区域差异分析常用指标-11页文档资料
- 格式:doc
- 大小:152.00 KB
- 文档页数:10
衡量区域差异的几种方法一、概述(一)区域差异的定义所谓区域差异是指经济区域之间在自然条件、经济发展现有水平以及经济发展可预期的前景等方面的差异,这种差异可能在一定条件下的相互转化。
(二)国外文献中描述地区差异的定量测算方法。
根据测算指标个数大体上可以分为两类[1]:第一类,测算单个经济指标的地区差异。
在单变量地区差异的测算中,穆勒、赫斯特、史密斯 (W.Molle,Holst.B.van,Smith.H,1980)等人进行了深入研究,他们将单变量地区差异分为两种不同情况:一是分析单个变量的极值,二是分析样本观察值的离散趋势。
衡量单个变量极值差异的主要方法有:极值差幅(即经济指标最大值与最小值之差额)、极值差率(即经济指标最大值与最小值之比率)、极均值差幅(即经济指标最大值与平均值或平均值与最小值之差额)、极均值差率(即经济指标最大值与平均值或平均值与最小值之比率)、相对差距系数(即最大值与最小值之差额除以最大值)。
分析样本观察值离散趋势的主要方法有:相对平均离差、加权平均离差、变异系数、加权变异系数、对数变异系数等。
这些指标均大于或等于零,当系数等于零时,表示最大的平等,系数值越大,表明地区间差异越大。
第二类,比较两个经济指标的地域分布。
研究双变量地区差异,就是比较两个经济指标的地区分布,这种方法通常又可以分为两种类型:一是单一效果系数,二是可分解系数。
单一效果系数是比较两个经济指标地区差异的最简单、最直接的方法,其指标很多,其中以基尼系数的应用最为广泛,它是在洛伦兹曲线(M.o.Lrenz,1905)的基础上发展起来的。
此外单一效果系数还包括两变量的平均离差、两变量的标准差和地理联系率等。
以上是对国外描述地区差异的定量测算方法的概括,下面是就我们在实际运用中常常用到的一般用法。
二、测算区域差距的一般方法(一)变异系数法[2]。
变异系数是指总体中单位样本值变异程度的相对数,是绝对差异与平均值之比,因为在标准差的基础上进行计算的一个统计指标,所以也被称为标准差系数。
怎样分析区域差异一、区域特征的基本方法区域特征就是指某特定区域内各种自然地理要素(位置、地形、气候、水文、土壤、植被及自然资源等)与人文地理要素(人口、工业、农业、城市、交通等)综合作用形成的地理特征。
分析区域特征的方法主要有综合分析法与比较分析法,具体如下:1.综合分析法:从整体上认识与分析某区域的特征。
区域特征是各种地理要素相互影响、相互制约、相互联系形成的总体特征,需要通过全面、系统的分析,从整体上来认识。
在分析过程中要善于抓住主导因素,如气候酷寒是南极洲区域特征形成的主导因素,它直接影响到该地区的其他自然特征(烈风、淡水资源与风能资源丰富等)与人文特征(无常住居民)。
2.比较分析法:通过对不同地区的自然与人文地理要素进行对照、比较与分析,找出它们的相似之处与差异之处,从而更加深刻地认识某地区的特征,多采用列表比较的形式,如秦岭—淮河一线是我国南方与北方地区的地理分界线,下面以自然地理与人文地理要素的差异为例对我国南方与北方地区进行列表比较:区域北方地区南方地区要素地理位32°N~34°N以北地32°N~34°N以南地业南重工业基地、京津唐工业基地,工业发达沿海外向型工业地带、西南工业地区生活习惯民居注重防寒保暖,屋顶坡度小;交通运输以陆路为主民居注重通风散热,屋顶坡度大;水运仍然为一种常用的运输方式二、区域特征分析区域特征是自然要素与人文要素在区域内相互联系、相互作用的表达。
区域特征的综合分析包括区域要素特征(地理位置特征、地形特征、气候特征、水文水系特征、经济特征等)分析、区域特征与成因的分析等。
对某一区域地理环境特征的综合分析,主要从区域地理位置、区域自然地理环境与区域人文地理环境三大方面考虑。
具体如下所示:1.区域地理位置特征的分析思路(1)绝对位置:主要是对某地区经纬度位置的分析判断,也就是根据一个地理事物的经纬度来确定该地理事物的区域位置与区域范围,如某地位于10°S~40°S,120°E~150°E,即可判断该地是澳大利亚。
区域的划分指标
区域的划分指标是用于评估和衡量不同区域之间差异和特点的指标。
常见的区域划分指标包括:
1. 经济指标:如GDP、人均收入、就业率、产业结构等,用于评估不同区域的经济发展水平和特点。
2. 社会指标:如人口密度、人口结构、教育水平、医疗资源等,用于评估不同区域的社会发展水平和特点。
3. 土地利用指标:如土地面积、城市化率、农用地比重、建设用地比重等,用于评估不同区域的土地利用状况和特点。
4. 环境指标:如空气质量、水质状况、生态环境保护情况等,用于评估不同区域的环境质量和特点。
5. 基础设施指标:如交通网络覆盖程度、通信网络覆盖程度、能源供应水平等,用于评估不同区域的基础设施建设和特点。
6. 文化指标:如历史文化遗产、艺术表现形式、传统习俗等,用于评估不同区域的文化特点和保护情况。
通过综合考量这些指标,可以对不同区域进行全面、客观的评估和划分,为区域发展规划和政策制定提供依据。
衡量区域差异的几种方法一、概述(一)区域差异的定义所谓区域差异是指经济区域之间在自然条件、经济发展现有水平以及经济发展可预期的前景等方面的差异,这种差异可能在一定条件下的相互转化。
(二)国外文献中描述地区差异的定量测算方法。
根据测算指标个数大体上可以分为两类[1]:第一类,测算单个经济指标的地区差异。
在单变量地区差异的测算中,穆勒、赫斯特、史密斯 (W.Molle,Holst.B.van,Smith.H,1980)等人进行了深入研究,他们将单变量地区差异分为两种不同情况:一是分析单个变量的极值,二是分析样本观察值的离散趋势。
衡量单个变量极值差异的主要方法有:极值差幅(即经济指标最大值与最小值之差额)、极值差率(即经济指标最大值与最小值之比率)、极均值差幅(即经济指标最大值与平均值或平均值与最小值之差额)、极均值差率(即经济指标最大值与平均值或平均值与最小值之比率)、相对差距系数(即最大值与最小值之差额除以最大值)。
分析样本观察值离散趋势的主要方法有:相对平均离差、加权平均离差、变异系数、加权变异系数、对数变异系数等。
这些指标均大于或等于零,当系数等于零时,表示最大的平等,系数值越大,表明地区间差异越大。
第二类,比较两个经济指标的地域分布。
研究双变量地区差异,就是比较两个经济指标的地区分布,这种方法通常又可以分为两种类型:一是单一效果系数,二是可分解系数。
单一效果系数是比较两个经济指标地区差异的最简单、最直接的方法,其指标很多,其中以基尼系数的应用最为广泛,它是在洛伦兹曲线(M.o.Lrenz,1905)的基础上发展起来的。
此外单一效果系数还包括两变量的平均离差、两变量的标准差和地理联系率等。
以上是对国外描述地区差异的定量测算方法的概括,下面是就我们在实际运用中常常用到的一般用法。
二、测算区域差距的一般方法(一)变异系数法[2]。
变异系数是指总体中单位样本值变异程度的相对数,是绝对差异与平均值之比,因为在标准差的基础上进行计算的一个统计指标,所以也被称为标准差系数。
经济统计学对区域差距的测量与分析引言:区域差距是指不同地区之间在经济发展水平、收入水平、产业结构等方面的差异。
经济统计学作为一门研究经济现象的学科,对于区域差距的测量与分析起着重要的作用。
本文将从不同角度探讨经济统计学在区域差距分析中的应用。
一、GDP测量GDP是衡量一个地区经济总量的重要指标,也是评估区域差距的常用指标之一。
经济统计学通过收集各地区的经济数据,如产值、就业人数等,计算得出各地区的GDP。
通过比较各地区的GDP,可以直观地了解不同地区的经济发展水平,从而揭示区域差距的存在。
二、收入差距分析除了GDP,收入差距也是评估区域差距的重要指标之一。
经济统计学通过调查和统计不同地区的居民收入情况,分析不同地区的收入差距。
通过收集数据,经济统计学可以计算出各地区的平均收入、中位数收入等指标,帮助我们了解不同地区的收入分布情况,进而分析区域差距的原因和影响因素。
三、产业结构分析产业结构是不同地区经济发展的重要方面,也是导致区域差距的一个重要因素。
经济统计学通过收集各地区的产业数据,分析不同地区的产业结构特点,揭示不同地区的产业差异。
通过比较不同地区的产业结构,可以了解到不同地区的经济特点和发展方向,从而为区域差距的解决提供参考。
四、人口流动分析人口流动是区域差距形成和发展的重要原因之一。
经济统计学通过收集各地区的人口数据,分析不同地区的人口流动情况。
通过分析人口流动的原因和影响因素,可以揭示人口流动对区域差距的影响,并提出相应的政策建议。
五、政策评估与预测经济统计学在区域差距分析中还可以用于政策评估与预测。
通过收集各地区的政策数据和经济数据,经济统计学可以评估不同政策对区域差距的影响,并预测未来的发展趋势。
这样可以帮助政府制定合适的政策,促进区域差距的缩小和经济的均衡发展。
结论:经济统计学在区域差距的测量与分析中发挥着重要作用。
通过对GDP、收入、产业结构、人口流动等方面的统计分析,可以揭示不同地区的差异,为政府制定合适的政策提供依据。
衡量区域差异的几种方法一、概述(一)区域差异的定义所谓区域差异是指经济区域之间在自然条件、经济发展现有水平以及经济发展可预期的前景等方面的差异,这种差异可能在一定条件下的相互转化。
(二)国外文献中描述地区差异的定量测算方法。
根据测算指标个数大体上可以分为两类[1]:第一类,测算单个经济指标的地区差异。
在单变量地区差异的测算中,穆勒、赫斯特、史密斯 (W.Molle,Holst.B.van,Smith.H,1980)等人进行了深入研究,他们将单变量地区差异分为两种不同情况:一是分析单个变量的极值,二是分析样本观察值的离散趋势。
衡量单个变量极值差异的主要方法有:极值差幅(即经济指标最大值与最小值之差额)、极值差率(即经济指标最大值与最小值之比率)、极均值差幅(即经济指标最大值与平均值或平均值与最小值之差额)、极均值差率(即经济指标最大值与平均值或平均值与最小值之比率)、相对差距系数(即最大值与最小值之差额除以最大值)。
分析样本观察值离散趋势的主要方法有:相对平均离差、加权平均离差、变异系数、加权变异系数、对数变异系数等。
这些指标均大于或等于零,当系数等于零时,表示最大的平等,系数值越大,表明地区间差异越大。
第二类,比较两个经济指标的地域分布。
研究双变量地区差异,就是比较两个经济指标的地区分布,这种方法通常又可以分为两种类型:一是单一效果系数,二是可分解系数。
单一效果系数是比较两个经济指标地区差异的最简单、最直接的方法,其指标很多,其中以基尼系数的应用最为广泛,它是在洛伦兹曲线(M.o.Lrenz,1905)的基础上发展起来的。
此外单一效果系数还包括两变量的平均离差、两变量的标准差和地理联系率等。
以上是对国外描述地区差异的定量测算方法的概括,下面是就我们在实际运用中常常用到的一般用法。
二、测算区域差距的一般方法(一)变异系数法[2]。
变异系数是指总体中单位样本值变异程度的相对数,是绝对差异与平均值之比,因为在标准差的基础上进行计算的一个统计指标,所以也被称为标准差系数。
衡量区域差异的几种方法一、概述(一)区域差异的定义所谓区域差异是指经济区域之间在自然条件、经济发展现有水平以及经济发展可预期的前景等方面的差异,这种差异可能在一定条件下的相互转化。
(二)国外文献中描述地区差异的定量测算方法。
根据测算指标个数大体上可以分为两类[1]:第一类,测算单个经济指标的地区差异。
在单变量地区差异的测算中,穆勒、赫斯特、史密斯 (W.Molle,Holst.B.van,Smith.H,1980)等人进行了深入研究,他们将单变量地区差异分为两种不同情况:一是分析单个变量的极值,二是分析样本观察值的离散趋势。
衡量单个变量极值差异的主要方法有:极值差幅(即经济指标最大值与最小值之差额)、极值差率(即经济指标最大值与最小值之比率)、极均值差幅(即经济指标最大值与平均值或平均值与最小值之差额)、极均值差率(即经济指标最大值与平均值或平均值与最小值之比率)、相对差距系数(即最大值与最小值之差额除以最大值)。
分析样本观察值离散趋势的主要方法有:相对平均离差、加权平均离差、变异系数、加权变异系数、对数变异系数等。
这些指标均大于或等于零,当系数等于零时,表示最大的平等,系数值越大,表明地区间差异越大。
第二类,比较两个经济指标的地域分布。
研究双变量地区差异,就是比较两个经济指标的地区分布,这种方法通常又可以分为两种类型:一是单一效果系数,二是可分解系数。
单一效果系数是比较两个经济指标地区差异的最简单、最直接的方法,其指标很多,其中以基尼系数的应用最为广泛,它是在洛伦兹曲线(M.o.Lrenz ,1905)的基础上发展起来的。
此外单一效果系数还包括两变量的平均离差、两变量的标准差和地理联系率等。
以上是对国外描述地区差异的定量测算方法的概括,下面是就我们在实际运用中常常用到的一般用法。
二、测算区域差距的一般方法(一)变异系数法[2]。
变异系数是指总体中单位样本值变异程度的相对数,是绝对差异与平均值之比,因为在标准差的基础上进行计算的一个统计指标,所以也被称为标准差系数。
标准差是样本中的各变量值与其均值的离差平方的平均值的算术平方根,它能精确反映个地区经济指标的离散程度,各地区经济指标绝对差距越大,标准差也就越大。
变异系数在标准差的基础上,考虑到每组样本基数大小不同,为了剔除由于基数大小不同造成的影响,因此变异系数是以样本标准差除以样本平均值,其计算公式为: 其中,n 为样本数量,xi 表示i 地区的样本值,x 表示样本的平均值,σ表示标准差,该指标运用了所有地区的数据,因此所包含的信息量较为充分。
实际运用中一般使用加权变异系数也叫威尔逊系数[8]。
其公式为: 式中:,,,i i x x p p '分别是i 地区人均GDP 、背景区域人均GDP 、i 地区人口和背景区域总人口。
u V 越大,不平衡性就越大。
(二)差异系数[3]设x 、y 分别为对象数据和标准数据,则为对象数据与标准数据的相对差异系数。
k值越大表示对象数据间差异越大。
(三)基尼系数法[4]。
1.基尼系数计算的通式基尼系数是在洛伦兹曲线的基础上总结出的测量收入距的指标。
洛伦兹曲线(图1)原本用于衡量收入和财富分配的不平等程度,现在已经广泛应用于衡量收入分配、地区差异、产业集中度等领域。
基尼系数以洛伦兹曲线为基础,由基尼系数的定义推导出来,它是洛伦兹 曲线与对角线之间的面积A 与对角线以下的面积(A+B)之比,即:公式虽然简单,然而在实际计算中却难以运用,因此经济学家和统计学家们提出了各种变形公式,使其更具实际操作性。
目前,国内经济学界通常采用的基尼系数计算方法为:211,02n n jt it j i Y Y u n ==-∆=≤∆≤∑∑ (1)XO1n it i Y u n ==∑(2) 式中,∆是基尼平均差,jt it Y Y -是任何一对收入样本差的绝对值,jt Y 为某一省区第t 年的某一指标,n 是样本容量,u 是总样本某指标的均值。
则定义:,012G G u ∆=≤≤(3)由(1)、(2)、(3)综合得出基尼系数的计算方法:2.基尼系数的分解分解法是在求出上述值的基础上,力图研究基尼系数的构成因素,除了得出总的基尼系数的信息之外,在计算过程中还能够获得分解部分内部的基尼系数值。
分解法并不是独立计算基尼系数的方法,它更重要的意义在于对基尼系数的分解,即定义的各个不同基尼系数值之间的相互关系。
例如,用分解法来测算城乡收入分配均衡情况。
经济学家Sundrum (1990)在他的《欠发达国家的收入分配》一书中介绍了一种对一国或地区基尼系数进行分解的方法,其数学公式为:式中,G 表示总体基尼系数,G 1和G 2分别表示农村和城镇的基尼系数,P 1、P 2分别表示农村人口和城镇人口占总人口的比重,u 1、u 2、u 分别表示农村、城镇和总体的人均收入。
这种方法会在可能在两个环节产生误差:一是用其他方法估计城乡各自的基尼系数G 1和G 2时,可能产生误差;二是城乡收入分布一般会在不同程度上重叠。
基尼系数为0时,表示收入分配绝对平等;基尼系数为1时,表示收入分配绝对不平等。
按照联合国有关组织规定:基尼系数若低于0.2表示收入绝对平均;0.2-0.3表示比较平均;0.3-0.4表示相对合理;0.4-0.5表示收入差距较大;0.5以上表示收入差距悬殊。
经济学家们通常用基尼指数来表现一个国家和地区的财富分配状况,并把0.4作为收入分配差距的“警戒线”。
(四)余期望系数[5]。
设P 是事件A 发生的概率P(A)=P,因为知道越不容易发生的事,需要的信息量就越大,从而已知事件A 发生所需的信息量一般假定为P 的减函数log(1/P)。
如有n 个事件,发生的概率分别为12,......n P P P ,则相应的期望信息量为:概率12,......n P P P ,的值越接近,期望信息量E 就越大。
如果121....n P P P n====,则E 达到最大值log n 。
于是可定义余期望系数:如果把Pi 视为第i 个单位所占的收入份额即/i i i P W W =∑,i W 为第i 个单位的收入(i=1,2,……,n )则余期望系数μ可以测度收入分配的差异性。
若该系数愈靠近0,表明单位之间收入差异愈小;若该系数愈靠近1,则表明单位之间收入差异愈大。
与基尼系数相比,由于余期望系数的数学含义及表达式简单明了,不涉及不规则图形面积的计算,也不需要在计算过程中对各收入单位进行人为的分组,因此其计算精度能得到保证,根据余期望系数做出的分析判断应该具有较高的可信度。
对于余期望系数μ,可以参照泰尔指标的分解原理,设定总的收入差异T μ为单位之间收入差异G μ和单位内部的收入差异M μ之和,而单位内部的收入差异M μ等于各个单位内部收入差异μi 的加权和(i f 为以某指标的各样本在总体中的份额),即:这样,余期望系数与泰尔指标一样,可以用来深入考察两个层次(单位之间与单位内部)的收入差异及其相互关系。
但是,与泰尔指标相比,由于余期望系数只涉及各单位收入一个经济变量,因此计算不复杂,具体计算过程中不可能暗含任何假设前提。
同时,余期望系数尽管也涉及对数运算,但其值与对数底的选取无关,不同时间不同空间的系数值可以直接对比,这也是泰尔指标不能比拟的。
(五)泰尔系数法[4]泰尔指数基本公式 : 11log n i i y G n y ==∑指数分解为组间和组内差距,其分解公式为:N 为样本总数,将样本分为G 组,g N 为第g 组的样本个数,g y 为第g 组的收入均值,i y 为第i 个样本的收入。
泰尔在20世纪50年代和60年代分别提出了两个计算公式:泰尔U 系数和泰尔T 系数。
其计算公式分别为:U 值在0~1之间变动,若为0,表示完全平等;若为1,表示完全不平等。
其中,n 为地区数量,i x 是按各地区人均收入的份额从低到高的顺序排列的,i y 为各地区的人均收入。
T 值在0~logN 之间变化。
若T 值为0,表示最大平等;若为logN ,表示最大不平等。
由于泰尔T 系数具有可分解性,不仅能判断整体差异水平,还可以区分组内差距和组间差距,并分析二者对整体差距的贡献,另外由于其涉及对数运算,可选用不同正数作底,其结果只具有相对意义,因此实际操作中多利用泰尔T 系数分解后的计算公式:*n T T T 、、分别表示总体区域差异、地带间的差异、地带内的差异,i 表示地带,n 为总的地带数,j 为地带内子区域,i Y 表示第i 地带的GDP占全国GDP 的比重,i P 表示第i 地带人口占全国总人口的比重,ij Y 表示第j 省GDP 在第i 地带GDP 中所占比重,ij P 表示第j 省人口在第i 地带人口中所占比重。
(六)库兹涅茨比率和加权库兹涅茨比率[7]库兹涅茨比率也是用来描述区域不平衡性的,它不仅计算方便,还可以通过适当分解,发现导致不平衡性变化的原因。
库兹涅茨比率计算如下:1ni i i K p q ==-∑ (4)式中:K为不平衡系数;,i i p q 分别为各地区人口和GDP 所占的比重。
k越大表示区域差异越大。
库兹涅茨不平衡系数的分解由于 111,1n n i i i i pq ====∑∑ ,所以 ()10ni i i K p q ==-=∑ 将()i i p q -从大到小排列,必然存在m,使得当0,i i i m p q ≤-≥时,为低收入人群人口比例与经济比例之差;0,i i i m p q ≤-≤时,为高收入人群人口与经济比例之差。
这样公式(4)可以分解如下:11m n i i i i i i m K p q q p A B ==+=-+-=+∑∑ (5)由式(5)可以看出,库兹涅茨比率可以分解成为两部分:其中的A 表示由于低收入人口的相对增加所导致不平衡系数K 的增加;B 表示由于高收入人群收入的相对增加而导致的不平衡性的增加。
这为我们提供了解释区域发展不平衡性动态变化的原因,也为减小区域发展不平衡提供了途径。
加权库兹涅茨比率计算公式:11(/)n ni i i i i i K p q p p ===-⨯∑∑这里的权重是按各地区人口在总人口总的比率,即考虑了子区域的大小问题。
(七)地理联系度[9]这一指标反映两个地理要素在区域配置上的接近程度。
地理联系度大,表示两个地理要素配置比较一致;地理联系度小,表示两个地理要素配置有较大的差异。
式中:i F 为各地区工业总产值占全国的百分比;i S 为各地区人口占全国的百分比,这里选择工业总产值与人口作为两个要素。
差额小,说明工业配置比较均衡;差额大,说明工业配置不均衡。
三、各种测算方法的比较希望以上资料对你有所帮助,附励志名言3条:1、上帝说:你要什么便取什么,但是要付出相当的代价。