用“轴对称性”求最值
- 格式:doc
- 大小:111.50 KB
- 文档页数:4
利用轴对称性质求几何最值————————————————————————————————作者: ————————————————————————————————日期:ﻩ轴对称中几何动点最值问题总结轴对称的作用是“搬点移线”,可以把图形中比较分散、缺乏联系的元素集中到“新的图形”中,为应用某些基本定理提供方便。
比如我们可以利用轴对称性质求几何图形中一些线段和的最大值或最小值问题。
利用轴对称的性质解决几何图形中的最值问题借助的主要基本定理有三个:(1)两点之间线段最短;(2)三角形两边之和大于第三边;(3)垂线段最短。
初中阶段利用轴对称性质求最值的题目可以归结为:两点一线,两点两线,一点两线三类线段和的最值问题。
下面对三类线段和的最值问题进行分析、讨论。
(1)两点一线的最值问题:(两个定点+ 一个动点)问题特征:已知两个定点位于一条直线的同一侧,在直线上求一动点的位置,使动点与定点线段和最短。
核心思路:这类最值问题所求的线段和中只有一个动点,解决这类题目的方法是找出任一定点关于直线的对称点,连结这个对称点与另一定点,交直线于一点,交点即为动点满足最值的位置。
变异类型:实际考题中,经常利用本身就具有对称性质的图形,比如等腰三角形,等边三角形、正方形、圆、二次函数、直角梯形等图形,即其中一个定点的对称点就在这个图形上。
1. 如图,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点,若AE=2,EM+CM的最小值为()A.4 B.8 C.D.2.如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠ECF的度数为()A.15°B.22.5° C.30° D. 45°3.如图,Rt△ABC中,AC=BC=4,点D,E分别是AB,AC的中点,在CD上找一点P,使PA+PE 最小,则这个最小值是_____________.4.(2006•河南)如图,在△ABC中,AC=BC=2,∠ACB=90°,D是BC边的中点,E是AB 边上一动点,则EC+ED的最小值是_____________.5.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是( )A.B.C. D. 106..(2009•抚顺)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为( )A.2√3 B. 2√6C.3D. √6(2)一点两线的最值问题:(两个动点+一个定点)问题特征:已知一个定点位于平面内两相交直线之间,分别在两直线上确定两个动点使线段和最短。
「初中数学」利用对称求线段和最值用轴对称思想解决线段最值问题是常用的方法,本质是利用三角形三边关系或两点之间线段最短解决问题,即化折为直。
常见的类型笔者归纳为五种:即两定一动型,一定两动型,两定两动型,两定滑动型(架桥),三动型等类型一:两定一动型【模型介绍】已知直线l同侧有A,B两点,在l上找一点P,使得PA+PB最小。
作法:作点A关于直线l的对称点A',连接A'B,与直线l的交点就是点P,线段A'B的长度即为最小值。
验证:如图,AQ+BQ=A'Q+BQ>A'B【例1】如图,在正方形ABCD中,E是AB上一点,BE=2,AB=3BE,P是AC上一动点,则PB+PE的最小值是__________.【分析】这是两定一动模型,需要作一个定点关于动点所在直线的对称点,根据本题图形特征,B点关于AC的对称点恰好是C点,连接CE,CE即为所求的最小值。
【答案】10【例2】如图,在平面直角坐标系中,A(2,1),B(5,5),P是x轴上一动点,当PA+PB值最小时,求点P坐标【分析】这是两定一动模型,作A点关于x轴的对称点A',A'B 与x轴的交点即为P,P点坐标可以用直线解析式或勾股定理求,初三学生也可用相似。
【答案】P(2.5,0)类型二:一定两动型【模型介绍】已知,在∠AOB内有一点M,在边OA,OB上分别找点P,Q,使MP+MQ+PQ最小。
作法:作M关于OA的对称点M‘,关于OB的对称点M'',连接M'M'',交OA于点P,交OB于点Q,此时则MP+MP+PQ的值最小,最小值即为线段M'M''的长。
验证: 如图,OA上取一点P',OB上取一点Q',连接M'P',M''Q',则MP'+MQ'+P'Q'=M'P'+M''Q'+P'Q'>M'M''(两点之间线段最短)【例3】五边形ABCDE中,∠A=120°,∠B=∠E=90°,AB=BC=1,AE=DE=2,在BC、DE上分别找一点M、N,使得△AMN的周长最小,则△AMN周长的最小值为____.【分析】这是一定两动模型,作点A关于BC的对称点A’,关于ED的对称点A'',连接A'A'',交BC于M,交ED于N,此时△AMN 的周长最小,最小值即为A'A''的长。
对称方法求最值在数学问题中,求解最值是常见的一类问题。
对称方法是一种利用几何图形的对称性来求解最值的有效手段。
本文将详细阐述如何使用对称方法求解最值。
**对称方法求最值**对称方法是一种基于几何图形的对称性质来求解最值的方法。
在几何问题中,尤其是平面几何问题,通过观察图形的对称性,我们可以找到最值点的位置,进而求解出最值。
### 基本原理对称方法的核心在于“对称轴”或“对称中心”。
对于一个几何问题,如果存在对称轴或对称中心,那么问题的最值往往出现在对称轴或对称中心上。
### 求解步骤1.**确定对称轴或对称中心**:观察题目给出的几何图形,确定是否存在对称轴或对称中心。
2.**分析问题**:根据问题的具体要求,分析什么是最值点,例如最大值点或最小值点。
3.**应用对称性**:利用对称性,确定最值点的位置。
通常,最值点会出现在对称轴或对称中心上。
4.**建立方程**:根据问题的具体条件,建立方程或方程组,求解最值点。
5.**计算最值**:将最值点的坐标代入目标函数,计算出最大值或最小值。
### 实例应用#### 例题:在平面直角坐标系中,求点A(1,2)到直线y=3x+1的距离的最小值。
**解**:1.确定对称轴:直线y=3x+1的斜率为3,故垂直于该直线的直线的斜率为-1/3,即垂直线为对称轴。
2.分析问题:要求点A到直线的距离的最小值,此最值出现在点A关于直线y=3x+1的对称点上。
3.应用对称性:点A关于直线y=3x+1的对称点B,其坐标可以通过求解点A到直线的垂线方程与直线y=3x+1的交点得到。
4.建立方程:根据点斜式,垂线方程为y-2=-(1/3)(x-1)。
5.解方程:将垂线方程代入直线方程y=3x+1,解得交点坐标。
6.计算最值:通过求解得到的对称点B的坐标,计算点A到直线y=3x+1的距离,即为所求的最小值。
通过以上步骤,我们可以求解出该问题的答案。
**注意**:实际应用中,问题可能会更加复杂,需要结合具体问题具体分析。
专题复习1:利用轴对称求最值Ⅱ. 请你设计一个用时最少的方案.二、关于两(多)条线段和最小问题思路指导:此类问题一般通过适当的几何变换实现“折”转“直”。
即将连接两点的折线转化为线段最短问题1.直接运用两点间线段最短解决问题.例:如图8,已知A(1,1)B(3,-3),C为x轴上一个动点,当AC+BC最小时,C点坐标为,此时AC+BC的最小值为.练习:如图9,四边形ABCD为边长为5的正方形,以B为圆心4为半径画弧交BA与M,交BC于N,P在MN上运动,则PA+PB+PC的最小值为.2.平移后应用两点间线段最短例:已知:如图10,A(1,2),B(4,-2),C(m,0),D(m+2,0)(1)在图中作出当AC+CD+DB最小时C点的位置,并求出此时m的值(2)求AC+CD+DB的最小值.练习:如图11,NP,MQ为一段河的两岸(河的两侧为平坦的地面,可以任意穿行),NP∥MQ,河宽PQ 为60米,在NP一侧距离河岸110米处有一处藏宝处A,某人从MQ一侧距离河岸40米的B处出发,随身携带恰好横穿(与河岸垂直)河面的绳索(将绳索利用器械投掷至河对岸并固定,人扶绳索涉水过河),请计算此人从出发到目的地最少的行进路程,并确定固定绳索处(MQ一侧)到B处的最近距离.3.旋转后应用两点间线段最短例:如图12,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.⑴求证:△AMB≌△ENB;⑵①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;⑶当AM+BM+CM的最小值为31+时,求正方形的边长.练习:点O 为正方形ABCD内一点,(1)正方形边长为4,求OB+OD的最小值(2)若OB+OC+OD的最小值为26+,求正方形的边长4.对称后应用两点间线段最短数学模型已知:如图14,直线l 及直线同侧两点P、Q,在直线l 上求作点M,使线段PM+QM最小,并说明理由关系探究上图中:相等的角:线段关系:类型一:单动点单对称轴(直线同侧两线段和转化为异侧,进而应用两点间线段最短)练习:1.如图15,已知菱形ABCD的边长为6,M、N 分别为AB、BC边的中点,P为对角线AC上的一动点,则PM+PN的最小值.2. 如图16,已知菱形ABCD的边长为6,点E为AB边的中点,∠BAD=60°,点P为对角线AC上的一动点,则PE+PB的最小值..3. 如图17,已知正方形ABCD的边长为2,点M为BC 边的中点,P为对角线BD上的一动点,则PM+PC的最小值4. 如图18,正方形ABCD的面积为a,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一动点P,PD+PE的和最小值为4,则a= .5.如图19,已知⊙O的半径为1,AB、CD为⊙O的两互相垂直的直径,点M在弧AD上,且∠MOD=30°,点P为半径OD上的一动点,则PM+PA的最小值.6. 如图20,已知⊙O的半径为1,AB为⊙O的直径,C是⊙O上的一点,且∠CAB=30°点M是弧CB的中点,,点P为直径AB上的一动点,则PM+PC的最小值.7.如图21,⊙O的直径为10,A,B在圆周上,AC⊥MN,BD⊥MN,AC=6,BD=8.P为MN上一个动点,则PA+PB的最小值为.8.如图22,已知∠AOB=60°,OA=6,C为OA的中点,OD平分∠AOB,M为OD上一动点,则AM+CM的最小值为9.如图23,从点A(0,2)发出的一束光,经x轴反射,过点B(4,3),则这束光从点A到点B所经过路径的长为.10.如图24,已知抛物线y=x2-2x-3,与x轴相交于点A、B两点(点A在点B的左边),与y轴相较于点C,P 为抛物线对称轴上的一点,则PO+PC的最小值是.11.如图25,以正方形ABCD中AB为边向外作等边三角形AMB,N为对角线BD上一点,若AN+MN的最小值为2226,则正方形边长为.12.一次函数y=kx+b的图象与x、y轴分别交于点A(2,0),B(0,4).(1)求该函数的解析式;(2)O为坐标原点,设C为AB的中点,P为OB上一动点,求PC+PA取最小值时P点的坐标.13.如图27,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由14.如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.实验与探究:(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:B′、C′;归纳与发现:(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为(不必证明);运用与拓广:(3)已知两点D(1,-3)、E(-1,-4),试在直线l上确定一点Q,使点Q到D、E两点的距离之和最小,并求出Q点坐标.类型二:双动点单对称轴(在类型一基础上应用垂线段最短)例:如图,已知∠CAB=30°,BA=6,AF平分∠BAC,P,Q分别为AB,AF上的动点,则BQ+PQ的最小值为练习:1.如图29,正方形ABCD中,AE为∠BAC的平分线,M,N分别为AE,AB上的动点,若MN+BM最小值为3,则正方形边长为.2.如图30,在锐角△ABC中,AB=42,∠BAC=45°,∠BAC 的平分线交BC于点D, M、N分别是AD和AB上的动点,则BM+MN的最小值是___________ .3.如图31,矩形ABCD中,AB=6,BC=8,M,N分别为BD,BC上的动点,则CM+MN的最小值为. 类型三:单动点双对称轴例:如图32,已知:∠AOB=30°,P为∠AOB内一点,OP=6,M,N分别为OA,OB上的动点,则△PMN的周长最小值为.练习:1.如图33,已知:∠AOB=60°,P为∠AOB内一点,OP=10,M,N分别为OA,OB上的动点,则△PMN的周长最小值为.2.如图34,两个镜子成45°角,P为夹角内一个光源,P距离交点2米,光线从P发出后经过OB,OA反射后经过点P,则光线经过的路线长为.3.如图35,已知A(3,2)为坐标平面上一点,在x,y 轴上确定点M,N,使△AMN周长最小,并求出此时M,N坐标.类型四. 双动点双对称轴例:已知P,Q为∠AOB内两个定点,M,N分别为OA,OB上的动点。
坐标对称及最值问题是数学中的常见问题,常常出现在函数、几何、三角函数等领域。
这类问题需要运用对称思想,以及寻找最值的方法。
下面列举了5种常见的题型及相应的解法。
题型一:函数的最值对于函数f(x),其最值可能出现在最小值(f(x)min)和最大值(f(x)max)上。
对于这类问题,我们通常需要观察函数的对称性,例如,如果函数是关于原点对称的,那么最小值和最大值可能在左右两侧取得。
解法上,我们通常需要利用导数或其他方法来找到函数的极值点,从而确定最值。
题型二:两点之间的距离在两点之间的距离问题中,如果两个点关于某个轴对称,那么它们之间的距离可以通过简单的轴对称距离公式来计算。
解法上,我们通常需要利用轴对称距离公式,以及两点之间的距离公式来求解。
题型三:圆的半径的最值在圆的半径的最值问题中,如果圆关于某条直线对称,那么我们需要找到圆的半径与对称轴的位置关系,从而确定圆的半径的最值。
解法上,我们通常需要利用圆的半径公式,以及对称轴的位置关系来求解。
题型四:三角形的重心坐标在三角形的重心坐标问题中,如果三个顶点关于某条直线对称,那么我们需要找到重心坐标与对称轴的关系,从而确定重心的坐标。
解法上,我们通常需要利用重心的几何性质,以及对称轴的位置关系来求解。
题型五:椭圆的离心率在椭圆的离心率问题中,如果焦点关于某轴对称,那么我们需要找到椭圆的离心率与对称轴的关系,从而确定椭圆的离心率。
解法上,我们通常需要利用椭圆的离心率公式,以及对称轴的位置关系来求解。
总的来说,坐标对称及最值问题的解法主要依赖于对称性和位置关系。
对于不同类型的题目,我们需要灵活运用这些方法来解决问题。
同时,对于不同类型的题目,也需要进行相应的变化和拓展,以适应更复杂的情况。
希望以上信息对您有所帮助。
如果您有任何具体问题或需要进一步的解释,请随时告诉我。
利用轴对称求最小值数学题中有些求两线段之和最小的题目,同学们感到找不到思路,其实它是利用轴对称求最短距离的变形。
利用轴对称的性质解决几何图形中的最值问题借助的主要基本定理有两个:(1)两点之间线段最短;(2)三角形两边之和大于第三边。
现以部分中考题为例加以分析,希望能对同学们有所帮助。
一、两点一线的最值问题例:如图,草原上两居民点A ,B 在笔直河流l 的同旁,一汽车从A 处出发到B 处,途中需要到河边加水,问选在何处加水可使行驶的路程最短?并在图中画出这一点。
理解转化题意:将这一问题转化为数学问题,即已知直线l 及同侧的点A 和点B ,在l 上确定一点C,使AC+BC 最小。
首先我们思考若点A 和B 点分别在直线l 的两侧,则点C 的位置应如何确定,根据两点之间线段最短,点C 应是与AB 直线l 的交点,如图(2),这就是说,设线段AB 交l 于点C ,点C /是直线上异于点C 的任意一点,总有AC+BC <AC /+BC /。
因此,解决上述问题的关键是将点A (或点B )移至l 的另一侧(设点A 移动后的点为A /),且使A 、A /到直线l 上任意点的距离相等,利用轴对称可达到这一目的。
解:如图(3),作点A 关于直线l 的对称点A /,连接A /B 交l 于点C ,则点C 的位置就是汽车加水的位置,即汽车选在点C 处可使行驶的路程最短。
二、两点两线的最值问题已知两个定点位于平面内两个相交的的直线之间,要在两条直线上确定两个动点使得线段和最短。
这类问题中动点满足最值的位置是由动点和定点所在的直线位置决定,可以通过轴对称图形的性质“搬点移线”(在保持线段的长度不变的情况下将某点搬至某线段所在的直线),将所求线段移到同一直线上就可以了。
例:(课本P47练习题9),如图(4)A 点为马厩,B 点为帐篷,牧马人一天要从马厩牵出马,先到草地边某一点牧马,然后到河边去饮水,再回到帐篷,请你确定一天的最短路程。
专题:轴对称模型求最值模型1:模型3:模型例题:例题1.如图,P 是AOB ∠内一定点,点M ,N 分别在边OA ,OB 上运动,若30AOB ∠=︒,3OP =,则PMN 的周长的最小值为___________.解答:如图,作P 关于OA ,OB 的对称点C ,D .连接OC ,OD .则当M ,N 是CD 与OA ,OB 的交点时,△PMN 的周长最短,最短的值是CD 的长.△点P 关于OA 的对称点为C ,△PM=CM ,OP=OC ,△COA=△POA ; △点P 关于OB 的对称点为D ,△PN=DN ,OP=OD ,△DOB=△POB ,△OC=OD=OP=3,△COD=△COA+△POA+△POB+△DOB=2△POA+2△POB=2△AOB=60°,△△COD是等边三角形,△CD=OC=OD=3.△△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=3.例题2.如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点.若MN=1,求△PMN周长的最小值2解:作N关于AB的对称点N′,连接MN′,NN′,ON′,OM,ON,∵N关于AB 的对称点为N′,∴MN′与AB的交点P′即为△PMN 周长最小时的点,∵N是弧MB 的中点,∴∠A=∠NOB=∠MON=20°,∴∠MON′=60°∴△MON′为等边三角形,∴MN′=OM=4,∴△PMN周长的最小值为4+1=5例题3.如图,在平面直角坐标系中,有A(1,2),B(3,3)两点,现另取一点C(a,1),当a =时,AC+BC的值最小.例题3如图,在矩形ABCD中,AB=10,AD=6,动点P满足S△P AB=S矩形ABCD,则点P 到A,B两点距离之和P A+PB的最小值为2.3解:设△ABP中AB边上的高是h.∵S△P AB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=4,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=10,AE=4+4=8,∴BE===2,即P A+PB的最小值为2.例题4:如图所示,凸四边形ABCD中,∠A=90°,∠C=90°,∠D=60°,AD=3,AB =,若点M、N分别为边CD,AD上的动点,求△BMN的周长的最小值.4解:作点B关于CD、AD的对称点分别为点B'和点B'',连接B'B''交DC和AD于点M和点N,DB,连接MB、NB;再DC和AD上分别取一动点M'和N'(不同于点M和N),连接M'B,M'B',N'B和N'B'',如图1所示:∵B'B''<M'B'+M'N'+N'B'',B'M'=BM',B''N'=BN',∴BM'+M'N'+BN'>B'B'',又∵B'B''=B'M+MN+NB'',MB=MB',NB=NB'',∴NB+NM+BM<BM'+M'N'+BN',∴C△BMN=NB+NM+BM时周长最小;连接DB,过点B'作B'H⊥DB''于B''D的延长线于点H,如图示2所示:∵在Rt△ABD中,AD=3,AB=,∴==2,∴∠2=30°,∴∠5=30°,DB=DB'',又∵∠ADC=∠1+∠2=60°,∴∠1=30°,∴∠7=30°,DB'=DB,∴∠B'DB''=∠1+∠2+∠5+∠7=120°,DB'=DB''=DB=2,又∵∠B'DB''+∠6=180°,∴∠6=60°,∴HD=,HB'=3,在Rt△B'HB''中,由勾股定理得:===6.∴C△BMN=NB+NM+BM=6,例题5:如图,矩形ABCD中,AB=4,BC=8,E为CD的中点,点P、Q为BC上两个动点,且PQ=3,当CQ=时,四边形APQE的周长最小.:5解:点A向右平移3个单位到M,点E关于BC的对称点F,连接MF,交BC于Q,此时MQ+EQ最小,∵PQ=3,DE=CE=2,AE==2,∴要使四边形APQE的周长最小,只要AP+EQ最小就行,即AP+EQ=MQ+EQ,过M作MN⊥BC于N,设CQ=x,则NQ=8﹣3﹣x=5﹣x,∵△MNQ∽△FCQ,∴=,∵MN=AB=4,CF=CE=2,CQ=x,QN=5﹣x,解得:x=,则CQ=例题6:如图,平面直角坐标系中,分别以点A(2,3)、点B(3,4)为圆心,1、3为半径作⊙A、⊙B,M,N分别是⊙A、⊙B上的动点,P为x轴上的动点,求PM+PN的最小值6解:作⊙A关于x轴的对称⊙A′,连接BA′分别交⊙A′和⊙B于M、N,交x轴于P,如图,则此时PM+PN最小,∵点A坐标(2,3),∴点A′坐标(2,﹣3),∵点B(3,4),∴A′B==5,∴MN=A′B﹣BN﹣A′M=5﹣3﹣1=5﹣4,∴PM+PN的最小值为5﹣4.精品变式练习:1.如图,正方形ABCD 的边长为4,∠DAC 的平分线交DC 于点E ,若点P ,Q 分别是AD 和AE 上的动点,求DQ +PQ 的最小值为 .2.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为 cm .2如图,在正方形ABCD 中,AB=3,点M 在CD 的边上,且DM=1,ΔAEM 与ΔADM 关于AM 所在的直线对称,将ΔADM 按顺时针方向绕点A 旋转90°得到ΔABF,连接EF ,则线段EF 的长为3.图所示,30AOB ∠=,点P 为AOB ∠内一点,8OP =,点,M N 分别在,OA OB 上,求PMN ∆周长的最小值为:4.在矩形ABCD中,AB=8,BC=10,G为AD边的中点.如图,若E、F为边AB上的两个动点,且EF=4,当四边形CGEF的周长最小时,则求AF的长为.5如图,已知点D,E分别是等边三角形ABC中BC,AB边的中点,BC=6,点F是AD边上的动点,则BF+EF的最小值为.6.如图,长为1的线段AB在x轴上移动C(0,1)、D(0,2),则AC+BD的最小值是.7 (1)如图①,Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB边上任意一点,则CD的最小值为.(2)如图②,矩形ABCD中,AB=3,BC=4,点M、点N分别在BD、BC上,求CM+MN 的最小值.(3)如图③,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE=2,点F是BC边上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG、CG,四边形AGCD 的面积是否存在最小值,若存在,求这个最小值及此时BF的长度.若不存在,请说明理由.8如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=5,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;(2)请问AC+CE的值是否存在最小值?若存在,请求出这个最小值;若不存在请说明理由.(3)根据(2)中的规律和结论,请直接写出出代数式+的最小值为.9如图,在平面直角坐标系中,抛物线y=x2﹣x﹣与x轴交于A、B两点(点A 在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点求KM+MN+NK的最小值;(3)点G是线段CE的中点,将抛物线y=x2﹣x﹣沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ 为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.11 10已知,如图,二次函数()2230y ax ax a a =+-≠图象的顶点为H ,与x 轴交于A 、B 两点(B 点在A 点右侧),点H 、B 关于直线l:y x =+对称.(1)求A 、B 两点的坐标,并证明点A 在直线l 上;(2)求二次函数解析式;(3)过点B 作直线//BK AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连结HN 、NM 、MK ,求HN+NM+MK 的最小值.。
利用对称解决函数的最值问题例1、抛物线2,两点,交y轴于点C,y ax bx c=++交x轴于A B Array对称轴为直线1x=。
且A、C两点的坐标分别为(10)A-,、,.C-(03)(1)求抛物线2=++的解析式;y ax bx c(2)求A O C△和BO C△的面积的比;(3)在对称轴上是否存在一个点P,使P A C△的周长最小.若存在,请求出点P的坐标;若不存在,请说明理由.例2、24.已知:抛物线m-=与x轴的一个交点为A(1,0).y2+ax4ax(1)求抛物线与x轴的另一个交点B的坐标;(2)点C是抛物线与y轴的交点,且△ABC的面积为3,求此抛物线的解析式;(3)点D是(2)中开口向下的抛物线的顶点.抛物线上点C的对称点为Q,把点D沿对称轴向下平移5个单位长度,设这个点为P;点M、N分别是x轴、y轴上的两个动点,当四边形PQMN的周长最短时,求PN+MN+QM的长.(结果保留根号)例3、25、已知:抛物线c=2过点A(-1,0)、B(-2,-5),与y轴交-xbxy++于点C,顶点为D.(1)求该抛物线的解析式;(2)某直线过点A(-1,0),且与抛物线只有一个交点,求此直线的解析式;(3)直线l过点C,且l∥x轴,E为l上一个动点,EF⊥x轴于F.求使DE+EF+BF的和为最小值的E、F两点的坐标,并直接写出DE+EF+BF的最小值.例4、24.已知:抛物线n mx x y ++=2与x 轴交A 、B 两点(A 点在B 点左侧),B (3,0),且经过C (2,-3),与y 轴交于点D ,(1)求此抛物线的解析式及顶点F 的坐标;(2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物于E 点,求线段PE 长度的最大值;(3)在(1)的条件下,在x 轴上是否存在两个点G 、H (G 在H 的左侧),且GH=2,使得线段GF+FC+CH+HG 的长度和为最小;如果存在,求出G 、H的坐标;如果不存在,说明理由。
中考数学知识点考点复习指导利用轴对称求最值利用轴对称求最值是高中数学中的一个重要的知识点,也是中考数学中经常考察的内容之一、下面我将从以下几个方面为你详细介绍如何利用轴对称求最值。
1.轴对称性的概念轴对称性是指对于平面上的一个图形,如果沿条直线旋转180度后,旋转后的图形与原图形重合,那么我们就说这个图形具有轴对称性。
轴对称的直线称为轴线。
轴对称的图形的特点是:图形的任意一点关于轴线对称的点也在图形内部。
2.利用轴对称求最值的一般步骤求解最值的一般步骤为:首先明确最值是指最大值还是最小值,然后利用轴对称性把问题转化为一个等价的问题,利用已知条件求解这个等价问题,最后还原到原问题中,得到最值。
3.利用轴对称求最值的具体方法在具体的问题中,可以根据实际的情况,运用合适的方法进行求解。
下面是常见的一些方法:(1)利用轴对称线上的点求最值:对于轴对称的图形,如果可以确定图形上的其中一点关于轴线的对称点是最值点,那么这个最值点的横坐标就可以作为最值的解。
(2)利用轴对称图形的特点求最值:对于具有轴对称性的图形,如果能够找到一些特殊的点,使得这些点关于轴线对称,而且能够确定这些点是最值点,那么这个最值点就可以作为最值的解。
(3)利用轴对称图形的性质求最值:对于轴对称的图形,如果能够利用对称性与其他已知条件建立等式或不等式,然后求解这个等式或不等式的解,就可以得到最值的解。
(4)利用轴对称折线的特点求最值:对于轴对称的折线图,可以利用折线图的性质,比如单调性,交点等,将问题转化为求解折线的最值的问题,然后利用已知条件求解最值。
4.练习题示例为了更好地理解和掌握利用轴对称求最值的方法,我们可以通过一些练习题来加深印象。
下面是一些练习题的示例:(1)求函数y=2x^2-3x+1在区间[-1,2]上的最大值和最小值。
解:首先,求函数的极值点,对应的x值是-1/4、然后,将-1/4代入函数,得到y=-1/8、所以在[-1,2]上,最大值为1,最小值为-1/8(2)求函数y=x^3-3x^2+3x的最大值和最小值。
一、思路的梳理
1、已知如图, A 、B 在直线l 两侧,请同学们在直线l 上找到一点P ,使PA+PB 最小.
2、已知如图, P 、Q 在两条平行线m 、n 外部,请同学们分别在直线m 、n 上各找
到一点A 、B ,使AB ⊥m , 且PA+AB+BQ 的值最小.
3、已知如图, A 、B 在直线l 同侧,请同学们在直线l 上找到一点P ,使PA+PB 最小.
4、如图,A 、B 是直线a 同侧的两定点,定长线段PQ 在a 上平行移动,问PQ 移
动到什么位置时,AP+PQ+QB 的长最短?请同学们画出示意图.
5、已知如图, P 在两相交直线m 、n 内部,请同学们分别在直线m 、n 上各找到
一点B 、A ,使△APB 的周长最小.
6、已知如图, P 、Q 在两相交直线m 、n 内,请同学们分别在直线m 、n 上各找到
一点A 、B ,使PA+AB+BQ 的值最小.
7、已知如图, P 在两相交直线m 、n 内部,请同学们分别在直线m 、n 上各找到一点A 、B ,使 (1)PA+PB 最小. (垂线段最短)
(2)PA+AB 最小. (两点之间线段最短,垂线段最短)
8、已知如图, A 、B 在直线l 同侧,请同学们在直线l 上找到一点P ,使PB-PA 最大.
9、已知如图, A 、B 在直线l 两侧,请同学们在直线l 上找到一点P ,使PB-PA 最大. 总结:当所求动点在直线上运动时,就可以考虑用轴对称来求最值点. 二、应用
1、如图,村庄A 、B 位于一条小河的两侧,若河岸a 、b 彼此平行,现在要建设一座与河岸垂直的桥CD ,问桥址应如何选择,才能使A 村到B 村的路程最近?
l A B
l A B
m
n
P
m A m A
A
2、等腰Rt △ABC 的直角边长为2,E 是斜边AB 的中点,P 是AC 边上的一动点,则PB+PE 的最小值为 ;
3、如图,在平面直角坐标系中有4个点A (-6,3)点B (-2, 5)C (0,m )D(n ,0) 当四边形ABCD 的周长最短时,求m ,n 的值.
4、△ABC 中,AB=2,∠BAC=30°,若在AC 、AB 上各取一点M 、N ,使BM+MN 的值最小,则这个最小值
5、 如图,在△ABC 中,AB=10,AC=8,BC=6,经过点C 且与边AB 相切的动圆与CB ,CA
分别相交于
E 、
F ,则线段EF 长度的最小值是
6
、如图在等腰梯形ABCD 中,AD ∥BC , AD=AB=CD=2,∠C=60° M 是BC 的中点。
(1)△MDC 是 三角形
(2)将△MDC 绕点M 旋转,当MD (即MD ’)与AB 交与一点E ,MC (即MC ’)同时与AD 交于一点F 时,点EF 和点A 构成△AEF 。
试探究△AEF 的周长是否存在最小值,如果不存在请说明理由;如果存在请计算出△AEF 周长的最小值.
7、如图,在平面直角坐标系xOy 中,ABC ∆三个机战的坐标分别为()6,0A -,()6,0B ,(0,C ,
延长AC 到点D,使CD=
1
2
AC ,过点D 作DE ∥AB 交BC 的延长线于点E. (1)求D 点的坐标;
(2)作C 点关于直线DE 的对称点F,分别连结DF 、EF ,若过B 点的直
线y kx b =+将四边形CDFE 分成周长相等的两个四边形,确定此直线的解析式;
(3)设G 为y 轴上一点,点P 从直线y kx b =+与y 轴的交点出发,先
沿y 轴到达G 点,再沿GA 到达A 点,若P 点在y 轴上运动的速度是它在直线GA 上运动速度的2倍,试确定G 点的位置,使P 点按照上述要求到达A 点所用的时间最短。
(要求:简述确定G 点位置的方法,但不要求证明)
8.已知抛物线21y ax bx =++经过点A (1,3)和点B (2,1).
(1)求此抛物线解析式;
(2)点C 、D 分别是x 轴和y 轴上的动点,求四边形ABCD 周长的最小值; (3)过点B 作x 轴的垂线,垂足为E 点.点P 从抛物线的顶点出发,先沿抛物线的对称轴到达F 点,再沿FE 到达E 点,若P 点在对称轴上的运动速度是
它在直线FE ,试确定点F 的位置,使得点P 按照上述要求到达E 点所用的时间最短.(要求:简述确定F 点位置的方法,但不要求证明)
探究最值问题(三)
9.如图,已知二次函数()2
20y ax ax c a =-+<的图象与x 轴负半轴交
于点A (-1,0),与y 轴正半轴交与点B ,顶点为P ,且OB=3OA ,一次函数y=kx+b 的图象经过A 、B . (1)求一次函数解析式; (2)求顶点P 的坐标;
(3)平移直线AB 使其过点P ,如果点M在平移后的直线上,且
3
tan 2
OAM ∠=
,求点M 坐标; (4)设抛物线的对称轴交x 轴与点E ,联结AP 交y 轴与点D ,若点Q 、N 分别为两线段PE 、PD 上的动点,联结QD 、QN ,请直接写出QD+QN 的最小值.。