最新数学华师版初中九年级下册27.1.2 第2课时 垂径定理
- 格式:ppt
- 大小:1.44 MB
- 文档页数:28
垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧;推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧;(2)平分弧的直径垂直平分这条弧所对的弦(2)四组量关系定理:在同圆或等圆;中,如果两个圆心角;两条弧;两条弦;两个弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.垂径定理一般与直角三角形结合,半径,弦心距和弦长一半构造勾股定理列方程,解线段长圆中处理问题的思路①找圆心,连半径,转移边;②遇弦,作垂线,垂径定理配合勾股定理建等式; ③遇直径,找直角,由直角,找直径; ④由弧找角,由角看弧.补充:中考数学中涉及“一半”的相关内容①直角三角形斜边中线等于斜边的一半; ②30°所对的直角边等于斜边的一半;③三角形的中位线平行于第三边,且等于第三边的一半; ④圆周角的度数等于它所对弧上圆心角度数的一半.➢ 精讲精练 一选择题:1. 如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M ,下列结论不一定成立的是( ) A .CM =DMB .CB ︵=BD ︵C .∠ACD =∠ADCD .OM =MD2、一条排水管的截面如图所示,已知排水管的截面圆半径AD 为10,截面圆圆心A 到水面的距离AE 为6,则水面宽CD 的长为( )A .16B .10C .8D .6第2题图第3题图3、如图,CD是⊙A的弦,AE⊥CD于点E,交⊙A于点B,则下列说法不一定正确的是()A.CE=DE B.∠F=∠CAE C.弧BC=弧BD D.AE=BE 4、如图,BE为⊙A的直径,CD为弦,AB⊥CD,若∠BAC=70°,则∠E的度数为()A.70°B.35°C.30°D.20°二填空题1、如图,⊙A的弦CD垂直平分半径AB,若CD=6,则⊙A的半径为_________.2.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10 mm,测得钢珠顶端离零件表面的距离为8 mm,如图所示,则这个小圆孔的宽口AB 的长度为__________mm.A BC DRO第/2题图 第3题图3. 如图,圆拱桥桥拱的跨度AB =12 m ,桥拱高CD =4 m ,则拱桥的直径为__________.4. 如图,在⊙O 中,直径CD 垂直于弦AB ,垂足为E ,连接OB ,CB .已知⊙O 的半径为2,AB=,则∠BCD =_______.ADB O E C5. 如图,⊙O 的两条弦AB ,CD 互相垂直,垂足为E ,且AB =CD ,已知CE =1,ED =3,则⊙O 的半径是__________.7、如图,一条公路的转弯处是一段圆弧(图中的AB ︵),点O 是这段弧的圆心且∠AOB =90°,C 是AB ︵上一点,OC ⊥AB ,垂足为D ,若AB =300 m ,CD =50 m ,则这段弯路的半径是___________m .BD C OA8、如图,⊙O 的直径AB 与弦CD 相交于点E ,若AE =5,BE =1,CD =∠AED =___________.EACD B O9、某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB =16 m ,半径OA =10 m ,则中间柱CD 的高度为______m .CD BOADOEBC A第/9题图 第10题图10、如图,“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”用几何语言可表述为:CD 为⊙O 的直径,弦AB ⊥CD 于点E ,若CE =1寸,AB =10寸,则直径CD 的长为_________11、如图,CD 是圆A 的弦,CD 长为8,B 是圆上任意一点,过A 作AE ⊥BD 于点E ,AF ⊥BC 于点F ,则EF=________________11、(中位线)如图,定长弦DF 在以BC 为直径的圆A 上滑动(D,F 不与点B,C 重合)G 是弦DF 的中点,过点D 作DE ⊥AB 于点E,连接EG ,若DF=3,BC=8,则EG 的最大值是_________________12、如图,将半径为4厘米的圆A折叠后,圆弧BC恰好经过圆心,则折痕BC 的长是__________________三、解答题⊙的半径为13 cm,弦AB∥CD,AB=24 cm,CD=10 cm,1、(分类讨论)已知O求AB,CD之间的距离.2、(垂径定理+中位线)如图,BC是圆A的直径,弦BD=5,AE⊥CD于点E,求AE的长3、(垂径定理+30°所对的直角边等于斜边的一半)如图,∠PAC=30°,在射线AC 上顺次截取AD =3 cm ,DB =10 cm ,以DB 为直径作⊙O ,交射线AP 于E ,F 两点,求线段EF 的长PFE C B ODA4、(垂径定理+等积式)如图,∠A=90°,以AB 为半径的圆A 与BC 相交于点D ,若AB=3,AC=4,求CD 的长5、如图,已知BC 为圆A 的直径,弦EF 交BC 于点D ,∠CDF=30°,AD=4,DE=35,求弦EF 及圆A 的半径长。