实验八典型非线性环节静态特性检验
- 格式:doc
- 大小:52.00 KB
- 文档页数:8
⾃动控制原理实验指导书⽬录第⼀章⾃动控制原理实验 (1)实验⼀典型环节模拟⽅法及动态特性 (1)实验⼆典型⼆阶系统的动态特性 (4)实验三典型调节规律的模拟电路设计及动态特性测试 (6)实验四调节系统的稳态误差分析 (8)实验五三阶系统模拟电路设计及动态特性和稳定性分析 (11)实验六单回路系统中的PI调节器参数改变对系统稳定性影响 (13)实验七典型⾮线性环节的模拟⽅法 (15)实验⼋线性系统的相平⾯分析 (17)第⼆章控制理论实验箱及DS3042M(40M)⽰波器简介 (19)第⼀节⾃动控制理论实验箱的简介 (19)第⼆节数字存储⽰波器简介 (20)第⼀章⾃动控制原理实验实验⼀典型环节模拟⽅法及动态特性⼀、实验⽬的1、掌握⽐例、积分、实际微分及惯性环节的模拟⽅法。
2、通过实验熟悉各种典型环节的传递函数和动态特性。
⼆、实验设备及器材配置1、⾃动控制理论实验系统。
2、数字存储⽰波器。
3、数字万⽤表。
4、各种长度联接导线。
三、实验内容分别模拟⽐例环节、积分环节、实际微分环节、惯性环节,输⼊阶跃信号,观察变化情况。
1、⽐例环节实验模拟电路见图1-1所⽰传递函数:K R R V V I -=-=120阶跃输⼊信号:2V实验参数:(1) R 1=100K R 2=100K(2) R 1=100K R 2=200K2、积分环节实验模拟电路见图1-2所⽰传递函数:ST V V I I O 1-= ,其中T I阶跃输⼊信号:2V 实验参数:(1) R=100K C=1µf(2) R=100K C=2µf 3、实际微分环节实验模拟电路见图1-3所⽰传递函数:K ST S T V V D D I O +-=1 其中 T D =R 1C K=12R R 阶跃输⼊信号:2V实验参数:(1) R 1=100K R 2=100K (2)R 1=100K R 2=200K C=1µf4、惯性环节实验模拟电路见图1-4所⽰传递函数:1+-=TS K V V I O 其中 T=R 2C K=12R R 阶跃输⼊:2V 实验参数:(1) R 1=100K R 2=100K C=1µf(2) R=100K R 2=100K C=2µfR四、实验步骤1、熟悉实验设备并在实验设备上分别联接各种典型环节。
自动控制原理实验指导书施金鸿编孙炳达审核广东技术师范学院自动化系前言本书是根据高等学校电气工程及其自动化、测控技术等专业“自动控制原理”教学大纲要求,并结合我院具体情况而编写的。
自动控制原理实验是自动控制原理课程的重要组成部分,是该门课程的辅助教材。
由于理论教材中各电路原理已阐述详尽,故在实验教材中主要侧重介绍实验方法,通过实验使学生能运用所学理论知识来分析研究实验中所出现的问题,得出相应的结论,从而培养学生具备分析问题和解决问题的能力。
通过实验这个重要的实践环节来验证所学理论,使学生掌握实验的基本技能和方法,培养学生严肃认真和实事求是的科学作风。
本书由广东技术师范学院自动化系施金鸿编孙炳达审核。
限于编者的水平和经验,疏漏及错误之处在所难免,欢迎读者批评指正。
编者2006年6月目录前言实验一控制系统典型环节的模拟实验 (3)实验二线性定常系统的瞬态响应和稳定性分析 (10)实验三自动控制系统的校正 (17)实验四控制系统的频率特性 (21)实验五典型非线性环节静特性的测试 (25)实验六非线性系统的描述函数分析法 (30)实验七采样控制系统的分析 (34)实验八采样控制系统的动态校正 (39)实验九控制系统极点的任意配置 (42)附录:TKKL-4型控制理论/计算机控制技术实验箱使用说明 (46)实验一控制系统典型环节的模拟实验一、实验目的1、掌握控制系统中各典型环节的电路模拟及其参数的测定方法。
2、测量典型环节的阶跃响应曲线,了解参数变化对环节输出性能的影响。
二、实验原理1、对表1-1所示各典型环节的传递函数设计相应的模拟电路(参见表1-2)表1-1:典型环节的方块图及传递函数表1-2:典型环节的模拟电路图2、测试各典型环节在单位阶跃信号作用下的输出响应。
3、改变各典型环节的相关参数,观测对输出响应的影响。
三、实验设备1、TKKL-4型控制理论实验箱 1台2、双踪示波器 1台3、数字万用表 1块四、实验内容及步骤1、观测比例、积分、比例积分、比例微分和惯性环节的阶跃响应曲线。
非线性环节实验报告引言非线性系统在现实生活中的广泛应用引起了研究者们的极大关注。
非线性环节作为其中的重要组成部分,对系统的稳定性和性能起着至关重要的作用。
本实验通过建立一个非线性环节的模型,探究其对系统行为的影响,并分析非线性环节的性能和稳定性特性。
实验目的1. 建立一个非线性环节的数学模型;2. 分析非线性环节对系统行为的影响;3. 考察非线性环节的性能和稳定性特性。
实验原理非线性环节是指输入与输出之间不满足线性关系的部分。
在控制系统中,非线性环节可能会导致系统产生不确定性和非稳定的行为。
为了研究非线性环节的特性,本实验使用了一个常见的非线性函数作为实验模型,即sigmoid函数。
Sigmoid函数定义如下:f(x) = \frac{1}{{1+e^{-ax}}}其中,x代表输入,a代表一个可调节的参数,f(x)代表经过非线性环节后的输出。
实验步骤1. 首先,我们需要选择合适的参数a值来控制sigmoid函数的形状。
较小的a 值将导致sigmoid函数的输出变化更缓慢,而较大的a值则会使函数的曲线更陡峭。
本次实验选择a=2作为sigmoid函数的参数。
2. 在Matlab或Python等工具中编写代码,根据sigmoid函数的表达式计算输入x对应的输出f(x)。
3. 绘制x与f(x)之间的关系曲线,观察并分析非线性环节对系统行为的影响。
实验结果根据实验步骤所给出的sigmoid函数表达式和参数,我们得到了如下结果:import numpy as npdef sigmoid(x, a):return 1 / (1 + np.exp(-a * x))x = np.linspace(-10, 10, 100)a = 2y = sigmoid(x, a)import matplotlib.pyplot as pltplt.plot(x, y)plt.xlabel('Input (x)')plt.ylabel('Output (f(x))')plt.title('Nonlinear Link Function')plt.grid(True)plt.show()如上所示的代码及其运行结果,绘制了sigmoid函数的输入和输出之间的关系曲线。
《自动控制理论》实验教学大纲课程名称:自动控制理论课程性质:非独立设课使用教材:自编课程编号:面向专业:自动化课程学分:考核方法:成绩是考核学习效果的重要手段,实验成绩按学生的实验态度,独立动手能力和实验报告综合评定,以20%的比例计入本门课程的总成绩。
实验课总成绩由平时成绩(20%)、实验理论考试成绩(40%)、实验操作考试成绩(40%)三部分组成,满分为100分。
实验理论考试内容包含实验原理、实验操作方法、实验现象解析、实验结果评价、实验方案设计等。
考试题型以填空、判断、选择、问答为主,同时可结合课程特点设计其他题型。
实验操作考试根据课程特点设计若干个考试内容,由学生抽签定题。
平时成绩考核满分为20分,平时成绩= 平时各次实验得分总和÷实验次数(≤20分)。
每次实验得分计算办法为:实验报告满分10分(其中未交实验报告或不合格者0分,合格6分,良好8分,优秀10分);实验操作满分10分(其中旷课或不合格者0分,合格6分,良好8分,优秀10分)。
撰写人:任鸟飞审核人:胡皓课程简介:自动控制理论是电气工程及其自动化专业最主要的专业基础必修课。
通过本课程的各个教学环节的实践,要求学生能熟练利用模拟电路搭建需要的控制系统、熟练使用虚拟示波器测试系统的各项性能指标,并能根据性能指标的变化分析参数对系统的影响。
实验过程中要求学生熟悉自动控制理论中相关的知识点,可以在教师预设的实验前提下自己设计实验方案,完成实验任务。
教学大纲要求总学时80,其中理论教学68学时、实验12学时,实验个数6个。
9采样控制系统的分析√4选做10采样控制系统的动态校正√4选做合计实验一典型环节的电路模拟一、实验类型:综合性实验二、实验目的:1.熟悉THBCC-1型实验平台及“THBCC-1”软件的使用;2.熟悉各典型环节的阶跃响应特性及其电路模拟;3.测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。
三、实验内容与要求:1.设计并组建各典型环节的模拟电路;2.测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响;3.画出各典型环节的实验电路图,并注明参数。
非线性系统的相平面分析----典型非线性环节一.实验目的1.了解和掌握各种典型非线性环节的数学表达式。
2.用相平面法观察和分析分别由模拟电路和函数发生器产生的典型非线性环节的输出特性。
二.实验原理及说明实验以运算放大器为基本元件,在输入端和反馈网络中设置相应元件(稳压管、二极管、电阻和电容)组成各种典型非线性的模拟电路,模拟电路见图3-4-5 a~ 图3-4-8a 所示。
本实验箱在函数发生器(B5单位)中,还堤供用CPU 做成的典型理想非线性模块,其特性参数可由用户自行设定,它将更方便进行以后的非线性控制系统实验。
1.继电特性理想继电特性的特点是:当输入信号大于0时,输出U 0=+M ,输入信号小于0,输出U 0=-M 。
理想继电特性如图3-4-1所示,模拟电路见图3-4-5,图3-4-1中M 值等于双向稳压管的稳压值,由于流过双向稳压管的电流太小(4mA ),因此实际M 值只有3.7V 。
图3-4-1理想继电特性图3-4-2 理想饱和特性2.饱和特性饱和特性的特点是:当输入信号较小时,即小于|a|时,电路将工作于线性区,其输出U 0=KU i ,如输入信号超过|a|时,电路将工作于饱和区,即非线性区,U 0=M 。
理想饱和特性见图3-4-2所示,模拟电路见图3-4-6,图3-4-2中M 值等于双向稳压管的稳压值,斜率K 等于前一级反馈电阻值与输入电阻值之比,即: K=R f /Ro 。
a 为线性宽度。
3.死区特性死区特性特点是:在死区内虽有输入信号,但其输出U 0=0,当输入信号大于或小于|△|时,则电路工作于线性区,其输出U 0=KU i 。
死区特性如图3-4-3所示,模拟电路见图3-4-7,图3-4-3中斜率K 为:0R R K f =死区)(4.0)(123022V R V R =⨯=∆ 式中R 2的单位K Ω,且R 2=R 1。
(实际△还应考虑二极管的压降值)图3-4-3死区特性图3-4-4 间隙特性4.间隙特性间隙特性的特点是:输入信号从-U i 变化到+U i ,与从+U i 变化到-U i 时,输出的变化轨迹是不重叠的,其表现在X 轴上是△,△即为间隙。
实验八典型非线性环节的静态特性一、实验目的1. 了解典型非线性环节输出—输入的静态特性及其相关的特征参数;2. 掌握典型非线性环节用模拟电路实现的方法。
二、实验内容1. 继电器型非线性环节静特性的电路模拟;2. 饱和型非线性环节静特性的电路模拟;3. 具有死区特性非线性环节静特性的电路模拟;4. 具有间隙特性非线性环节静特性的电路模拟。
三、实验原理控制系统中的非线性环节有很多种,最常见的有饱和特性、死区特性、继电器特性和间隙特性。
基于这些特性对系统的影响是各不相同的,因而了解它们输出-输入的静态特性将有助于对非线性系统的分析研究。
1. 继电型非线性环节图7-1为继电器型非线性特性的模拟电路和静态特性。
图8-1 继电器型非线性环节模拟电路及其静态特性继电器特性参数M是由双向稳压管的稳压值(4.9~6V)和后级运放的放大倍数(R X/R1)决定的,调节可变电位器R X的阻值,就能很方便的改变M值的大小。
输入u i信号用正弦信号或周期性的斜坡信号(频率一般均小于10Hz)作为测试信号。
实验时,用示波器的X-Y显示模式进行观测。
2. 饱和型非线性环节图7-2为饱和型非线性环节的模拟电路及其静态特性。
图8-2 饱和型非线性环节模拟电路及其静态特性图中饱和型非线性特性的饱和值M等于稳压管的稳压值(4.9~6V)与后一级放大倍数的乘积。
线性部分斜率k等于两级运放增益之积。
在实验时若改变前一级运放中电位器的阻值可改变k 值的大小,而改变后一级运放中电位器的阻值则可同时改变M 和k 值的大小。
实验时,可以用周期性的斜坡或正弦信号作为测试信号,注意信号频率的选择应足够低(一般小于10Hz )。
实验时,用示波器的X-Y 显示模式进行观测。
3. 具有死区特性的非线性环节图7-3为死区特性非线性环节的模拟电路及其静态特性。
图8-3 死区特性非线性环节的模拟电路及其静态特性图中后一运放为反相器。
由图中输入端的限幅电路可知,当二极管D 1(或D 2)导通时的临界电压U io 为E 1E R R u 21io αα-±=±=(在临界状态时:E R R R u R R R 2110i 212+±=+) (7-1)其中,211R R R +=α。
非线性实验报告非线性实验报告摘要:本实验旨在研究非线性系统的特性,并通过实验验证非线性系统的存在和影响。
实验过程中,我们采用了不同的实验方法和工具,包括数学模型、实验仪器和数据分析软件。
通过实验结果的分析和对比,我们得出了一些关于非线性系统的结论,并对实验中可能存在的误差和限制进行了讨论。
引言:非线性系统是指其输入与输出之间的关系不符合线性关系的系统。
在现实世界中,非线性系统无处不在,如生物系统、电子电路、经济系统等。
了解和研究非线性系统的特性对于我们理解和应用这些系统具有重要意义。
本实验旨在通过实际操作和数据分析,探索非线性系统的行为和特性。
实验方法:我们选择了一种简单的非线性系统作为研究对象,即二次函数。
通过调整二次函数的系数和参数,我们可以观察到不同的非线性行为。
在实验中,我们使用了一台计算机和数据采集卡作为实验仪器,利用数学建模和数据分析软件进行数据处理。
实验步骤:1. 设计二次函数模型:我们首先根据实验要求设计了一个二次函数模型,包括系数和参数的选择。
这个模型可以模拟实际系统中的非线性行为。
2. 数据采集:我们通过计算机和数据采集卡采集了一系列输入和输出数据。
输入数据是实验中施加在系统上的不同信号,输出数据是系统对这些信号的响应。
3. 数据处理和分析:我们使用数据分析软件对采集到的数据进行处理和分析。
首先,我们绘制了输入-输出曲线,以观察系统的非线性特性。
然后,我们对数据进行了拟合和回归分析,以确定二次函数的系数和参数。
实验结果:通过实验和数据分析,我们得到了以下结果:1. 非线性特性的存在:我们观察到系统的输入-输出曲线不是一条直线,而是呈现出弯曲的形状。
这表明系统存在非线性特性。
2. 参数对系统行为的影响:我们发现,调整二次函数的系数和参数可以改变系统的响应。
例如,增加二次项的系数可以使曲线更加陡峭,而增加线性项的系数可以使曲线更加平缓。
3. 非线性现象的局限性:我们也观察到,在一定范围内,系统的响应是线性的。
目录第一部分使用说明书 (1)第一章系统概述 (1)第二章硬件的组成及使用 (2)第二部分实验指导书 (5)第一章控制理论实验 (5)实验一典型环节的电路模拟 (5)实验二二阶系统的瞬态响应 (11)实验三高阶系统的瞬态响应和稳定性分析 (14)实验五典型环节和系统频率特性的测量 (16)实验七典型非线性环节的静态特性 (21)实验十三采样控制系统的分析 (26)附录上位机软件使用流程 (29)第一部分使用说明书第一章系统概述“THKKL-6”型控制理论及计算机控制技术实验箱是我公司结合教学和实践的需要而进行精心设计的实验系统。
适用于高校的控制原理、计算机控制技术等课程的实验教学。
该实验箱具有实验功能全、资源丰富、使用灵活、接线可靠、操作快捷、维护简单等优点。
实验箱的硬件部分主要由直流稳压电源、低频信号发生器、阶跃信号发生器、交/直流数字电压表、电阻测量单元、示波器接口、CPU(51单片机)模块、单片机接口、步进电机单元、直流电机单元、温度控制单元、通用单元电路、电位器组等单元组成。
数据采集部分采用USB2.0接口,它可直接插在IBM-PC/AT 或与之兼容的计算机USB通讯口上,有4路单端A/D模拟量输入,转换精度为12位;2路D/A模拟量输出,转换精度为12位;上位机软件则集中了虚拟示波器、信号发生器、Bode图等多种功能于一体。
在实验设计上,控制理论既有模拟部分的实验,又有离散部分实验;既有经典控制理论实验,又有现代控制理论实验;计算机控制系统除了常规的实验外,还增加了当前工业上应用广泛、效果卓著的模糊控制、神经元控制、二次型最优控制等实验;第二章硬件的组成及使用一、直流稳压电源直流稳压电源主要用于给实验箱提供电源。
有+5V/0.5A、±15V/0.5A及+24V/2.0A四路,每路均有短路保护自恢复功能。
它们的开关分别由相关的钮子开关控制,并由相应发光二极管指示。
其中+24V主要用于温度控制单元。
实验八典型非线性环节静态特性测试
一.实验目的
1.了解和掌握典型非线性环节的原理;
2.分析典型非线性环节的模拟电路,观测典型非线性环节的输出特性。
二.实验内容
1.分析继电特性的模拟电路,观测其输出特性曲线;
2.分析饱和特性的模拟电路,观测其输出特性曲线;
3.分析死区特性的模拟电路,观测其输出特性曲线;
4.分析间隙特性的模拟电路,观测其输出特性曲线。
三.实验步骤
在实验中观测实验结果时,可选用普通示波器,也可选用本实验台上的虚拟示波器。
如果选用虚拟示波器,只要运行ACES程序,选择菜单列表中的相应实验项目,再选择开始实验,就会打开虚拟示波器的界面,点击开始即可使用本实验台上的虚拟示波器CH1、CH2两通道观察被测波形。
具体用法参见用户手册中的示波器部分。
1.继电特性
实验中所用到的功能区域:
可调电压输出、虚拟示波器、实验电路A3、实验电路A6。
继电特性的模拟电路如图1-8-1所示
图1-8-1继电特性模拟电路
(1)设置可调电压输出:
将可调电压输出区的“-10V~+10V”端子与实验电路A3的“IN33”端子相连接,调节可调电压输出区的旋钮即可改变输入电压值的大小。
(2)搭建继电特性的模拟电路:
A.将实验电路A3的“OUT3”端子与实验电路A6的“IN62”端子相连接;
B.按照图1-8-1选择拨动开关:
图中:R1可调、R2=100K、R3=200K、R4=10K、R5=10K、R6=10K、
D1、D2为4.7V稳压管
将A3的S7、S10,A6的S5、S11拨至开的位置。
(3)连接虚拟示波器:
将实验电路A3的“OUT3”与示波器通道CH1相连接,A6的“OUT6”
与示波器通道CH2相连接,将示波器的显示格式改为“XY”型,显示时间改为
“5秒”。
(4)调节可调电压输出区的旋钮,记录在示波器屏幕上显现的继电特性曲线。
2.饱和特性
实验中所用到的功能区域:
可调电压输出、虚拟示波器、实验电路A3、实验电路A6。
饱和特性的模拟电路如图1-8-2所示
图1-8-1饱和特性模拟电路
(1)设置可调电压输出:
将可调电压输出区的“-10V~+10V”端子与实验电路A3的“IN33”端子相连接,调节可调电压输出区的旋钮即可改变输入电压值的大小。
(2)搭建饱和特性的模拟电路:
A.将实验电路A3的“OUT3”端子与实验电路A6的“IN62”端子相连接;
B.按照图1-8-2选择拨动开关:
图中:R1可调、R2=100K、R3=200K、R4=50K、R5=100K 、R6=10K、
R7=10K、D1、D2为4.7V稳压管
将A3的S7、S10,A6的S4、S9、S11拨至开的位置。
(3)连接虚拟示波器:
将实验电路A3的“OUT3”与示波器通道CH1相连接,A6的“OUT6”
与示波器通道CH2相连接,将示波器的显示格式改为“XY”型,显示时间改为
“5秒”。
(4)调节可调电压输出区的旋钮,记录在示波器屏幕上显现的饱和特性曲线。
3.死区特性
实验中所用到的功能区域:
可调电压输出、非线性信号、虚拟示波器、实验电路A1。
死区特性的模拟电路如图1-8-3所示
图1-8-3死区特性模拟电路
(1)设置可调电压输出:
将可调电压输出区的“-10V~+10V”端子与非线性信号区的输入端子相连接,将非线性信号区的输出端子与实验电路A1的“IN13”端子相连接,调节
可调电压输出区的旋钮即可改变输入电压值的大小。
(2)搭建死区特性的模拟电路:
A.按照图1-8-3选择拨动开关:
图中:R1可调、R2=50K、R3=500K、R4=10K、R5=10K
将A1的S7、S11拨至开的位置。
(3)连接虚拟示波器:
将可调电压输出区的“-10V~+10V”端子与示波器通道CH1相连接,A1的“OUT1”与示波器通道CH2相连接,将示波器的显示格式改为“XY”型,
显示时间改为“5秒”。
(4)调节可调电压输出区的旋钮,记录在示波器屏幕上显现的死区特性曲线。
4.间隙特性
实验中所用到的功能区域:
可调电压输出、非线性信号、虚拟示波器、实验电路A1。
间隙特性的模拟电路如图1-8-4所示
图1-8-4间隙特性模拟电路
(1)设置可调电压输出:
将可调电压输出区的“-10V~+10V”端子与非线性信号区的输入端子相连接,将非线性信号区的输出端子与实验电路A1的“IN12”端子相连接,调节
可调电压输出区的旋钮即可改变输入电压值的大小。
(2)搭建间隙特性的模拟电路:
A.按照图1-8-3选择拨动开关:
图中:R1可调、R2=10K、R3=10K、C1=1.0uF、C2=1.0uF
将A1的S5、S9拨至开的位置。
(3)连接虚拟示波器:
将可调电压输出区的“-10V~+10V”端子与示波器通道CH1相连接,A1的“OUT1”与示波器通道CH2相连接,将示波器的显示格式改为“XY”型,显示时间改为“5秒”。
(4)调节可调电压输出区的旋钮,记录在示波器屏幕上显现的间隙特性曲线。
四.实验结果
根据实验结果绘制下列图形:。