燃烧和爆炸
- 格式:docx
- 大小:12.31 KB
- 文档页数:9
1、可燃固体阴燃转变为明火燃烧需要的条件?有利于阴燃的上述因素也都有利于阴燃向有焰燃烧的转变,如外加空气流有利于这种转变;向上传播的阴燃比向下传播的阴燃更容易向有焰燃烧转变;棉花等松软、细微的阴燃很容易转变为有焰燃烧等。
从总体上讲,当炭化区的温度增加时,由于热传导使得热解区温度上升,热解速率加快,挥发分增多,这时热解区附近空间的可燃气体浓度加大。
当温度继续升高时,也可自燃着火。
这就完成了阴燃向有焰燃烧的转变。
由于这一转变过程是个非稳态过程,要准确确定转变温度是很难的。
概括地讲,阴燃向有焰燃烧的转变主要有以下几种情形:(1)阴燃从材料堆垛内部传播到外部时转变为有焰燃烧。
在材料堆垛内部,由于缺氧,只能发生阴燃。
但只要阴燃不中断传播,它终将发展到堆垛外部,由于不再缺氧,就很可能转变为有焰燃烧。
(2)加热温度提高,阴燃转变为有焰燃烧。
阴燃着的固体材料受到外界热量的作用时,随着加热温度的提高,热解区内挥发分的释放速率加快。
当这一速率超过某个临界值后,阴燃就会发展为有焰燃烧。
这种转变也能在材料堆垛内部发生。
(3)密闭空间内材料的阴燃转变为有焰燃烧(甚至轰燃)。
在密闭空间内,因供氧不足,其中的固体材料发生着阴燃,生成大量的不完全燃烧产物充满整个空间,这时,如果突然打开空间的某些部位,因新鲜空气进入,在空间内形成可燃性混合气体,进而发生有焰燃烧,也有可能导致轰燃。
这种阴燃向轰燃的突发性转变是非常危险的。
2、简述谢苗诺夫自燃理论与弗兰克-卡门涅茨基自燃理论。
(1)谢苗诺夫自燃理论任何反应体系中的可燃混合气,一方面它会进行缓慢氧化而放出热量,使体系温度升高,另一方面体系又会通过器壁向外散热,使体系温度下降。
热自燃理论认为,着火是反应放热因素与散热因素相互作用的结果。
如果反应放热占优势,体系就会出现热量积聚,温度升高,反应加速,发生自燃;相反,如果散热因素占优势,体系温度下降,就不能自燃。
在谢苗诺夫热自燃理论中,假定体系内部各点温度相等。
1.燃烧:可燃物与氧化剂发生的放热反应,通常伴有火焰、发光和发烟的现象。
火灾:在时间或空间上失去控制的燃烧所造成的灾害。
爆炸:物质由一种状态迅速地转变为另一种状态,并瞬间以机械功的形式放出大量气体和能量的现象。
2.火灾和爆炸事故的特点:严重性、复杂性、突发性3燃烧的必要条件:可燃物、氧化剂、点火源燃烧的充分条件:一定浓度的可燃物;一定的着火能量;一定的含氧量;相互作用燃烧的持续条件:反应释放足够能量维持燃烧燃烧形成要素:可燃物、氧化剂、着火源→外加热、合理配比、混合作用4.燃烧本质是一种特殊的氧化还原反应。
特征:放热、火焰、发光、发烟5.点火源种类:化学能;电能;机械能;光能;核能;高温表面;地热、火山爆发6.燃烧爆炸的形式:①按照燃烧反应进行程度:完全燃烧、不完全燃烧②按照产生燃烧反应相:均相燃烧、非均相燃烧③按照可燃性气体的燃烧过程:预混燃烧(层流预混燃烧、湍流预混燃烧)、扩散燃烧④蒸发燃烧⑤、分解燃烧⑥、表面燃烧⑦、延迟燃烧⑧、阴燃⑨、粉尘爆炸⑩、单纯物质的分解爆炸○11炸药燃烧○12气体泄漏燃烧○13绝热燃烧○14喷雾燃烧7.燃烧类型:闪燃、点燃、自燃8.闪燃:可燃液体挥发的蒸汽与空气混合达到一定浓度,或可燃固体受热到一定温度后,遇明火发生的一闪即灭的燃烧现象。
闪点:液体在空气中或在液面附近产生蒸气,其浓度足够被点燃时的最低温度。
9.闪燃与闪点的重要性:闪燃是可燃液体着火的前奏,是危险的警告;闪点是衡量可燃液体火灾危险性的重要依据。
10.点燃:也叫强制着火,引燃。
是指可燃物的局部在点火源的作用下起火,移去火源后仍能保持继续燃烧的现象。
燃点:又叫着火点。
可燃物在空气充足条件下,达到某一温度时与火源接触即行着火(出现火焰或灼热发光),并在火源移去后仍能继续燃烧的最低温度。
11. 重要性:燃点对评价可燃固体和闪点较高的可燃液体的火灾危险性具有实际意义,燃点越低,越易着火,火灾危险性越大;控制这类可燃物的温度在燃点以下是预防火灾发生的有效措施之一。
燃烧与爆炸的基础知识一、燃烧的基础知识1、什么是燃烧?燃烧是一种复杂的物理化学过程。
同时伴有发光、发热激烈的氧化反应。
其特征是发光、发热、生成新物质。
铜与稀硝酸反应,虽然属于氧化反应.有新物质生成,但没有产生光和热,不能称它为燃烧;灯泡中灯丝通电后虽发光、发热,但不是氧化反应,也不能称它为燃烧。
如金属钠、赤热的铁在氯气中反应等,才能称为燃烧。
2、燃烧的条件燃烧必须具备以下三个条件:(1)可燃物质什么叫可燃物质?所有物质分为可燃物质、难燃物质和不可燃物质二类。
可燃物质是指在火源作用下能被点燃,并且当点火源移开后能继续燃烧直至燃尽的物质;难燃物质为在火源作用下能被点燃,当点火源移开后不能维持继续燃烧的物质;不可燃物质是指在正常情况下不能被点燃的物质。
可燃物质是防火防爆的主要研究对象。
凡能与空气、氧气或其他氧化剂发生剧烈氧化反应的物质,都可称为可燃物质。
可燃物质种类繁多,按物理状态可分为气态、液态和固态三类。
化工生产中使用的原料、生产中的中间体和产品很多都是可燃物质。
处于蒸气或其他微小分散状态的可燃物质和氧之间极易引发燃烧。
多数固体研磨成粉状或加热蒸发极易起火。
液体则显现出很大的不同。
有些液体在远低于室温时就有较高的蒸气压,就能释放出危险量的易燃蒸气。
另外一些液体在略高于室温时才有较高的蒸气压,还有一些液体在相当高的温度才有较高的蒸气压。
很显然,液体释放出蒸气与空气形成易燃混合物的温度是其潜在危险的量度,这可以用闪点来表示,闪点愈低,愈危险。
排除潜在火险对于防火安全是重要的。
为此必须用密封的有排气管的罐盛装易燃液体,把易燃物料置于耐火建筑中。
应用或贮存中度或高度易燃液体时进行通风。
用爆炸或易燃蒸气指示器连续检测蒸气浓度。
(2)助燃物质什么叫助燃物质?凡是具有较强的氧化能力,能与可燃物质发生化学反应并引起燃烧的物质均称为助燃物。
化学危险物品分类中的氧化剂类物质均为助燃物。
除此之外,助燃物还包括一些未列入化学危险物品的氧化剂如正常状态下的空气等,为了明确助燃物的种类,应首先了解列入危险物品的氧化剂的种类,在此基础上,再了解未列入危险物品氧化剂类的助燃物有哪些种类。
爆炸和燃烧的区别和联系爆炸和燃烧是我们生活中常见的现象。
许多人往往把爆炸和燃烧看作是同一种现象,但实际上两者是有本质区别的。
爆炸是指物质在短时间内迅速放出大量的能量并产生强烈的冲击波和压力波,而燃烧是指物质与氧气反应放出热能并产生光和烟。
本文将分析爆炸和燃烧的区别和联系。
首先让我们来看看爆炸的特征。
爆炸产生的能量很大,并且能在短时间内迅速放出。
这些能量往往来自于物质内部的化学能、核能或机械能等。
爆炸瞬间产生的高温高压燃烧物质,使其发生体积迅速膨胀,大量的气体和热能释放,形成强烈的冲击波和压力波。
爆炸所产生的冲击波和压力波有很强的杀伤力,可以摧毁物体,造成重大损失。
如炸药在爆炸时,释放出巨大的热和压力,瞬间将周围的物体炸成碎片。
与之相对应的是燃烧的特征。
燃烧是指物质与氧气反应释放出热能的一种过程。
燃烧需要热源来激发反应,但反应一旦开始,会自我维持并释放出大量热能,从而促使更多的反应发生。
燃烧的反应产生的热能大多数以光和烟的形式释放出来。
燃烧会产生一定量的废气,但压力和温度并不会像爆炸那样迅速升高。
例如,木材燃烧时,会发出明亮的火光和黑烟。
虽然燃烧也可以造成一定程度的破坏,但燃烧的杀伤力远远不及爆炸。
尽管爆炸和燃烧有着本质区别,但两者也有一定的联系。
事实上,爆炸通常是一种非常强烈的燃烧过程。
当可燃物质与氧气充分接触并点燃时,燃烧会释放出大量的热能。
如果这些能量无法及时释放,可能会导致可燃物质瞬间迅速膨胀、燃烧区域内的温度和压力急剧升高形成爆炸。
理解爆炸和燃烧的区别和联系对我们生活中的许多情况都有很大的帮助。
比如,在正确地处理易燃易爆物品时,需要知道两者的区别,在进行燃烧处理时,应该采取安全防护措施,避免意外的爆炸发生。
总的来说,爆炸是指在短时间内迅速放出大量的能量并产生强烈的冲击波和压力波,而燃烧是指物质与氧气反应放出热能并产生光和烟。
虽然两种现象有着本质区别,但在某些情况下,爆炸是由剧烈的燃烧过程引起的。
燃烧和爆炸的基本原理要炸弹有效防止火灾和爆炸的发生,正确掌握防雷防爆技术,需要了解形成燃烧和爆炸的基本原理。
(一)燃烧。
燃烧是可燃物质与空气或氧化剂发生化学反应而产生放热、发光的现象。
在生产和生活中,凡是产生超出有效范围的违背人们的燃烧,即为火灾。
燃烧必须同时具备以下三个基本条件。
1.凡是与空气中氧或其他氧化剂发生剧烈反应的物质,都称为可燃物。
如木材、纸张、金属镁、金属钠、汽油、酒精、氢气、乙炔和液化原油等。
2.助燃物。
凡是能暗中帮助和支持燃烧的物质,都称为助燃物。
如氧化氯酸钾、高锰酸钾、过氧化钠等氧化剂。
由于空气中含有21%左右的氧,所以可燃物质燃烧能够在空气中气体持续进行。
3.火源。
凡能引起可燃物质燃烧的热能源,都称为火源。
如明火、电火花、聚焦的日光、高温灼热体,以及化学能和机械光能冲击能等。
防止以上三个以下条件同时存在,避免其相互作用,是防火技术的大体上要求。
(二)爆炸。
物质由状态迅速转变成为另一种状态,并在极短的时间内以机械功的形式放出巨大的两秒能量,再次出现或者是气体在极短的时间内发生剧烈膨胀,压力迅速下降到常温的现象,都称为爆炸。
爆炸可分为爆炸和物理性爆炸两种。
1.化学性爆炸。
物质由于发生化学反应,产生出大量气体和热量而形成出来的爆炸。
这种爆炸能够直接造成火灾。
所列根据其化学反应又可以分为以下三种类型:(1)简单爆炸。
例如爆炸物乙炔铜和乙炔银等受到轻微振动发生炸药的发生爆炸。
(2)复杂分解爆炸。
属于这类爆炸物有炸药、苦味酸、硝化棉和硝化甘油等。
(3)爆炸性混合性爆炸。
这里指可燃气体、蒸气或渗漏与空气(或氧气)按一定比例均匀混合,达到一定的浓度,遇到形成爆炸性乙炔时遇到火源而发生的爆炸。
2.物理性爆炸。
通常指锅炉、受热压力容器或气瓶内的化学物质由于受热、碰撞等因素,使气体膨胀,压力急剧升高,了设备所能承受的机械强度而发生的爆炸。
(三)爆炸极限。
可燃气体、水蒸汽和粉尘与空气(或氧气)的混合物,在一定的浓度范围内能发生爆炸。
燃烧和爆炸的基本原理首先,燃烧和爆炸都涉及化学反应。
在燃烧和爆炸中,燃料与氧气发生氧化反应。
燃烧通常是缓慢、可控的氧化反应,而爆炸则是快速、非常强烈的氧化反应。
在氧气参与下,燃料物质的原子或分子与氧气结合形成氧化产物,释放能量。
燃料在燃烧和爆炸过程中的能量释放与其化学键的断裂和形成有关。
燃料分子中的化学键在与氧气反应时被断裂,形成更稳定的氧化产物分子。
这个过程涉及到能量的释放,其中一部分被用于产生热量和光线,另一部分被储存于氧化产物中的化学键中。
燃烧和爆炸需要一定的燃烧条件。
首先,它们需要有足够的燃料和氧气供应。
当燃料和氧气的比例接近最佳比例时,燃料的完全燃烧效果最好。
如果燃料过多,氧气可能不足以与所有燃料分子反应,产生不完全燃烧的产物,导致燃烧不完全。
其次,燃烧和爆炸需要适当的温度。
燃料需要达到其点火温度才能开始燃烧。
点火温度是指燃料在与氧气接触时产生足够的热量以维持自身燃烧的最低温度。
当燃料达到点火温度时,它会产生可燃气体,这是一个自持续反应过程,即即使外部加热源被移除,燃料仍然可以自行维持燃烧。
最后,燃烧和爆炸需要有效的反应速率。
在燃烧和爆炸中,燃料和氧气之间的反应速率应足够高以维持能量的释放。
这需要一定的能量起点,即激活能。
在燃料达到点火温度并产生可燃气体后,激活能使得反应速率迅速增加,从而形成火焰或爆炸。
在爆炸中,燃料和氧气之间的反应速率非常高,产生了剧烈的热能和气体的释放。
这些气体的体积迅速膨胀,产生巨大的压力波,形成爆炸冲击波。
爆炸波的速度通常很快,可以迅速在周围区域传播,造成巨大的破坏。
总结起来,燃烧和爆炸是物质在氧气参与下发生的氧化反应,释放出大量的能量。
燃烧是缓慢、可控的氧化过程,而爆炸是快速、强烈的氧化过程。
这些过程需要适当的燃烧条件,包括适量的燃料和氧气、合适的温度和足够的反应速率。
燃烧和爆炸产生的能量释放对我们日常生活具有重要意义,但也需要谨慎使用,以防止意外事故的发生。
燃烧和爆炸一、燃烧与火灾
燃烧是可燃物质在点火能量的作用下发生的一种放热发光的氧
化-还原反应。
在生产与生活过程中,凡是超出有效范围并造成破坏的燃烧统称为火灾。
按可燃物类别,火灾可分为气体火灾、液体火灾、(固体)可燃物火灾、电气火灾及金属火灾等五类。
二、燃烧的条件
1* 燃烧的必要条件
可燃物、助燃物和点火能源是燃烧得以发生的三个必要条件,亦即通常所说的燃烧三要素。
(1)可燃物
是指在点火能源作用下被点燃,且当火源移去后仍可继续维持燃烧,直到燃烬的物质。
(2)助燃物
也称氧化剂,是指具有较强的氧化性能,能与可燃物质发生氧化反应并引起燃烧的物质。
(3)点火能源
是指具有一定温度和热量能引起可燃物质着火的能源。
常见的点火能源有火焰、电火花、电弧和炽热物体等。
2·引起燃烧的能量
有时即使上述三个要素都具备,燃烧也并不一定发生,这是因为燃烧对可燃物和助燃物有一定的浓度和数量要求,对点火能源有一定的强度和能量要求。
例如甲烷的浓度小于5%或空气中氧气含量小于12%时不能燃烧。
当空气中氧气含量小于14%时,木材也不会燃烧。
若用热能引燃甲烷/空气混合气体,当温度低于甲烷的自燃点时,燃烧不会发生。
电焊火星的温度高达1200℃,可以点燃爆炸性混合气体。
但如果落在木块上,通常不会引起燃烧。
因为木块所需的点火能量远大于爆炸性混合气体,火星的温度虽高,但热量不足,故不能引燃木材。
由此可见,具备一定数量和浓度的可燃物和助燃物以及具备一定强度和能量的点火能源同时存在,并且发生相互作用,才是引起燃烧的根本原因。
三、燃烧的分类
燃烧按物质形态的不同分为气体燃烧、液体燃烧和固体燃烧。
按其燃烧形式可分为自燃、内燃和着火等类型。
1·自燃
可燃物质受热升温而不需明火作用就能自行着火的现象称为自燃。
引起自燃的最低温度称为自燃点。
自燃点越低,危险性越大;
2·闪燃与闪点
可燃液体的温度不高时,液面上少量的可燃蒸气与空气混合后,遇着火源而发生一闪即灭(延续时间小于5秒)的燃烧现象,称为闪燃。
可燃液体发生闪燃的最低温度称为该可燃液体的闪点。
闪点越低,火灾危险性越大;
3·着火与燃点
着火就是可燃物质与火源接触后发生燃烧,并在火源移去后仍继续保持燃烧的现象。
可燃物质发生着火的最低温度称为着火点或燃点。
两种燃点不同的物质处在相同条件下,当受到火源作用时,燃点低的物质首先着火。
四、爆炸
1.爆炸及其分类
爆炸是一种极为迅速的能量释放过程。
在此过程中,物质以极快的速度把其内部所含有的能量释放出来,转变成巨大的压力和光及热等能量形态。
所以一旦发生爆炸,就可能会产生巨大的破坏作用。
按物质发生爆炸的原因和性质,爆炸可分为物理爆炸、化学爆化和核爆炸三类。
(1)物理爆炸。
指由物理变化(温度、体积、压力等因素)引起的爆炸。
最常见者如蒸气锅炉和高压气瓶的爆炸等。
其特点在于爆炸前后,爆炸物质的性质及化学成分均不变。
物理爆炸的破坏程度取决于蒸气或气体的压力;
(2)化学性爆炸。
是物质在短时间内完成化学变化,形成其他物质,同时产生大量气体并释放能量的现象。
化学性爆炸根据瞬时燃烧速度的不同分为:轻爆、爆炸和爆轰;
(3)核爆炸。
系物质的原子核发生裂变(如U235的裂变)或聚变(如氘、氚的聚变)反应,瞬间释放出巨大能量而形成的爆炸现象。
此外,爆炸还可以按爆炸反应的相分为气相爆炸、液相爆炸和固相爆炸3种。
2·爆炸性物质的分类
(1)《中华人民共和国爆炸危险场所电气安全规程(试行)》(劳人护[1987]36号)(1987年12月原劳动人事部与公安部等8个部委联合颁布)将爆炸性物质分为三类。
a·I级矿井甲烷;
b·II级爆炸性气体、蒸气;
c·III级爆炸性粉尘、纤维。
(2)最大试验安全间隔、最小点燃电流、引燃温度
a·最大试验安全间隔(MESG单位是毫米) 在标准实验条件下,壳内所有浓度的被试验气体或蒸气与空气的混合物点燃后,通过25mm 长的接合面均不能点燃壳外爆炸性气体混合物的外壳空腔两部分之间的最大距离。
b·最小点燃电流指在规定条件下,能点燃最易点燃混合物的最小电流。
c·引燃温度指按标准试验方法试验时,引燃爆炸性混合物的最低温度。
(3)爆炸性气体和爆炸性粉尘的分级和分组
a·爆炸性气体按其最大实验间隔和最小点燃电流比分级,按其引燃温度分组,共分:
I;IIA、IIB、IIC等四级和T1、T2、T3、T4、T5、T6等六组。
b·爆炸性粉尘按其物理性质分级,按其引燃温度分组,共分:
IIIA、IIIB两级和T1—1、T1 —2、T1—3等三组。
3.可燃物质发生化学性爆炸的条件
可燃物质化学性爆炸,是一种速度极快的燃烧现象,必须同时具备燃烧的三个条件:
(1)存在可燃物质,包括可燃气体、蒸气或粉尘;
(2)存在氧化剂且与可燃物质形成爆炸性混合物;
(3)存在温度和能量达到燃点的引火源。
引起爆炸性混合物发生爆炸的最小火花所具有的能量称为最小
引燃能量。
对于任何一种可燃爆炸性混合物,都有一个最小引燃量,低于这个能量,混合物就不会发生爆炸。