂糖橘比苹果多50千克,砂糖橘每千克的价格比苹果每千克的价格低40%.求苹果每千克的价格.2、在《开学第一课》中,东京奥运会的奥运健儿们向新开学的同学们送上了“希望你们能像运动员一样,努力奔跑,刻苦学习,实现你们的梦想”的祝福.为了提高学生的体育锻炼的意识和能力,丰富学生的体育锻炼的内容,学校准备购买一批体育用品. 在购买跳绳时,甲种跳绳比乙种跳绳的单价低10元,用1600元购买甲种跳绳与用2100元购买乙种跳绳的数量相同,求甲乙两种跳绳的单价各是多少元?3、解方程:(1)32133x x x +-=-+ (2)()()31112x x x x -=--+ 4、(1)21(1)(2)2⎛⎫--+- ⎪⎝⎭x x x ; (2)计算:211a a a ---; (3)先化简,再请你用喜爱的数代入求值2232122444x x x x x x x x x+-+⎛⎫-÷⎪--+-⎝⎭. 5、计算:2243342x x x x x x +---÷--.-参考答案-一、单选题1、B【分析】分式的基本性质:分式的分子与分母都乘以或除以同一个不为0的数(或整式),分式的值不变,利用分式的基本性质逐一分析判断即可.【详解】 解:3,3y y x x ++不一定相等,变形不符合分式的基本性质,变形错误,故A 不符合题意; y y x x-=-,变形符合分式的基本性质,故B 符合题意; 22,y y x x 不一定相等,变形不符合分式的基本性质,变形错误,故C 不符合题意; ,y x x y不一定相等,变形不符合分式的基本性质,变形错误,故D 不符合题意; 故选B【点睛】本题考查的是分式的基本性质,掌握“利用分式的基本性质判断分式变形是否正确”是解本题的关键.2、A【分析】解分式方程,得到含字母m 的方程,解此方程,再根据该方程的解是整数,结合分式方程的分母不为零,得到两个关于字母m 的不等式,解之即可.【详解】 解:231x m x -=+ 方程两边同时乘以(x +1),得到233x m x -=+3x m ∴=--+10x ≠1x ∴≠-31m ∴--≠-2m ∴≠-因为分式方程的解是正数,x∴>30m∴-->3m∴<-故选:A.【点睛】本题考查分式方程的解、解一元一次不等式等知识,难度较易,掌握相关知识是解题关键.3、B【分析】根据分式有意义的条件,分母不为0,即可求解.【详解】解:∵分式12xx--有意义,∴20x-≠2x∴≠故选B【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件即分母不为0是解题的关键.4、D【分析】直接利用分式有意义的条件解答即可.【详解】解:要使分式21 1x x --有意义,∴210x-≠,解得:1x≠±,故选:D【点睛】本题考查了分式有意义的条件,熟练掌握分式有意义的条件—分母不等于零,是解题的关键.5、A【分析】根据分式的基本性质逐个判断即可.【详解】解:A.2362x xx=,故本选项正确,符合题意;B.11nm mn++≠,故本选项错误,不符合题意;C.22n m n mm n mn--=,故本选项错误,不符合题意;D.22n nm m≠,例如1,2n m==,1124≠,故本选项错误,不符合题意;故选:A.【点睛】本题考查了分式的基本性质,解题的关键是能熟记分式的基本性质,注意:分式的基本型性质是:分式的分子和分母都乘或除以同一个不等于0的整式,分式的值不变.6、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0813=28.1310-⨯.故选A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7、A【分析】把分式中的x与y分别用5x与5y代替,再化简即可判断.【详解】分式223xyx y-中的x与y分别用5x与5y代替后,得2(5)(5)50252(5)3(5)5(23)23x y xy xyx y x y x y⨯⨯==⨯⨯-⨯--,由此知,此时分式的值扩大到原来的5倍.故选:A【点睛】本题考查了分式的基本性质,一般地,本题中把x与y均扩大n倍,则分式的值也扩大n倍.8、B【分析】根据分式的基本性质逐项判断即可得.【详解】解:A、211211x xy y++≠++,此项不符题意;B、222222x y x yx y x y⨯--=++,此项符合题意;C 、222(2)4222x x x y y y==,此项不符题意; D 、22222x y xy x y x y ⋅=++,此项不符题意; 故选:B .【点睛】本题考查了分式的基本性质,熟练掌握分式的基本性质是解题关键.9、C【分析】科学记数法的形式是:10n a ⨯ ,其中1a ≤<10,n 为整数.所以 2.5a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数.本题小数点往右移动到2的后面,所以 6.n =-【详解】解:0.000002562.510-=⨯故选C【点睛】本题考查的知识点是用科学记数法表示绝对值较小的数,关键是在理解科学记数法的基础上确定好,a n 的值,同时掌握小数点移动对一个数的影响.10、C【分析】找出分子分母的公因式进行约分,化为最简形式.【详解】解:a bA选项中,22ab++已是最简分式且不等于ab,所以错误,故不符合题意;B选项中,22ab--已是最简分式且不等于ab,所以错误,故不符合题意;C选项中,0.20.20.20.2a a ab b b=⨯=,所以正确,故符合题意;D选项中,22a a a ab b b b⨯=≠⨯,所以错误,故不符合题意;故选C.【点睛】本题考查了分式的化简.解题的关键是找出分式中分子、分母的公因式进行约分.二、填空题1、7 5【分析】先用含y的代数式表示出x,然后代入x yx+计算.【详解】解:∵2x=5y,∴52x y =,∴x yx+=572552y y yyy+==75.故答案为:75.【点睛】本题考查了分式的化简求值,用含y的代数式表示出x是解答本题的关键.2、109【分析】设第二次购买口罩的单价是x 元,则第一次购买口罩的单价是1.5x 元,根据两次购买口罩的费用相同,两次购进口罩6000个,列出方程求解即可.【详解】解:8000÷2=4000(元).设第二次购买口罩的单价是x 元,则第一次购买口罩的单价是1.5x 元, 依题意得:40001.5x +4000x=6000, 解得:x =109, 经检验,x =109是原方程的解,且符合题意. 故答案为:109. 【点睛】 本题考查了分式方程的应用,解题关键是准确把握题目中的数量关系,找出等量关系列方程. 3、2x =【分析】按照解分式方程的方法解方程即可.【详解】 解:1213x x=+, 方程两边同乘3(1)x x +得,32(1)=+x x ,解整式方程得,2x =,当2x =时,3(1)0x x +≠,2x =是原方程的解,故答案为:2x =.【点睛】本题考查了解分式方程,解题关键是熟练运用解分式方程的方法解方程,注意:分式方程要检验. 4、1-【分析】由分式的值为0的条件可得:()()210310x x x ⎧-=⎪⎨--≠⎪⎩,再解方程与不等式即可得到答案. 【详解】解: 分式21(3)(1)x x x ---的值为零, ()()210310x x x ⎧-=⎪∴⎨--≠⎪⎩①② 由①得:1,x =±由②得:3x ≠且1,x ≠综上: 1.x =-故答案为: 1.-【点睛】本题考查的是分式的值为0的条件,利用平方根解方程,掌握“分式的值为0的条件:分子为0,分母不为0”是解本题的关键.5、5【分析】先通分,再整体代入求值即可得到结果.【详解】解:∵0ab ≠,且5a b ab +=, ∴1155a b ab a b ab ab++===. 故答案为:5.【点睛】解答本题的关键是熟练掌握最简公分母的确定方法:系数取各分母系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积.三、解答题1、14元【分析】设苹果每千克的价格为x 元,则砂糖橘每千克的价格为(140%)x -元.根据“学校食堂花了1500 元和1800元分别采购了砂糖橘和苹果,采购的砂糖橘比苹果多50千克,”列出方程,即可求解.【详解】解:设苹果每千克的价格为x 元,则砂糖橘每千克的价格为(140%)x -元. 根据题意,得1500180050(140%)x x-=- 解得14x =经检验:14x =是原分式方程的解,且符合题意,∴苹果每千克的价格为14元.【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键.2、乙种跳绳的单价为42元,甲种跳绳的单价为32元【分析】设乙种跳绳的单价为x 元,则甲种跳绳的单价为(10)x -元,根据题意列出方程求解即可【详解】设乙种跳绳的单价为x 元,则甲种跳绳的单价为(10)x -元, 依据题意列出方程为:1600210010x x =-, 解得:42x =,经检验:42x =是所列方程的解,并且符合实际意义,∴1032x -=,答:乙种跳绳的单价为42元,则甲种跳绳的单价为32元.【点睛】本题考查分式方程的应用,根据题意列出方程是解题的关键,分式方程注意检验.3、(1)6x =-;(2)无解【分析】(1)分式方程两边乘以()()33x x +-,去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(2)分式方程两边乘以()()21x x +-去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)32133x x x +-=-+, 解:()()()()232333x x x x +--=+-,2269269x x x x ++-+=-,424x =-,6x =-,检验:当6x =-时,()()330x x +-≠,所以,原方程的解是6x =-,(2)()()31112x x x x -=--+,解:()()()2213+-+-=x x x x ,22223x x x x +--+=,1x =,检验:当1x =时,()()210x x +-=,所以,1x =不是原方程的解.【点睛】本题考查了解分式方程,解题的关键是利用“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根.4、(1)94;(2)11a -;(3)42x x --,当x =1时,原式=3. 【分析】(1)分别运用完全平方公式和多项式乘多项式法则展开后,合并即可;(2)先通分,再计算加减即可;(3)先计算括号内的减法(通分后按同分母的分式相加减法则计算)同时把除法变成乘法,再根据分式的乘法法则约分,最后代入求出即可.【详解】解:(1)21(1)(2)2⎛⎫--+- ⎪⎝⎭x x x=221(22)4x x x x x -+--+- =221224x x x x x -+-+-+ =94;(2)211a a a --- =2(1)(1)11a a a a a -+--- =22111a a a a ---- =11a -; (3)2232122444x x x x x x x x x +-+⎛⎫-÷⎪--+-⎝⎭ =2212(2)(2)(2)(2)x x x x x x x x x ⎡⎤+-+-÷⎢⎥--+-⎣⎦=22(2)(2)(1)1(2)(2)(2)x x x x x x x x x x ⎡⎤+---÷⎢⎥---⎣⎦=24(2)(2)x x x x x -⋅-- =42x x --, ∵要使式子有意义,∴x 2−2x ≠0,x 2−4x +4≠0,x 3−4x ≠0,x +2≠0,∴x 不能是0、2、−2,当x =1时,原式=1412--=3.【点睛】本题考查了整式的乘法、分式的混合运算及化简求值等知识点,分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.5、22x -+. 【分析】先把除化乘,再因式分解同时约分,通分合并化简为最简分式即可.【详解】 解:2243342x x x x x x+---÷--, =2243423x x x x x x +--⋅---, =()()()()()2242222x x x x x x x ++-+--+, =()()224222x x x x x +--+-, =()()()2222x x x --+-, =22x -+. 【点睛】本题考查分数加减乘除混合运算,掌握分式混合运算法则是解题关键.。
《分式》综合测试题答案二、 填空题:每题3分11、 1.05×10-312、x ≠-5 13、336278cb a - 14、 2y 15 、 9116、a 2+a 17 、 2121R R R R + 18、 6 19、 2-=+ab b aa b ,a+b=ab 20、111+-+n n三、解答题 21、每题6分(1)-3 (2)10000 (3)2y-x (4) –4a22 (8分)解方程:14212=++-x x x 解:两边同乘以2(x-2)(x+2)得 (1分) 2x(x+2)+x-2=2(x+2)(x-2) (3分)X=-56 (6分)检验:当X=-56时,2(x+2)(x-2)≠0 (7分)∴X=56是原分式方程的解 (8分)23、(8分) 解:原式=()21)1)(1(-+-x x x x ·xx 1- (2分)=x+1 (6分)当x=3时,原式=x+1=4 (8分)(注: x 不能取0和1)24、解:设小月每分钟跳绳 x 个,由题意得,(1分)20100-x =x110(5分)解得x=220 (7分)经检验,x=220是分式方程的解 (9分)答:小月每分钟跳绳220个。
(10分) 25、(1);,21c mx c x == (2分)(2)结论:方程的左边是未知数与其倒数的倍数的和,方程的右边与左边形式完全相同,只是其中的未知数换成了某个常数,这样左边的未知数就等于右边的常数和倒数. (4分)1212-+=-+a a y y 可变形为121121-+-=-+-a a y y , (6分)∴121,11-=--=-a y a y 或,即1121-+==a a y a y 或, (8分) 经检验:11,21-+==a a y a y 都是原方程的解, (9分)∴原方程的解为11,21-+==a a y a y (10分)。
2022学年八年级数学上册第十五章《分式》试题卷三(满分120分)一.选择题(共8小题,满分32分)1.下列各式中:﹣3x,,,,,分式的个数是()A.2B.3C.4D.52.无论a取何值,下列分式中,总有意义的是()A.B.C.D.3.把分式中的x、y都扩大3倍,则分式的值()A.扩大3倍B.扩大6倍C.缩小为原来的D.不变4.下列运算正确的是()A.B.C.D.5.化简的结果是()A.a+b B.a﹣b C.D.6.方程的解为()A.x=﹣1B.x=1C.x=0D.x=﹣37.照相机成像应用了一个重要原理,用公式表示,其中f表示照相机镜头的焦距,u 表示物体到镜头的距离,v表示胶片(像)到镜头的距离.用f,v表示物体到镜头的距离u,正确的是()A.B.C.D.8.为了改善生态环境,某社区计划在荒坡上种植600棵树,由于学生志愿者的加入,每日比原计划多种20%,结果提前1天完成任务.设原计划每天种树x棵,可列方程()A.=1B.=1C.=1D.=1二.填空题(共8小题,满分32分)9.如果分式的值为0,那么x的值为.10.已知x为整数,且分式的值为正整数,则x可取的值有.11.若,则的值是.12.计算:3xy2÷(﹣)3()2=.13.若关于x的分式方程=4有增根,则k=.14.关于x的分式方程无解,则m的值15.定义一种运算☆,规则为a☆b=+,根据这个规则,若x☆(x+1)=,则x=.16.若整数a既使得关于x的分式方程有整数解,又使得关于x,y的方程组的解为正数,则a=.三.解答题(共7小题,满分56分)17.化简:(x﹣1﹣)÷.18.化简求值:,其中a=2022.19.解下列方程:(1)=;(2)﹣=8.20.关于x的分式方程.(1)若方程的增根为x=2,求m的值;(2)若方程有增根,求m的值;(3)若方程无解,求m的值.21.请仿照例子解题:+=恒成立,求M、N的值.解:∵+=∴=则=即=,故,解得:请你按照上面的方法解题:若+=恒成立,求M、N的值.22.现有甲、乙、丙三种糖混合而成的什锦糖50千克,其中各种糖的千克数和单价如表所示,且商店以糖的平均价作为什锦糖的单价.请问:甲种糖乙种糖丙种糖千克数102020单价(元/千克)252015(1)这50千克什锦糖的单价是多少?(2)若要是什锦糖的单价每千克提高2元,问需加入甲种什锦糖多少千克?23.某天运动员小伟沿平路从家步行去银行办理业务,到达银行发现没有带银行卡(停留时间忽略不计),立即沿原路跑回家,已知平路上跑步的平均速度是平路上步行的平均速度的4倍,已知小伟家到银行的平路距离为2800米,小伟从离家到返回家共用50分钟.(1)求小伟在平路上跑步的平均速度是多少?(2)小伟找到银行卡后,发现离银行下班时间仅剩半小时,为了节约时间,小伟选择另外一条近的坡路去银行,小伟先上坡再下坡,用时9分钟到达银行,已知上坡的平均速度是平路上跑步的平均速度的,下坡的平均速度是平路上跑步的平均速度的,且上坡路程是下坡路程的2倍,求这段坡路的总路程是多少米?参考答案一.选择题(共8小题,满分32分)1.解:分式的个数是,,共2个.故选:A.2.解:A.当a=1时,分式没有意义.故本选项不合题意;B.当a=0时,分式没有意义.故本选项不合题意;C.当a=1时,分式没有意义.故本选项不合题意;D.因为a2≥0,所以2a2+1≠0,所以分式总有意义,故本选项符合题意.故选:D.3.解:由题意得:==,∴把分式中的x、y都扩大3倍,则分式的值扩大3倍,故选:A.4.解:A.==﹣,因此选项A不符合题意;B.==,因此选项B不符合题意;C.===﹣,因此选项C符合题意;D.是最简分式,不能约分,因此选项D不符合题意;故选:C.5.解:====a﹣b.故选:B.6.解:,x+5=6x,5x=5,x=1,经检验x=1是原方程的解,则方程的解为x=1.故选:B.7.解:∵=+,∴=﹣=,∴u=,故选:B.8.解:设原计划每天种x棵树,实际每天种树(1+20%)x棵树,由题意得:﹣=1.故选:D.二.填空题(共8小题,满分32分)9.解:如果分式的值为0,则,解得:x=1.故答案为:1.10.解:==2+,∵x为整数,且分式的值为正整数,∴=5或±1,∴x﹣1=1或5或﹣5,∴x=2或6或﹣4,∴满足条件的x可取的有2,6,﹣4.故答案为:2,6,﹣4.11.解:由,可以得到:a﹣b=﹣4ab,∴=.故的值是6.12.解:原式=3xy2÷(﹣)•=﹣3xy2••=﹣x2,故答案为:﹣x2.13.解:去分母,得x﹣k=4(x﹣3),将增根x=3代入x﹣k=4(x﹣3),得3﹣k=0,解得k=3,故答案为:3.14.解:将方程化简为,m+2=x﹣3,可得m=x﹣5,当x=3时,m=x﹣5=3﹣5=﹣2,∴当m=﹣2时,方程无解.故答案为:﹣2.15.解:根据给定的定义,得x☆(x+1)=,∴=,去分母,得2(x+1)+2x=3(x+1),解得x=1,经检验,x=1是原方程的根,故答案为:1.16.解:解方程得,x=,∵分式方程有整数解,且x≠1,∴a﹣3=﹣4或﹣2或﹣1或1或2或4,且a≠7,∴a=﹣1或1或2或4或5,解方程组得,,∵方程组的解为正数,∴,解得a>4,综上,a=5.故答案为:5.三.解答题(共7小题,满分56分)17.解:原式=•=•=.18.解:原式=•=•=•=,当a=2022时,原式=.19.解:(1)=,9(m﹣1)=8m,解得:m=9,检验:当m=9时,m(m﹣1)≠0,∴m=9是原方程的根;(2)﹣=8,x﹣8+1=8(x﹣7),解得:x=7,检验:当x=7时,x﹣7=0,∴x=7是原方程的增根,∴原方程无解.20.解:去分母,得:2(x+1)+mx=3(x﹣2),(1﹣m)x=8,(1)当方程的增根为x=2时,(1﹣m)×2=8,所以m=﹣3;(2)若原分式方程有增根,则(x+1)(x﹣2)=0,∴x=2或x=﹣1,当x=2时,(1﹣m)×2=8,所以m=﹣3;当x=﹣1时,(1﹣m)×(﹣1)=8,所以m=9,所以m的值为﹣3或9时,方程有增根;(3)当方程无解时,即当1﹣m=0时,(1﹣m)x=8无解,所以m=1;当方程有增根时,原方程也无解,即m=﹣3或m=9时,方程无解所以,当m=﹣3或m=9或m=1时方程无解.21.解:∵+==,∴M(x﹣2)+N(x+2)=x+8,∴(M+N)x﹣2M+2N=x﹣8,∴,解得:.22.解:(1)这50千克什锦糖的单价==19(元);(2)设加入甲种糖x千克,则什锦糖的总量为:(10+x+20+20)千克,根据题意得:=19+2,解得:x=25,经检验:x=25是原方程的解,答:需加入甲种糖25千克.23.解:(1)设小伟在平路上跑步的平均速度是x米/分钟,则小伟在平路上步行的平均速度是x米/分钟,依题意得:+=50,解得:x=280,经检验,x=280是原方程的解,且符合题意.答:小伟在平路上跑步的平均速度是280米/分钟.(2)设这段坡路的总路程是y米,则上坡路程是y米,下坡路程是y米,依题意得:+=9,解得:y=2100.答:这段坡路的总路程是2100米.。
八下第十六章分式 能力提升卷一、选择题(每题3分,共30分) 1.已知分式11+-x x 的值是零,那么x 的值是( ) A .-1 B .0 C .1D . 1±2.下列各式与x yx y-+相等的是( ) (A )()5()5x y x y -+++(B )22x y x y -+(C )222()()x y x y x y -≠-(D )2222x y x y-+ 3.下列各式计算正确的是( )A .623x x x=B .21221x x -=--C .2933m m m-=+- D .11111x x x x +=++ 4.下列方程不是分式方程的是( )A.11x x+= B.32345x x += C.21211x x -=++ D.577x x =- 5.要把分式方程23242x x=-化为整式方程,方程两边需要同时乘以( )A.2xB.24x -C.2(24)x x -D.2(2)x x -6.下列各组中的分式方程与整式方程相同的是( )A.23043x x x +=++与30x +=B.224404x x x -+=-与20x -= C.32043x x -=-与430x -=D.23012x x x +=+-与30x += 7.下列说法正确的是( )A.85x x=-是分式方程 B.3123x x +-=是分式方程 C.22223401x x x x x +-=+--的解是1x =- D.解分式方程时一定能产生增根8.若分式方程2111x m x x x x x++-=++产生增根,则m 终于( ) A.1-或2- B.1-或2 C.1或2 D.0或2-9.若3x =-是分式方程312axx =-的解,则a 的值为( ) (A)95- (B) 95 (C)59 (D) 59-10.某化肥厂计划在x 天内生产化肥120吨,由于采用新技术,每天多生产化肥3吨,实际生产180吨与原计划生产120吨的时间相等,那么适合的方程是( )A.1201803x x =+ B.120180x x = C.1201803x x =+D.1201803x x+= 二、填空题(每题3分,共30分) 11.当x 时,分式11+x 有意义.12+=1x13.化简:224xx x +=+- . 14.当2x =时,23331111x x x x x -÷--+-= 15.已知11x y x +=-,试用含y 的代数式表示x 为 .16.方程21211x x =--的解为 . 17.若关于x 的方程2233x mx x -=+--无解,则m 的值是 . 18.甲、乙两人承包一项工程合作10天完成,若他们单独做,甲比乙少用8天,设甲单独做需x 天完成,则所列方程是 .19.两名教师带若干名学生去旅游,联系了甲、乙两家旅游公司,甲公司给的优惠价是:一名教师按行业规定的统一价全价收费,其余按7.5折收费;乙公司给的优惠价是:全部按8折收费,经核算甲公司的优惠价比乙公司的优惠价便宜132,则学生人数是 . 20.观察下列方程:(1)23x x +=;(2)65x x +=;(3)127x x+=;……按此规律写出关于x 的第n 个方程为 ;此方程的解为 .三、解答题(共60分)21.(本题6分)我们把分子为1的分数叫做单位分数. 如21,31,41…,任何一个单位分数都可以拆分成两个不同的单位分数的和,如21=6131+,31=12141+,41=20151+,… (1)根据对上述式子的观察,你会发现51=11+. 请写出□,○所表示的数;○□(2)进一步思考,单位分数n 1(n 是不小于2的正整数)=11+,请写出△,☆所表示的式,并加以验证.22.(本题6分)先化简代数式:22121111x x x x x -⎛⎫+÷ ⎪+--⎝⎭,然后选取一个使原式有意义的x 的值代入求值.23.(本题7分)有一道题“先化简,再求值:22241244x x xx x -+÷+--(),其中x =”小玲做题时把“x =x =,但她的计算结果也是正确的,请你解释这是怎么回事?24.(本题7分)已知分式:221A x =-,1111B x x=++-.()1x ≠±.下面三个结论:①A ,B 相等,②A ,B 互为相反数,③A ,B 互为倒数,请问哪个正确?为什么?25.(本题8分)课堂上,李老师给大家出了这样一道题:当x =3,225-,37+时,求代数式12211222+-÷-+-x x x x x 的值。
小明一看,“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?请你写出具体过程。
△ ☆26.(本题8分)(1)解方程1y 41y 1y 2---+=1. (2)关于x 的方程xmx x --+-2322=3有增根,求m 的值. 27.(本题9分)某自来水公司水费计算办法如下:若每户每月用水不超过5 m 3,则每立方米收费1.5元;若每户每月用水超过5 m 3,则超出部分每立方米收取较高的定额费用.1月份,张家用水量是李家用水量的32,张家当月水费是17.5元,李家当月水费是27.5元.超出5 m 3的部分每立方米收费多少元? 28.(本题9分)2006年8月中旬,我市受14号台风“云娜”的影响后,部分街道路面积水比较严重.为了改善这一状况,市政公司决定将一总长为1200m 的排水工程承包给甲、乙两工程队来施工。
若甲、乙两队合做需12天完成此项工程;若甲队先做了8天后,剩下的由乙队单独做还需18天才能完工.问甲、乙两队单独完成此项工程各需多少天?又已知甲队每施工一天需要费用2万元,乙队每施工一天需要费用1万元,要使完成该工程所需费用不超过35万参考答案:一、 1.C ; 2.C ;3.B ; 4.B; 5.D; 6.D; 7.A; 8.D; 9.D ; 10.D 二、11.当x ≠-1; 12.如:14a x-+与4a 等; 13.1; 14.12-; 15.11y x y +=-; 16.无解; 17.1m =;18.111810x x +=+. 19.3132;20.第n个方程为x +()1n n x+=2n+1; x 1=n,x 2=n+1 三、 21.解:(1)□表示的数为6,○表示的数为30; (2)△表示的式为1+n ,☆表示的式为)1(+n n . 所以,)1(1)1()1(111+++=+++n n n n n n n n nn n n 1)1(1=++= 22.解:化简得:21x +,取x=0时,原式=1;23.解:先化简:222222241444(4)42444x x x x x x x x x x x --+++÷=⨯-=++---(),因为x =x =2x 的值均为3,原式的计算结果都是7,所以把“x =“x =,计算结果也是正确的. 24.解:A B ,互为相反数正确,因为:1111B x x =-+-11(1)(1)(1)(1)x x x x x x -+=-+-+-(1)(1)(1)(1)x x x x --+=+-221A x -==-- 25.原式=(1)11(1)(1)2(1)2x x x x x -+?+--,所以当x =3,225-,37+时,求代数式12211222+-÷-+-x x x x x 的值都是12 元,则乙工程队至少要施工多少天?26.(1)解:两边同乘以(y+1)(y -1),去分母,得(y+1)2-4=y 2-1,y 2+2y+1-4=y 2-1,y=1检验:把y=1代入最简公分母:(y+1)(y -1)=(1+1)(1-1)=0,∴y=1是增根. 所以,原方程无解.(2)解:方程两边都乘以(x -2),得2x -(3-m)=3(x -2),把x=2代入上面得到的整式方程,得4-3+m=0.所以m=-1.27.解:设超出5 m 3部分的水,每立方米收费设为x 元,根据等量关系,得x 55.15.17⨯-+5=(x 55.15.27⨯-+5)×32.解这个方程,得x =2.经检验x =2是所列方程的根.答:超出5 m 3部分的水,每立方米收费2元. 28.解:设甲、乙两队单独完成此项工程分别需要x 天,y 天.依题意得 解之得 经检验知它们适合方程组和题意.则甲队每天施工1200÷20=60m ,乙队每天施工1200÷30=40m. 设甲、乙两队实际完成此项工程分别需要a 天,b 天.依题意得解之得b ≥35.答:甲、乙两队单独完成此项工程分别需要20天,30天;要使完成该工程所需费用不超过35万元,则乙工程队至少要施工15天.。