支路电流法和叠加定理
- 格式:ppt
- 大小:126.50 KB
- 文档页数:24
第二章电路的分析方法电路分析是指在已知电路构和元件参数的情况下,求出某些支路的电压、电流。
分析和计算电路可以应用欧姆定律和基尔霍夫定律,但往往由于电路复杂,计算手续十分繁琐。
为此,要根据电路的构特点去寻找分析和计算的简便方法。
2.1 支路电流法支路电流法是分析复杂电路的的基本方法。
它以各支路电流为待求的未知量,应用基尔霍夫定律(KCL 和KVL )和欧姆定律对结点、回路分别列出电流、电压方程,然后解出各支路电流。
下面通过具体实例说明支路电流法的求解规律。
例2-1】试用支路电流法求如图2-1 所示电路中各支路电流。
已知U S1 130V ,U S2 117V ,R1 1 ,R2 0.6 ,R 24 。
【解】该电路有3 条支路(b=3),2个结点(n=2),3 个回路(L=3 )。
先假定各支路电流的参考方向和回路的绕行方向如图所示。
因为有3 条支路则有3 个未知电流,需列出3 个独立方程,才能解得3个未知量。
根据KCL 分别对点A、B 列出的方程实际上是相同的,即结点A、B 中只有一个结点电流方程是独立的,因此对具有两个结点的电路,只能列出一个独立的KCL 方程。
再应用KVL 列回路电压方程,每一个方程中至少要包含一条未曾使用过的支路(即没有列过方程的支路)的电流或电压,因此只能列出两个独立的回路电压方程。
根据以上分析,可列出3 个独立方程如下:结点A I1 I2 I 0回路ⅠI1R1 I2R2 U S1 U S2回路ⅡI2 R2 IR U S2I1 10A, I2 5A, I=5A 联立以上3 个方程求解,代入数据解得支路电流通过以上实例可以总出支路电流法的解题步骤是:1.假定各支路电流的参考方向,若有n个点,根据KCL 列出(n-1)个结点电流方程。
2.若有b 条支路,根据KVL 列(b-n+1)个回路电压方程。
为了计算方便,通常选网孔作为回路。
5 3.解方程组,求出支路电流。
【例 2-2】如图 2-2 所示电路,用支路电流法求各支路电流。
常见的电路分析讲解电路中常用电路分析方法主要有支路电流法、回路电流法、节点电压法、电源等效变换法、叠加定理、戴维南定理和诺顿定理等,每种电路分析方法的原理及其适用范围是不同的,本文主要对几种常用电路分析方法的原理、解题步骤和适用范围进行总结与分析。
一支路电流法1、什么是支路电流法以支路电流为未知量、应用基尔霍夫定律(KCL、KVL)列方程组进行求解。
2、支路电流法的解题步骤(1)确定电路中支路、节点、网孔的数目。
其中,支路个数用b表示、节点个数用n表示、网孔个数用m表示;(2)在图中标出各支路电流的参考方向,对选定的回路标出回路循行方向;(3)应用KCL对结点列出(n-1)个独立的节点电流方程;(4)应用KVL对回路列出b-(n-1)个独立的回路电压方程(通常可取网孔列出);(5)联立求解b个方程,求出各支路电流。
3、支路电流法的适用范围如果用手工进行计算时,一般适用于支路个数不大于3的情况下,用手工计算方程组比较方便,如果支路个数大于3的情况下用手工计算就比较麻烦了。
支路个数较多的情况下可以用矩阵结合matlab进行计算。
二节点电压法采用回路电流法。
对于b个支路,n个节点的电路,只需列出[b-(n-1)]个方程,即网孔m个数方程,就可以解出各个支路电流,比支路电流法要方便的多。
但是有时存在这样的电路,即支路较多而节点较少的电路。
如下图电路中,有5条支路,2个节点,若用回路电流法求解,也需列出4个独立方程式,如果采用节点电压法则更加方便求解。
1、什么是节点电压法以基尔霍夫电流定律为基础,先求出各节点与参考点之间的电压,然后运用欧姆定律求出各支路电流的方法。
2、节点电压法计算步骤本文主要讨论两节点电路,节点电压法计算步骤如下。
(1)选定电路中一个节点为参考节点用接地符号表示,另一个节点的节点电位作为电路变量。
(2)列写关于节点电位的节点电压方程,如下式所示。
式中,分子表示电源的电流的代数和,电源电流有两部分构成,一部分是电压源的输出的电流等于电压源的数值除以其串联的电阻;另一部分电流源输出的电流。
第 3 章电路的一般分析方法与常用定理重点1.KCL和KVL独立方程数的概念;2.支路法、网孔法、节点法等复杂电路的方程法;3.叠加定理;4.戴维宁定理和诺顿定理;5.最大功率传输定理。
难点1.独立回路的确定;2.含独立电源的结点电压方程和回路电流方程的列写;3.各电路定理的应用条件;4、正确作出戴维南定理的等效电路。
3.1 支路电流法电路的一般分析方法是指在给定电路结构和元件参数的条件下,不需要改变电路结构,而是通过选择电路变量(未知量),根据KCL 和KVL 以及支路的VCR 建立关于电路变量的方程组,从而求解电路的方法。
一、支路电流法支路电流法是以支路电流为未知量,根据KCL建立独立节点电流方程,根据KVL 建立独立回路电压方程,然后解联立方程组求出各支路电流。
上图中选定各支路电流参考方向,并设各支路电压与支路电流为关联参考方向。
根据KCL 列出的节点电流方程分别为在上图所示的平面电路中含有3个网孔,若选择网孔作为回路,并取顺时针为回路绕行方向,根据KVL 列出含VCR 的回路电压方程分别为上面这3个回路电压方程也是相互独立的,对应于独立方程的回路称为独立回路。
由此可见,上图所示的电路共设有6条支路电流为未知量,分别列出了3个独立节点电流方程和3个独立回路电压方程,恰好等于6条未知的支路电流数,因此可以解出各支路电流。
二、支路电流法的应用应用支路电流法分析电路的关键在于确定独立节点和独立回路。
可以证明,对于具有n 个节点,b 条支路的电路,其独立节点数为(n -1 ) ,独立回路数为L = b -(n -1)。
对于平面电路,由于网孔数等于独立回路数, 综上所述,应用支路电流法求解电路的一般步骤是:(1) 选定支路电流的参考方向,确定独立节点、独立回路及其绕行方向。
(2)根据 KCL 列出(n-1)个独立节点电流方程。
(3)根据 KVL 列出L = b-(n-1)个独立回路电压方程。
(4)解方程组求出各支路电流。