初三数学圆的垂径定理
- 格式:doc
- 大小:3.77 MB
- 文档页数:23
1.垂径定理及推论:如图:有五个元素,“知二可推三”;需记忆其中四个定理,即“垂径定理”“中径定理”“弧径定理”“中垂定理”.几何表达式举例:∵ CD过圆心∵CD⊥AB2.平行线夹弧定理:圆的两条平行弦所夹的弧相等.几何表达式举例:3.“角、弦、弧、距”定理:(同圆或等圆中)“等角对等弦”;“等弦对等角”;“等角对等弧”;“等弧对等角”;“等弧对等弦”;“等弦对等(优,劣)弧”;“等弦对等弦心距”;“等弦心距对等弦”.几何表达式举例:(1) ∵∠AOB=∠COD∴ AB = CD(2) ∵ AB = CD∴∠AOB=∠COD4.圆周角定理及推论:(1)圆周角的度数等于它所对的弧的度数的一半;(2)一条弧所对的圆周角等于它所对的圆心角的一半;(如图)(3)“等弧对等角”“等角对等弧”;(4)“直径对直角”“直角对直径”;(如图)(5)如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(如图)(1)(2)(3)(4)几何表达式举例:(1)∵∠ACB=∠AOB∴……………(2)∵ AB是直径∴∠ACB=90°(3)∵∠ACB=90°∴ AB是直径(4)∵ CD=AD=BD∴ΔABC是RtΔ5.圆内接四边形性质定理:圆内接四边形的对角互补,并且任何一个外角都等于它的内对角.几何表达式举例:∵ ABCD是圆内接四边形∴∠CDE =∠ABC∠C+∠A =180°6.切线的判定与性质定理:如图:有三个元素,“知二可推一”;需记忆其中四个定理.(1)经过半径的外端并且垂直于这条半径的直线是圆的切线;(2)圆的切线垂直于经过切点的半径;※(3)经过圆心且垂直于切线的直线必经过切点;※(4)经过切点且垂直于切线的直线必经过圆心.几何表达式举例:(1)∵OC是半径∵OC⊥AB∴AB是切线(2)∵OC是半径∵AB是切线∴OC⊥AB(3)……………7.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等;圆心和这一点的连线平分两条切线的夹角.几何表达式举例:∵ PA、PB是切线∴ PA=PB∵PO过圆心∴∠APO =∠BPO8.弦切角定理及其推论: 几何表达式举例:(1)弦切角等于它所夹的弧对的圆周角;(2)如果两个弦切角所夹的弧相等,那么这两个弦切角也相等;(3)弦切角的度数等于它所夹的弧的度数的一半.(如图)(1)∵BD是切线,BC是弦∴∠CBD =∠CAB(2)∵ ED,BC是切线∴∠CBA =∠DEF9.相交弦定理及其推论:(1)圆内的两条相交弦,被交点分成的两条线段长的乘积相等;(2)如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段长的比例中项. 几何表达式举例:(1)∵PA·PB=PC·PD∴………(2)∵AB是直径∵PC⊥AB∴PC2=PA·PB10.切割线定理及其推论:(1)从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项;(2)从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.几何表达式举例:(1)∵PC是切线,PB是割线∴PC2=PA·PB (2)∵PB、PD是割线∴PA·PB=PC·PD11.关于两圆的性质定理:(1)相交两圆的连心线垂直平分两圆的公共弦;(2)如果两圆相切,那么切点一定在连心线上.(1)(2)几何表达式举例:(1)∵O1,O2是圆心∴O1O2垂直平分AB (2)∵⊙1 、⊙2相切∴O1 、A、O2三点一线12.正多边形的有关计算:(1)中心角αn ,半径R N ,边心距r n ,边长a n ,内角βn ,边数n;(2)有关计算在RtΔAOC中进行. 公式举例:(1) αn =;(2)几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:圆的几何定义和集合定义、弦、弦心距、弧、等弧、弓形、弓形高三角形的外接圆、三角形的外心、三角形的内切圆、三角形的内心、圆心角、圆周角、弦切角、圆的切线、圆的割线、两圆的内公切线、两圆的外公切线、两圆的内(外)公切线长、正多边形、正多边形的中心、正多边形的半径、正多边形的边心距、正多边形的中心角.二定理:1.不在一直线上的三个点确定一个圆.2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3.正n边形的半径和边心距把正n边形分为2n个全等的直角三角形.三公式:1.有关的计算:(1)圆的周长C=2πR;(2)弧长L=;(3)圆的面积S=πR2.(4)扇形面积S扇形=;(5)弓形面积S弓形=扇形面积S AOB±ΔAOB的面积.(如图)2.圆柱与圆锥的侧面展开图:(1)圆柱的侧面积:S圆柱侧 =2πrh; (r:底面半径;h:圆柱高)(2)圆锥的侧面积:S圆锥侧 =. (L=2πr,R是圆锥母线长;r是底面半径)四常识:1.圆是轴对称和中心对称图形.2.圆心角的度数等于它所对弧的度数.3.三角形的外心⇔两边中垂线的交点⇔三角形的外接圆的圆心;三角形的内心⇔两内角平分线的交点⇔三角形的内切圆的圆心.4.直线与圆的位置关系:(其中d表示圆心到直线的距离;其中r表示圆的半径)直线与圆相交⇔ d<r ;直线与圆相切⇔ d=r ;直线与圆相离⇔ d>r.5.圆与圆的位置关系:(其中d表示圆心到圆心的距离,其中R、r表示两个圆的半径且R≥r)两圆外离⇔ d>R+r;两圆外切⇔ d=R+r;两圆相交⇔ R-r<d<R+r;两圆内切⇔ d=R-r;两圆内含⇔ d<R-r.6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径”的方法加辅助线.7.关于圆的常见辅助线:已知弦构造弦心距.已知弦构造RtΔ. 已知直径构造直角.已知切线连半径,出垂直.圆外角转化为圆周角. 圆内角转化为圆周角. 构造垂径定理. 构造相似形.两圆内切,构造外公切线与垂直.两圆内切,构造外公切线与平行.两圆外切,构造内公切线与垂直.两圆外切,构造内公切线与平行.两圆同心,作弦心距,可证得AC=DB.两圆相交构造公共弦,连结圆心构造中垂线. PA、PB是切线,构造双垂图形和全等.相交弦出相似.一切一割出相似, 并且构造弦切角.两割出相似,并且构造圆周角.双垂出相似,并且构造直角.规则图形折叠出一对全等,一对相似.圆的外切四边形对边和相等. 若AD ∥BC都是切线,连结OA、OB可证∠AOB=180°,即A、O、B三点一线.等腰三角形底边上的的高必过内切圆的圆心和切点,并构造相似形.RtΔABC的内切圆半径:r=.补全半圆.AB=. AB=.PC过圆心,PA是切线,构造双垂、RtΔ.O是圆心,等弧出平行和相似. 作AN⊥BC,可证出:.。
九年级圆垂径定理知识点圆垂径定理是数学中的一个重要定理,它是研究圆的性质和应用的基础。
本文将详细介绍九年级圆垂径定理的相关知识点,帮助你更好地理解和应用这一定理。
一、圆垂径定理的概述圆垂径定理是指:在一个圆中,如果一条直径垂直于另一条弦,那么它一定是这条弦的垂直平分线。
二、圆垂径定理的证明为了证明圆垂径定理,我们可以采用几何证明和代数证明两种方法。
1. 几何证明假设圆的中心为O,半径为r,直径AB垂直于弦CD。
我们需要证明AO = BO。
首先,连接AC和BC,并设AC = x,BC = y。
根据圆的性质,我们知道AO = r,BO = r,AC = BC = r。
又因为AO垂直于CD,所以∠ACO = ∠BCO = 90°。
由三角形的性质可知,AO² = AC² - CO²,BO² = BC² - CO²。
代入已知条件,我们可以得到r² = x² - CO²,r² = y² - CO²。
通过这两个等式,我们可以得到x² - CO² = y² - CO²,即x² = y²。
进而,我们可以得知x = y,即AC = BC。
所以,根据直角三角形的特性,AO = BO,也就是说AO = BO = r。
因此,根据圆的定义,我们可以得出圆垂径定理的结论。
2. 代数证明我们也可以采用代数方法证明圆垂径定理。
设圆的方程为x² + y² = r²(其中,O为坐标原点)。
直径AB垂直于弦CD,且AB的斜率k存在。
根据直线的斜率公式,可以得到直线AB的方程为y = kx。
将直线AB的方程代入圆的方程中,我们可以得到x² + (kx)² =r²。
简化这个方程,可以得到x² + k²x² = r²。
人教版数学九年级上册24.1.2《垂径定理》教学设计2一. 教材分析《垂径定理》是人教版数学九年级上册第24章第1节的内容,本节课主要介绍圆中的垂径定理。
垂径定理是指:圆中,如果一条直线垂直于直径,那么这条直线平分这条直径,并且平分直径所对的圆周角。
教材通过生活中的实例引入垂径定理的概念,然后通过证明和应用来巩固这个定理。
二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念和性质,如圆的周长、直径、半径等。
同时,学生也掌握了平行线和相交线的性质。
但是,学生对于圆中的垂径定理可能比较难以理解和证明,因此需要通过生活中的实例和图形的直观展示,帮助学生理解和掌握这个定理。
三. 教学目标1.知识与技能:让学生理解和掌握圆中的垂径定理,能够运用垂径定理解决相关问题。
2.过程与方法:通过观察、操作、证明等过程,培养学生的几何思维和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.教学重点:理解和掌握垂径定理,能够运用垂径定理解决相关问题。
2.教学难点:垂径定理的证明和运用。
五. 教学方法1.情境教学法:通过生活中的实例引入垂径定理,激发学生的学习兴趣。
2.演示法:通过图形的直观展示,帮助学生理解和证明垂径定理。
3.问题驱动法:通过提出问题和解决问题,引导学生主动探索和学习。
4.小组合作学习:鼓励学生分组讨论和合作,培养学生的团队合作意识。
六. 教学准备1.教具准备:多媒体教学设备、圆规、直尺、黑板等。
2.教学素材:教材、课件、练习题等。
七. 教学过程1.导入(5分钟)通过展示生活中的实例,如自行车轮子、时钟等,引导学生观察和思考圆中的垂径定理。
让学生感受到数学与生活的紧密联系,激发学生的学习兴趣。
2.呈现(10分钟)展示垂径定理的定义和性质,通过图形的直观展示,让学生理解和掌握垂径定理。
同时,引导学生思考如何证明这个定理。
3.操练(10分钟)让学生分组讨论和合作,尝试证明垂径定理。
圆的认识及垂径定理【知识导图】知识梳理知识点一 圆的认识(弦,弧)1、什么叫弦?直径与弦的关系?弦:连接圆上任意两点的线段叫做弦,直径是过圆心的弦,但弦不一定是直径.2、什么叫弧?什么叫优弧?什么叫劣弧?什么是等弧?弧:圆上任意两点间的部分叫做圆弧,大于半圆的叫优弧,小于半圆的叫劣弧,能够完全重合的两条弧叫等弧.3、圆的对称性质?作为轴对称图形,其对称轴是?圆即是轴对称图形也是中心对称图形,经过圆心的每一条直线都是它的对称轴.知识点二 垂径定理1、垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.已知:直径CD 、弦AB 且CD ⊥AB 垂足为M求证:,⌒AC =⌒BC ,⌒AD =⌒BD.分析:要证,只要证AM 、BM 构成的两个三角形全等.因此,只要连结OA、BM AM=BM AM =OB 或AC 、BC 即可.证明:如图,连结OA 、OB ,则OA=OB在和中∴∴∴点A 和点B 关于CD 对称∵⊙O 关于直径CD 对称∴当圆沿着直线CD 对折时,点A 与点B 重合,⌒AC 与⌒BC 重合,⌒AD 与⌒BD 重合.∴⌒AC =⌒BC ,⌒AD =⌒BD进一步,我们还可以得到结论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.垂径定理推论:1、推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论扩展推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
2、垂径定理及其推论可概括为OAM Rt ∆OBM Rt ∆⎩⎨⎧==OM OM OB OA OBM Rt OAM Rt ∆≅∆BM AM=考点解析类型一圆的认识(弦、弧)【例题1】下列五个命题:(1)平分弦的直径必垂直于弦(2)圆是轴对称图形,对称轴是直径(3)圆中两点之间的部分叫做弧(4)长度相等的两条弧叫等弧(5)直径是过圆心的弦,但弦不一定是直径其中真命题有()A.1个B.2个C.3个D.4个【解析】(1)平分弦(不是直径)的直径必垂直于弦,故原命题是假命题,(2)圆的对称轴是直径所在的直线,故原命题是假命题,(3)圆上两点之间的部分叫做弧,故原命题是假命题,(4)能够完全重合的两条弧叫等弧,故原命题是假命题,(5)直径是过圆心的弦,但弦不一定是直径,原命题是真命题,其中真命题有1个.故选;A.【总结与反思】本题考查圆的相关概念及垂径定理,理解概念及定理即可解决,要求学生掌握圆的相关概念及垂径定理内容。
垂径定理垂径定理是数学几何(圆)中的一个定理,它的通俗的表达是:垂直于弦的直径平分弦且平分这条弦所对的两条弧。
数学表达为:如右图,直径DC 垂直于弦AB ,则AE=EB ,劣弧AD 等于劣弧BD ,等弧CAD= 优弧CBD。
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
一条直线,在下列5 条中只要具备其中任意两条作为条件,就可以推出其他三条结论。
称为知二推三1.平分弦所对的优弧2.平分弦所对的劣弧(前两条合起来就是:平分弦所对的两条弧)3.平分弦(不是直径)4.垂直于弦5.经过圆心数学证明编辑如图,在⊙ O 中,DC 为直径,AB 是弦,AB ⊥DC 于点E,AB、CD 交于E,求证:AE=BE ,弧AC= 弧BC ,弧AD= 弧BD证明图示连接 OA 、 OB 分别交⊙ O 于 点 A 、点 B∵OA 、OB 是⊙O 的半径∴ OA=OB∴△ OAB 是等腰三角形∵AB ⊥DC∴ AE=BE ,∠ AOE= ∠BOE (等腰三角形的三线合一 性 质)∴弧 AD=弧 BD ,∠AOC= ∠BOC ∴弧 AC= 弧 BC推导定理 编辑 推论一:平分弦(不是直径)的直径垂直于这条弦 , 并且平原本命题,其中 CD 垂直于直线 AB分这条弦所对的两段弧。
几何语言:因为 DC 是直径, AE=EB ,所以直径 DC 垂直于弦 AB ,劣弧 AD 等于劣弧 BD ,优弧 ACO= 优弧 BCO推论二:弦的 垂直平分线 经过圆心 ,并且平分这条弦所对的弧。
几何语言: 因为 DC 垂直 AB ,AE=EB ,所以 DC 是圆的直径, 劣弧 AD 等于劣弧BD ,优弧 ACO= 优弧 BCO推论三:平分弦所对的一条弧的直径垂直平分这条弦 弧。
推论四:在同圆或者 等圆 中 ,两条平行弦所夹的弧相等。
韦达定理韦达定理( Viete theorem )为 解析几何 中的一个定理,说明了一元 n 次方程中根和 系数 之 间的关系。
北师大版九年级数学下册:3.3《垂径定理》教学设计一. 教材分析《垂径定理》是北师大版九年级数学下册第3章第3节的内容。
本节主要介绍圆中的垂径定理及其应用。
垂径定理是圆的基本性质之一,对于解决与圆相关的问题具有重要意义。
通过学习垂径定理,学生能够更深入地理解圆的性质,提高解决实际问题的能力。
二. 学情分析九年级的学生已经掌握了圆的基本概念和性质,具备了一定的观察、分析和推理能力。
但在学习垂径定理时,学生可能对定理的理解和应用还存在一定的困难。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生逐步理解并掌握垂径定理。
三. 教学目标1.理解垂径定理的内容及证明过程。
2.能够运用垂径定理解决与圆相关的问题。
3.培养学生的观察能力、推理能力和解决问题的能力。
四. 教学重难点1.重点:垂径定理的理解和应用。
2.难点:垂径定理的证明过程。
五. 教学方法1.引导发现法:教师引导学生观察、分析、推理,发现垂径定理。
2.实例讲解法:教师通过具体例子,讲解垂径定理的应用。
3.合作交流法:学生分组讨论,分享学习心得和解决问题的方法。
六. 教学准备1.教学PPT:包含垂径定理的定义、证明和应用。
2.实例图片:用于讲解垂径定理的应用。
3.练习题:巩固所学内容。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾圆的基本性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师展示PPT,介绍垂径定理的定义、证明和应用。
引导学生观察、分析,理解垂径定理的意义。
3.操练(10分钟)教师提出几个与垂径定理相关的问题,让学生分组讨论,共同解决问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)学生独立完成几道练习题,巩固所学内容。
教师选取部分题目进行讲解,分析解题思路。
5.拓展(10分钟)教师提出一些拓展问题,引导学生运用垂径定理解决实际问题。
学生分组讨论,分享解题方法。
6.小结(5分钟)教师引导学生总结本节课所学内容,回顾学习过程,分享学习心得。
初三数学圆的性质定理1、圆的对称性:圆是轴对称图形,任一条直径所在的直线都是它的对称轴.2、垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.3、垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.4、垂径定理的应用:①用直尺和圆规平分一条弧.作法是过圆心作弧所对弦的垂线,理由是垂径定理;②在利用垂径定理计算或证明时,我们通常将其化为一个直角三角形的边和角,这个特殊直角三角形的三边分别是半径、弦的一半和圆心到弦的垂线段.例1、如图,已知以点O为公共圆心的两个同心圆,大圆的弦AD交小圆于B、C.(1)求证:AB=CD(2)如果AD=6cm,BC=4cm,求圆环的面积.1.圆周角定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角.2.圆周角定理:同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.推论:①同圆或等圆中,相等的圆周角所对的弧一定相等.②半圆(或直径)所对圆周角是直角,90°的圆周角所对的弦是直径.③如果三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.4.圆的内接四边形:①定义:如果一个多边形的所有顶点都在同一圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.②圆内接四边形的性质:圆内接四边形的对角互补.例2、如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交BC于D.若BC=8,ED=2,求⊙O的半径.1、如图,已知AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP∶PB=1∶5,那么⊙O的半径是()2、圆的半径为13cm,两弦AB∥CD,AB=24cm,CD=10cm,则两弦AB、CD的距离是()A.7cm B.17cm C.12cm D.7cm或17cm3、如下图所示,AB是⊙O的一条固定直径,它把⊙O分成上、下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A、B两点)移动时,点P()A.到CD的距离保持不变B.位置不变C.平分D.随点C的移动而移动4、如上中图,BD是⊙O的直径,弦AC、BD相交于点E,则下列结论不成立的是()A.∠ABD=∠ACD B.C.∠BAE=∠BDC D.∠ABD=∠BDC5、如上右图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A.80°B.50°C.40°D.20°6、如下图,A、B、C是⊙O上三点,∠ACB=40°,则∠ABO等于__________度.7、如上左二图,△ABC的顶点都在⊙O上,∠C=30°,AB=2cm,则⊙O的半径为__________cm.8、如上左三图,在平面直角坐标系中,P是经过O(0,0),A(0,2),B(2,0)的圆上的一个动点(P与O、A 、B不重合),则∠OAB=__________,∠OPB=__________.9、如右上图,△ABC内接于⊙O,∠B=∠OAC,OA=8cm,则AC=__________cm.10、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,则BC=__________.11、如图,⊙O中的弦AB、CD互相垂直于E,AE=5cm,BE=13cm,O到AB的距离为.求⊙O的半径及O到CD的距离.12、如图,某地有一座圆弧形的拱桥,桥下水面宽为7.2m,拱顶高出水面2.4m,现有一艘宽3m,船舱顶部为正方形并高出水面2m的货船要经过这里,此时货船能顺利通过这座拱桥吗?请说明理由.13、如图,AB为⊙O的直径,BD是⊙O的弦,延长到C,使BD=DC,连接AC交⊙O于点F,点F不与点A重合.(1)AB与AC的大小有什么关系?为什么?(2)按角的大小分类,请你判断△ABC属于哪一类三角形,并说明理由.一、确定圆的条件(1)因为作圆实质上是确定圆心和半径,要经过已知点A作圆,只要圆心确定下来,半径就随之确定了下来.所以以点A以外的任意一点为圆心,以这一点与点A所连的线段为半径就可以作一个圆.由于圆心是任意的.因此这样的圆有无数个.如图(1).(2)已知点A、B都在圆上,它们到圆心的距离都等于半径.因此圆心到A、B的距离相等.根据前面提到过的线段的垂直平分线的性质可知,线段的垂直平分线上的点到线段两端点的距离相等,则圆心应在线段AB的垂直平分线上.在AB的垂直平分线上任意取一点,都能满足到A、B两点的距离相等,所以在AB的垂直平分线上任取一点都可以作为圆心,这点到A的距离即为半径,圆就确定下来了.由于线段AB的垂直平分线上有无数点,因此有无数个圆心,作出的圆有无数个.如图(2).(3)要作一个圆经过A、B、C三点,就是要确定一个点作为圆心,使它到三点的距离相等.因为到A、B两点距离相等的点的集合是线段AB的垂直平分线,到B、C两点距离相等的点的集合是线段BC的垂直平分线,这两条垂直平分线的交点满足到A、B、C三点的距离相等,就是所作圆的圆心.因为两条直线的交点只有一个,所以只有一个圆心,即只能作出一个满足条件的圆.过不在同一条直线上的三点确定一个圆2、经过三角形三个顶点的圆,叫做三角形的外接圆,外接圆的圆心是三角形三边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形.因为画圆的关键是确定圆心和半径,所以作三角形的外接圆时,只要找三边垂直平分线的交点,这就是圆心,以这点到三角形任一顶点间的距离为半径就可作出三角形的外接圆.3、利用尺规过不在同一条直线上的三个点作圆的方法作法图示1.连结AB、BC2.分别作AB、BC的垂直平分线DE和FG,DE和FG相交于点O3.以O为圆心,OA为半径作圆⊙O就是所要求作的圆例1、已知锐角三角形、直角三角形、钝角三角形,分别作出它们的外接圆,它们外心的位置有怎样的特点?(1)(2)(3)例3、如图,点A、B、C表示三个村庄,现要建一座深水井泵站,向三个村庄分别送水,为使三条输水管线长度相同,水泵站应建在何处?请画出图,并说明理由.1、下列关于外心的说法正确的是()A.外心是三个角的平分线的交点 B.外心是三条高的交点C.外心是三条中线的交点 D.外心是三边的垂直平分线的交点2、下列条件中不能确定一个圆的是()A.圆心和半径B.直径 C.三角形的三个顶点D.平面上的三个已知点3、三角形的外心具有的性质是()A.到三边的距离相等B.到三个顶点的距离相等 C.外心在三角形外D.外心在三角形内4、等腰三角形底边上的中线所在的直线与一腰的垂直平分线的交点是()A.重心B.垂心 C.外心D.无法确定5、如图所示,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是()A.点P B.点Q C.点R D.点M6、如图,是△ABC的外接圆,∠BAC=30°,BC=2 cm ,则△OBC的面积是_______.7、直角三角形的两边长分别为16和12,则此三角形的外接圆半径是_______.8、如图,有一个圆形的盖水桶的铁片,部分边沿由于水生锈残缺了一些,很不美观,为了废物利用,将铁片剪去一些使其成为圆形的,应找到圆心,并找到合理的半径,在铁片上画出圆,沿圆剪下即可,问应怎么样找到圆心和半径?。
九年级数学圆的垂径定理1. 引言:圆的魅力大家好,今天我们来聊聊一个跟圆有关的有趣话题——圆的垂径定理。
听起来高深莫测,但别担心,咱们就像聊家常一样,轻松愉快。
说到圆,大家可能会想到乒乓球、披萨,或者是我们小学时玩的那个“圈圈”游戏。
圆,无处不在,它的形状简直是自然界的宠儿。
不信你看看,太阳是圆的,月亮也是圆的,连咱们的脸蛋都有点圆润呢!那么,今天我们就来看看这个有趣的定理到底是什么。
2. 圆的基本知识2.1 圆的构成首先,咱们得了解一下圆的基本构成。
圆的中心、半径、直径……这几个词可是圆圈里的“明星”。
圆心就是那个让你一眼就能找到的“导航点”,半径是圆心到圆周的距离,直径嘛,顾名思义,就是穿过圆心,连接圆周两点的线段。
简单吧?就像你在画圆时,用铅笔和绳子,绳子的长度就是半径,而直径就是绳子拉满时的长度。
2.2 垂径的意义现在说到垂径,这个词听起来有点酷,但其实不复杂。
垂径就是从圆周上某一点引出一条垂直于直径的线段,直径把圆分成了两个相等的部分,而这个垂直的线段,就像一把直尺,把圆切得整整齐齐。
你能想象吗?这个垂径就像个守卫,确保直径两边的“秩序井然”。
3. 圆的垂径定理3.1 定理的内容好啦,接下来我们进入正题,圆的垂径定理。
简单来说,这个定理告诉我们:如果一条线段是圆的直径,那么它所对应的垂径就一定是直角。
听起来是不是有点复杂?别着急,咱们用个例子来说明。
想象一下,你的朋友在画圆,他的铅笔不小心滑了一下,画了一条直径。
然后他在圆周上找了一个点,画了一条垂直于这条直径的线段。
这时候,没错,这条线段和直径之间的夹角就一定是90度,绝对不含糊。
这就像一位严师,不允许任何不规范的行为!3.2 定理的应用那么,这个定理有什么用呢?比如说在设计建筑、桥梁,甚至是做一些机械部件的时候,我们都需要用到这个定理。
因为一旦设计的结构不够稳定,那可就像一棵没有根的树,随时都有倒下的风险。
更妙的是,这个定理让我们在计算的时候变得更加方便,有了它,我们可以更快地找到需要的角度和位置,不用再费心思去测量。
圆的垂径定理1、(2013年潍坊市)如图,⊙O 的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP :AP=1:5,则CD 的长为( ).A.24B.28C.52D.54答案:D .考点:垂径定理与勾股定理.点评:连接圆的半径,构造直角三角形,再利用勾股定理与垂径定理解决.2、(2013年黄石)如右图,在Rt ABC 中,90ACB ∠= ,3AC =,4BC =,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为A. 95B. 245C. 185D. 52答案:C解析:由勾股定理得AB =5,则sinA =45,作CE ⊥AD 于E ,则AE =DE ,在Rt △AEC 中,sinA =CE AC ,即453CE =,所以,CE =125,AE =95,所以,AD =185 3、(2013河南省)如图,CD 是O 的直径,弦AB CD ⊥于点G ,直线EF 与O 相切与点D ,则下列结论中不一定正确的是【】(A )AG BG = (B )AB ∥EF(C )AD ∥BC (D )ABC ADC ∠=∠【解析】由垂径定理可知:(A )一定正确。
由题可知:EF CD ⊥,又因为AB CD ⊥,所以AB ∥EF ,即(B )一定正确。
因为ABC ADC ∠∠和所对的弧是劣弧 AC ,根据同弧所对的圆周角相等可知(D )一定正确。
【答案】C4、(2013•泸州)已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB=8cm ,cm B cmcm 或cm D cm 或cm B==3cm==4==25、(2013•广安)如图,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8cm,CD=3cm,则圆O的半径为()cm BcmAB=4cmAB=4cmx=故半径为6、(2013•绍兴)绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()求出==4m7、(2013•温州)如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()BABABOB==8、(2013•嘉兴)如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为()2BE==6CE==29、(2013•莱芜)将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为()B的长为=2=210、(2013•徐州)如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=8,OP=3,则⊙O 的半径为()==511、(2013浙江丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5C. 6D. 812、(2013•宜昌)如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()B、,正确,故本选项错误;13、(2013•毕节地区)如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径()OB===14、(2013•南宁)如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=∠BOD,则⊙O的半径为()4BAC=∠可得出=,BAC=∴,DE=15、(2013年佛山)半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A.3B.4C.5D.7分析:过点O作OD⊥AB于点D,由垂径定理可求出BD的长,在Rt△BOD中,利用勾股定理即可得出OD的长.解:如图所示:过点O作OD⊥AB于点D,∵OB=3,AB=3,OD⊥AB,∴BD=AB=×4=2,在Rt△BOD中,OD===.故选C.点评:本题考查的是垂径定理,根据题意画出图形,利用勾股定理求出OD的长是解答此题的关键16、(2013甘肃兰州4分、12)如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm考点:垂径定理的应用;勾股定理.分析:过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD=AB,设OA=r,则OD=r﹣2,在Rt△AOD中,利用勾股定理即可求r的值.解答:解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=AB=×8=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.故选C.点评:本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17、(2013•内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为24.18、(13年安徽省4分、10)如图,点P是等边三角形ABC外接圆⊙O上的点,在以下判断中,不正确...的是()A、当弦PB最长时,ΔAPC是等腰三角形。
B、当ΔAPC是等腰三角形时,PO⊥AC。
C、当PO⊥AC时,∠ACP=300.D、当∠ACP=300,ΔPBC是直角三角形。
19、(2013•宁波)如图,AE是半圆O的直径,弦AB=BC=4,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为10π.MN=FC=2MN=4==2,,=1020、(2013•宁夏)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为2cm.==cmcm21、(2013•包头)如图,点A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,则∠ADB=28度.是ADB=∠∴=ADB=22、(2013•株洲)如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是48度.23、(2013•黄冈)如图,M是CD的中点,EM⊥CD,若CD=4,EM=8,则所在圆的半径为.新课标第一网CD=2x=∴所在圆的半径为:故答案为:.24、(2013•绥化)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为2.OC=1AB=2AD=2=2=2.25、(2013哈尔滨)如图,直线AB与⊙O相切于点A,AC、CD是⊙O的两条弦,且CD∥AB,若⊙O 的半径为52,CD=4,则弦AC的长为.考点:垂径定理;勾股定理。
切线的性质。
分析::本题考查的是垂径定理的应用切线的性质及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键。
解答:连接OA,作OE⊥CD于E,易得OA⊥AB,CE=DE=2,由于CD∥AB得EOA三点共线,连OC,在直角三角形OEC中,由勾股定理得OE=32,从而AE=4,再直角三角形AEC中由勾股定理得AC=26、(2013•张家界)如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=80°.是∴=27、(2013•遵义)如图,OC是⊙O的半径,AB是弦,且OC⊥AB,点P在⊙O上,∠APC=26°,则∠BOC=52°度.=∴=28、(2013陕西)如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径为7,则GE+FH的最大值为.角的关系,及扇形的面积及弧长的计算公式等知识点。
解析:本题考查圆心角与圆周角的关系应用,中位线及最值问题。
连接OA,OB,因为∠ACB=30°,所以∠AOB=60°,所以OA=OB=AB=7,因为E、F中AC、BC的中点,所以EF=AB21=3.5,因为GE+FH=GH-EF,要使GE+FH最大,而EF为定值,所以GH取最大值时GE+FH有最大值,所以当GH为直径时,GE+FH的最大值为14-3.5=10.529、(2013年广州市)如图7,在平面直角坐标系中,点O为坐标原点,点P在第一象限,PΘ与x轴交于O,A两点,点A的坐标为(6,0),PΘ的半径为13,则点P的坐标为____________.分析:过点P作PD⊥x轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案.解:过点P作PD⊥x轴于点D,连接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中,∵OP=,OD=3,第16题图∴PD===2,∴P(3,2).故答案为:(3,2).点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键30、(2013年深圳市)如图5所示,该小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在图的半径的活动。
小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,求小桥所在圆的半径。
解析:(2013•白银)如图,在⊙O中,半径OC垂直于弦AB,垂足为点E.(1)若OC=5,AB=8,求tan∠BAC;(2)若∠DAC=∠BAC,且点D在⊙O的外部,判断直线AD与⊙O的位置关系,并加以证明.BAC===31、(2013•黔西南州)如图,AB是⊙O的直径,弦CD⊥AB与点E,点P在⊙O上,∠1=∠C,(1)求证:CB∥PD;(2)若BC=3,sin∠P=35,求⊙O的直径.,根据可以确定∠=∴==32、(2013•恩施州)如图所示,AB是⊙O的直径,AE是弦,C是劣弧AE的中点,过C作CD⊥AB于点D,CD交AE于点F,过C作CG∥AE交BA的延长线于点G.(1)求证:CG是⊙O的切线.(2)求证:AF=CF.(3)若∠EAB=30°,CF=2,求GA的长.,DF=.33、(2013•资阳)在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;(2)如图2,若点D与圆心O不重合,∠BAC=25°,请直接写出∠DCA的度数.ACr,再根据翻折的性质得到所对所对的圆周角,计算即可得解.AC=×rr根据翻折的性质,所对的圆周角等于所对的圆周角,新课标第一网系列资料。