燃烧与爆炸
- 格式:docx
- 大小:16.09 KB
- 文档页数:14
1、可燃固体阴燃转变为明火燃烧需要的条件?有利于阴燃的上述因素也都有利于阴燃向有焰燃烧的转变,如外加空气流有利于这种转变;向上传播的阴燃比向下传播的阴燃更容易向有焰燃烧转变;棉花等松软、细微的阴燃很容易转变为有焰燃烧等。
从总体上讲,当炭化区的温度增加时,由于热传导使得热解区温度上升,热解速率加快,挥发分增多,这时热解区附近空间的可燃气体浓度加大。
当温度继续升高时,也可自燃着火。
这就完成了阴燃向有焰燃烧的转变。
由于这一转变过程是个非稳态过程,要准确确定转变温度是很难的。
概括地讲,阴燃向有焰燃烧的转变主要有以下几种情形:(1)阴燃从材料堆垛内部传播到外部时转变为有焰燃烧。
在材料堆垛内部,由于缺氧,只能发生阴燃。
但只要阴燃不中断传播,它终将发展到堆垛外部,由于不再缺氧,就很可能转变为有焰燃烧。
(2)加热温度提高,阴燃转变为有焰燃烧。
阴燃着的固体材料受到外界热量的作用时,随着加热温度的提高,热解区内挥发分的释放速率加快。
当这一速率超过某个临界值后,阴燃就会发展为有焰燃烧。
这种转变也能在材料堆垛内部发生。
(3)密闭空间内材料的阴燃转变为有焰燃烧(甚至轰燃)。
在密闭空间内,因供氧不足,其中的固体材料发生着阴燃,生成大量的不完全燃烧产物充满整个空间,这时,如果突然打开空间的某些部位,因新鲜空气进入,在空间内形成可燃性混合气体,进而发生有焰燃烧,也有可能导致轰燃。
这种阴燃向轰燃的突发性转变是非常危险的。
2、简述谢苗诺夫自燃理论与弗兰克-卡门涅茨基自燃理论。
(1)谢苗诺夫自燃理论任何反应体系中的可燃混合气,一方面它会进行缓慢氧化而放出热量,使体系温度升高,另一方面体系又会通过器壁向外散热,使体系温度下降。
热自燃理论认为,着火是反应放热因素与散热因素相互作用的结果。
如果反应放热占优势,体系就会出现热量积聚,温度升高,反应加速,发生自燃;相反,如果散热因素占优势,体系温度下降,就不能自燃。
在谢苗诺夫热自燃理论中,假定体系内部各点温度相等。
1.燃烧:可燃物与氧化剂发生的放热反应,通常伴有火焰、发光和发烟的现象。
火灾:在时间或空间上失去控制的燃烧所造成的灾害。
爆炸:物质由一种状态迅速地转变为另一种状态,并瞬间以机械功的形式放出大量气体和能量的现象。
2.火灾和爆炸事故的特点:严重性、复杂性、突发性3燃烧的必要条件:可燃物、氧化剂、点火源燃烧的充分条件:一定浓度的可燃物;一定的着火能量;一定的含氧量;相互作用燃烧的持续条件:反应释放足够能量维持燃烧燃烧形成要素:可燃物、氧化剂、着火源→外加热、合理配比、混合作用4.燃烧本质是一种特殊的氧化还原反应。
特征:放热、火焰、发光、发烟5.点火源种类:化学能;电能;机械能;光能;核能;高温表面;地热、火山爆发6.燃烧爆炸的形式:①按照燃烧反应进行程度:完全燃烧、不完全燃烧②按照产生燃烧反应相:均相燃烧、非均相燃烧③按照可燃性气体的燃烧过程:预混燃烧(层流预混燃烧、湍流预混燃烧)、扩散燃烧④蒸发燃烧⑤、分解燃烧⑥、表面燃烧⑦、延迟燃烧⑧、阴燃⑨、粉尘爆炸⑩、单纯物质的分解爆炸○11炸药燃烧○12气体泄漏燃烧○13绝热燃烧○14喷雾燃烧7.燃烧类型:闪燃、点燃、自燃8.闪燃:可燃液体挥发的蒸汽与空气混合达到一定浓度,或可燃固体受热到一定温度后,遇明火发生的一闪即灭的燃烧现象。
闪点:液体在空气中或在液面附近产生蒸气,其浓度足够被点燃时的最低温度。
9.闪燃与闪点的重要性:闪燃是可燃液体着火的前奏,是危险的警告;闪点是衡量可燃液体火灾危险性的重要依据。
10.点燃:也叫强制着火,引燃。
是指可燃物的局部在点火源的作用下起火,移去火源后仍能保持继续燃烧的现象。
燃点:又叫着火点。
可燃物在空气充足条件下,达到某一温度时与火源接触即行着火(出现火焰或灼热发光),并在火源移去后仍能继续燃烧的最低温度。
11. 重要性:燃点对评价可燃固体和闪点较高的可燃液体的火灾危险性具有实际意义,燃点越低,越易着火,火灾危险性越大;控制这类可燃物的温度在燃点以下是预防火灾发生的有效措施之一。
燃烧和爆炸的基本原理要有效防止火灾和爆炸的发生,正确掌握防火防爆技术,必须要了解形成燃烧和爆炸的基本原理。
〔一〕燃烧。
燃烧是可燃物质与空气或氧化剂发生化学反应而产生放热、发光的现象。
在生产和生活中,凡是产生超出有效范围的背离人们意志的燃烧,即为火灾。
燃烧必须同时具备以下三个基本条件。
1.凡是与空气中氧或其他氧化剂发生剧烈反应的物质,都称为可燃物。
如木材、纸张、金属镁、金属钠、汽油、酒精、氢气、乙炔和液化石油等。
2.助燃物。
凡是能帮助和支持燃烧的物质,都称为助燃物。
如氧化氯酸钾、高锰酸钾、过氧化钠等氧化剂。
由于空气中含有21%左右的氧,所以可燃物质燃烧能够在空气中继续进行。
3.火源。
凡能引起可燃物质燃烧的热能源,都称为火源。
如明火、电火花、聚焦的日光、高温灼热体,以及化学能和机械冲击能等。
防止以上三个条件同时存在,避免其互相作用,是防火技术的基本要求。
〔二〕爆炸。
物质由一种状态迅速转变成为另一种状态,并在极短的时间内以机械功的形式放出庞大的能量,或者是气体在极短的时间内发生剧烈膨胀,压力迅速下降到常温的现象,都称为爆炸。
爆炸可分为化学性爆炸和物理性爆炸两种。
1.化学性爆炸。
物质由于发生化学反应,产生出大量气体和热量而形成的爆炸。
这种爆炸能够直接造成火灾。
依据其化学反应又可以分为以下三种类型:〔1〕简单爆炸。
例如爆炸物乙炔铜和乙炔银等受到稍微振动发生的爆炸。
〔2〕复杂分解爆炸。
属于这类爆炸物有炸药、苦味酸、硝化棉和硝化甘油等。
〔3〕爆炸性混合性爆炸。
这里指可燃气体、蒸气或粉尘与空气〔或氧气〕按一定比例均匀混合,达到一定的浓度,形成爆炸性混合物时碰到火源而发生的爆炸。
2.物理性爆炸。
通常指锅炉、压力容器或气瓶内的物质由于受热、碰撞等因素,使气体膨胀,压力急剧升高,超过了设备所能承受的机械强度而发生的爆炸。
〔三〕爆炸极限。
可燃气体、蒸气和粉尘与空气〔或氧气〕的混合物,在一定的浓度范围内能发生爆炸。
爆炸和燃烧的区别和联系爆炸和燃烧是我们生活中常见的现象。
许多人往往把爆炸和燃烧看作是同一种现象,但实际上两者是有本质区别的。
爆炸是指物质在短时间内迅速放出大量的能量并产生强烈的冲击波和压力波,而燃烧是指物质与氧气反应放出热能并产生光和烟。
本文将分析爆炸和燃烧的区别和联系。
首先让我们来看看爆炸的特征。
爆炸产生的能量很大,并且能在短时间内迅速放出。
这些能量往往来自于物质内部的化学能、核能或机械能等。
爆炸瞬间产生的高温高压燃烧物质,使其发生体积迅速膨胀,大量的气体和热能释放,形成强烈的冲击波和压力波。
爆炸所产生的冲击波和压力波有很强的杀伤力,可以摧毁物体,造成重大损失。
如炸药在爆炸时,释放出巨大的热和压力,瞬间将周围的物体炸成碎片。
与之相对应的是燃烧的特征。
燃烧是指物质与氧气反应释放出热能的一种过程。
燃烧需要热源来激发反应,但反应一旦开始,会自我维持并释放出大量热能,从而促使更多的反应发生。
燃烧的反应产生的热能大多数以光和烟的形式释放出来。
燃烧会产生一定量的废气,但压力和温度并不会像爆炸那样迅速升高。
例如,木材燃烧时,会发出明亮的火光和黑烟。
虽然燃烧也可以造成一定程度的破坏,但燃烧的杀伤力远远不及爆炸。
尽管爆炸和燃烧有着本质区别,但两者也有一定的联系。
事实上,爆炸通常是一种非常强烈的燃烧过程。
当可燃物质与氧气充分接触并点燃时,燃烧会释放出大量的热能。
如果这些能量无法及时释放,可能会导致可燃物质瞬间迅速膨胀、燃烧区域内的温度和压力急剧升高形成爆炸。
理解爆炸和燃烧的区别和联系对我们生活中的许多情况都有很大的帮助。
比如,在正确地处理易燃易爆物品时,需要知道两者的区别,在进行燃烧处理时,应该采取安全防护措施,避免意外的爆炸发生。
总的来说,爆炸是指在短时间内迅速放出大量的能量并产生强烈的冲击波和压力波,而燃烧是指物质与氧气反应放出热能并产生光和烟。
虽然两种现象有着本质区别,但在某些情况下,爆炸是由剧烈的燃烧过程引起的。
燃烧和爆炸的基本原理首先,燃烧和爆炸都涉及化学反应。
在燃烧和爆炸中,燃料与氧气发生氧化反应。
燃烧通常是缓慢、可控的氧化反应,而爆炸则是快速、非常强烈的氧化反应。
在氧气参与下,燃料物质的原子或分子与氧气结合形成氧化产物,释放能量。
燃料在燃烧和爆炸过程中的能量释放与其化学键的断裂和形成有关。
燃料分子中的化学键在与氧气反应时被断裂,形成更稳定的氧化产物分子。
这个过程涉及到能量的释放,其中一部分被用于产生热量和光线,另一部分被储存于氧化产物中的化学键中。
燃烧和爆炸需要一定的燃烧条件。
首先,它们需要有足够的燃料和氧气供应。
当燃料和氧气的比例接近最佳比例时,燃料的完全燃烧效果最好。
如果燃料过多,氧气可能不足以与所有燃料分子反应,产生不完全燃烧的产物,导致燃烧不完全。
其次,燃烧和爆炸需要适当的温度。
燃料需要达到其点火温度才能开始燃烧。
点火温度是指燃料在与氧气接触时产生足够的热量以维持自身燃烧的最低温度。
当燃料达到点火温度时,它会产生可燃气体,这是一个自持续反应过程,即即使外部加热源被移除,燃料仍然可以自行维持燃烧。
最后,燃烧和爆炸需要有效的反应速率。
在燃烧和爆炸中,燃料和氧气之间的反应速率应足够高以维持能量的释放。
这需要一定的能量起点,即激活能。
在燃料达到点火温度并产生可燃气体后,激活能使得反应速率迅速增加,从而形成火焰或爆炸。
在爆炸中,燃料和氧气之间的反应速率非常高,产生了剧烈的热能和气体的释放。
这些气体的体积迅速膨胀,产生巨大的压力波,形成爆炸冲击波。
爆炸波的速度通常很快,可以迅速在周围区域传播,造成巨大的破坏。
总结起来,燃烧和爆炸是物质在氧气参与下发生的氧化反应,释放出大量的能量。
燃烧是缓慢、可控的氧化过程,而爆炸是快速、强烈的氧化过程。
这些过程需要适当的燃烧条件,包括适量的燃料和氧气、合适的温度和足够的反应速率。
燃烧和爆炸产生的能量释放对我们日常生活具有重要意义,但也需要谨慎使用,以防止意外事故的发生。
燃烧与爆炸理论及分析燃烧和爆炸是化学反应中常见的现象。
燃烧是指物质与氧气发生化学反应,产生能量的过程。
爆炸是指燃烧过程中产生的能量迅速释放,并产生强大的冲击波和光亮现象。
燃烧和爆炸都是由氧气与可燃物质发生化学反应引起的,但爆炸的反应速度更快,产生的能量更大。
燃烧和爆炸的理论基础是燃烧化学和爆炸动力学。
燃烧化学研究燃烧过程中的物质转化和能量释放。
可燃物质一般是有机物,其化学反应可以分为三个阶段:引燃、燃烧和燃尽。
引燃是指可燃物质与氧气接触后产生点火源,并开始发生反应。
燃烧是指可燃物质与氧气发生反应,产生热和光。
燃尽是指可燃物质完全被氧气消耗,停止燃烧。
燃烧化学研究的重点是物质的热值、燃烧温度、燃烧产物和燃烧速率等参数。
爆炸动力学研究爆炸过程中的能量释放和冲击波的产生。
爆炸反应一般分为四个阶段:点火、反应、扩展和耗减。
点火是指爆炸剂与点火源接触后开始发生燃烧。
反应是指燃烧的爆炸产物放热,产生高温和高压。
扩展是指高温高压的爆炸产物迅速膨胀,产生冲击波和冲击力。
耗减是指爆炸产物消耗完毕,爆炸结束。
爆炸动力学研究的重点是爆炸的速度、压力和能量等参数。
燃烧和爆炸的分析是为了预防和控制火灾和爆炸事故,保护人民的生命财产安全。
燃烧和爆炸的危害主要表现在火势和冲击波两个方面。
火势可以引发火灾,破坏建筑和设备,威胁人员的安全。
冲击波可以引发爆炸事故,造成工厂、工地、交通运输等重大事故。
因此,燃烧和爆炸的分析需要研究燃烧材料的性质、火灾和爆炸的起因和传播机制,以及防火防爆的措施和应急处理方法。
在分析燃烧和爆炸过程中,需要考虑以下几个因素:燃烧材料的种类和性质。
不同的材料燃烧产生的热值和燃烧速率不同,对环境的影响也不同。
氧气的供应。
燃烧和爆炸都需要氧气作为氧化剂,如果缺氧则无法燃烧和爆炸。
点火源的存在。
燃烧和爆炸需要点火源引发反应,因此需要防止点火源的存在,避免引发事故。
环境的温度和压力。
燃烧和爆炸也受到环境的温度和压力的影响,高温和高压有利于燃烧和爆炸的发生。
目录燃烧与爆炸理论及分析 (2)1。
引言 (2)2. 可燃物的种类及热特性 (2)2。
1 可燃物的种类 (2)2。
2可燃物的热特性 (3)3。
燃烧理论 (6)3。
1 燃烧的条件 (6)3.2 着火形式 (7)3。
3 着火理论 (7)3.4灭火分析 (14)4。
爆炸理论 (19)4。
1 爆炸种类及影响 (19)4.2 化学爆炸的条件 (23)14.3 防控技术 (24)5. 结论 (25)燃烧与爆炸理论及分析摘要:本文主要叙述了当前主要的燃烧及爆炸理论.首先介绍了燃烧条件、着火形式以及具体的燃烧理论,然后对四种燃烧理论分别进行了灭火分析。
然后阐述了爆炸的种类、爆炸条件过程及防控技术. 最后对本文的内容作了总结,并且通过分析提出自己的观点。
关键词:燃烧理论;爆炸理论;防控技术。
1. 引言火灾是一种特殊形式的燃烧现象。
爆炸(化学)是一种快速的燃烧,为了科学合理地预防控制火灾及爆炸(化学),应当对燃烧的基本理论有一定的了解.燃烧是可燃物与氧化剂之间发生的剧烈的化学反应,要使它们发生化学反应需要提供一定的外加能量,反应的结果则会放出大量的热能.燃烧前后的物质与能量变化可以要据物质与能量守恒定律确定.2。
可燃物的种类及热特性2.1 可燃物的种类可燃物是多种多样的。
按照形态,可分为气态、液态和固态可燃物,氢气(H)、一氧化碳22(CO)等为常见的可燃气体,汽油、酒精等为常见的可燃液体,煤、高分子聚合物等为常见的可燃固体.可燃物之所以能够燃烧是因为它包含有一定的可燃元素.主要是碳(C)、氢(H)、硫(S)、磷(P)等。
碳是大多数可燃物的主要可燃成分,它的多少基本上决定了可燃物发热量的大小。
碳的发热量为 3.35×107J/kg,氢的发热量为 1。
42×108J/kg,是碳的 4 倍多.了解可燃元素及由其构成的各类可燃化合物的燃烧特性可定量计算燃烧过程中的物质转换和能量转换。
有些元素发生燃烧后可以生成完全燃烧产物,也可生成不完全燃烧产物,不完全燃烧产物还可进一步燃烧生成完全燃烧产物。
燃烧与爆炸知识燃烧与爆炸是我们生活中经常接触到的现象,它们与能量的转化密切相关。
以下将从化学的角度,介绍燃烧与爆炸的基本概念、特征、防范措施等内容。
一、燃烧的概念燃烧是指物质与氧气在一定条件下发生氧化反应,产生热能和光能的过程,其本质是化学反应。
许多物质都可以燃烧,如燃料、木材、纸张、油漆等。
燃烧的产物一般包括二氧化碳、水蒸气和一些其他的化合物。
二、燃烧的特征1. 需要氧气参与:燃烧必须有氧气的参与,否则无法进行。
2. 释放热能:燃烧产生的热量是由化学反应放出的能量,因此燃烧可用于供热、发电等方面。
3. 形成新的物质:在燃烧过程中,原物质发生氧化反应,形成新的物质,如二氧化碳、水等。
4. 释放光能:燃烧还可以产生光能,形成火焰等光现象。
三、防范燃烧事故1. 保持房间通风:燃烧需要氧气,因此空气流通可以避免燃烧过程中氧气的过剩。
2. 定期检查电器设备:电器设备可能存在短路、过热等故障,应定期检查,以避免发生电器引起的火灾。
3. 禁止明火:明火很容易引起火灾,因此应该禁止在易燃的场所使用明火,如油漆厂、化工厂等。
4. 储存易燃物品要注意:易燃物品应储存在通风良好、防火防爆的场所,避免与氧化剂、酸、碱等物质接触。
四、爆炸的概念爆炸是指能产生的高度压缩气体和高能热辐射的突然释放,通常伴随着声音、火焰、冲击波等表现形式。
爆炸是一种极端的燃烧现象,其能量密度远高于普通燃烧。
五、爆炸的特征1. 包含高能量:爆炸释放的能量很高,能够瞬间摧毁周围的物体,产生极强的冲击波。
2. 周围气流的急剧变化:爆炸的过程中,周围的气体非常快地扩散,产生大量的热能、声能等,形成爆炸波。
3. 爆炸波的形成:爆炸波会扩散到周围的物体,对其产生极大的冲击力和破坏力。
爆炸波的作用范围与爆炸物质的性质和量有关。
六、防范爆炸事故1. 严格控制易燃易爆化学品的存放、使用和运输。
避免产生爆炸的条件。
2. 在易燃易爆化学品储存场所要进行安全防护,包括防爆、隔热、通风等。
燃烧与爆炸燃烧与爆炸广义的自燃包括受热自燃和本身自燃两种。
受热自燃(加热自燃):可燃物被外部热源间接加热其达到一定温度时,未与明火直接接触就发生燃烧,这种现象叫做受热自燃。
比如可燃物靠近高温物体时,有可能被加热到,定温度被“ 烤”着火;在熬炼(熬油、熬沥青等)或热处理过程中,受热介质因达到一定温度而着火,都属于受热自燃现象。
本身自燃:可燃物在没有外部热源直接作用的情况下,由于其内部的物理作用(如吸附、辐射等)、化学作用(如氧化、分解、聚合等)或生物作用(如发酵、细菌腐败等)而发热,热量积聚导致升温,当可燃物达到一定温度时,未与明火直接接触而发生燃烧,这种现象叫做本身自燃。
比如煤堆、干草堆、赛璐珞、堆积的油纸油布、黄磷等的自燃都属于本身自燃现象。
受热自燃和本身自燃都是可燃物在不接触明火的情况下“ 自动”发生的燃烧。
它们的区别在于导致可燃物升温的热源不同,引起受热自燃的是外部热源,而引起本身自燃的热源来自可燃物内部。
请注意一些书中讲的自燃是狭义的,只限于本身自燃。
就实际情况来讲,本身自燃引起的火灾较多些。
气体发生分解爆炸的条件是什么?常见的分解性爆炸气体有哪些?气体发生分解爆炸需要一定的条件:首先,气体必须是分解性气体,即气体本身能发生分解,而且分解放热比较多。
一般说来,分解热在80千焦/摩尔(kj / mol )以上的气体可能发生分解爆炸。
这是由气体的化学组成所决定的,是发生分解爆炸的内因。
其次,需要一定的压力。
每一种分解爆炸性气体都有一临界压力,低于这个压力,一般不会发生分解爆炸;高于临界压力,压力越高,分解爆炸的危险性越大。
再次,要有点火源(初始能量)。
各种分解爆炸性气体的最小发火能不问。
同一种气体的最小发火能随压力的升高而降低。
最小发火能越低,气体发生分解爆炸的危险性越大。
以上后两个条件,是分解爆炸的外因。
常见的分解性爆炸气体有:乙炔、乙烯、丙烯、臭氧、环氧乙烷、四氟乙烯、一氧化氮、二氧化氮等。
如何知道某种可燃气体(蒸气、粉尘)爆炸极限的数值?在很多情况下,需要知道可燃气体(蒸气、粉尘)爆炸极限的数值。
这些数值可以通过下述三个途径求得:(1)查资料。
常见的单纯物质的爆炸极限可以从有关手册或工具书、专业书上查出。
由于测试方法及设备不尽相同,在数据上可能会有差异,所以引用数据是一定要注明“ 来源” 的。
遗憾的是混合可燃气体的爆炸极限无法查到。
(2)测试。
现有国家推荐标准GB /T12474 一90《空气中可燃气体爆炸极限测定方法》。
此方法和设备较为复杂,一般单位不具备条件,必要时可委托有此设备的单位(如天津消防所、大连石化安全技术研究所等)进行测试。
(3)估算。
估算方法有十几种,其中比较有实用价值的是几种可燃气混合气体爆炸极限估算公式:理· 查特里公式。
如将估算结果用于重要场合,最好经实测验证一下。
产生粉尘爆炸的条件是什么?发生粉尘爆炸的首要条件是粉尘本身可燃,即能与空气中的氧气发生氧化反应。
如前述的媒尘、铝粉、面粉等;其次,粉尘要悬浮在空气中达到一定浓度(超过其爆炸下限),粉尘呈悬浮状才能保证其表面与空气(氧气)充足接触,堆积粉尘不会发生爆炸;再次,要有足够引起粉尘爆炸的起始能量。
只要同时具备上述三个条件,就会导致粉尘爆炸与可燃性混合气体爆炸相比,粉尘爆炸有什么特点?与可燃气混合气爆炸相比,粉尘爆炸具有以下特点:(1)从起爆条件方面看:1)只有达到一定浓度(达到或超过爆炸下限)的漂浮粉尘云才可能发生爆炸。
而要达到这个条件需要有一定数量的粉尘并且有外力(如风或机械力)将粉尘扬起才成。
而可燃气体通过自然扩散就可能形成爆炸性混合物。
2)粉尘燃烧是一种固体燃烧,其燃烧过程比气体复杂,点燃粉尘所需的初始能量也比点燃气体的大得多(相差近百倍)。
(2)从爆炸的后果及危害方面看:1)一般说来,与可燃气体爆炸相比,粉尘爆炸燃烧的时间长,产生的能量大,造成的破坏及烧毁的程度比较严重。
2)粉尘爆炸引起的冲击波,会使周围的堆积粉尘飞扬起来,从而可连续引起二次、三次爆炸,使得危害扩大。
(3)粉尘容易引起不完全燃烧,因此在产物气体中含有大量一氧化碳,有发生一氧化碳中毒的危险。
(4)粉尘爆炸时因为粒子一边燃烧一边飞散,容易使周围人体受到灼伤。
如何判断生产场所是否有粉尘燃爆的危险?一般的判断需考虑以下几个方面:(1)了解该生产场所存在的可燃粉尘(或可燃纤维,下同)的爆炸极限浓度(主要是爆炸下限),并实测生产场所空气中可燃粉尘的浓度。
这是判断该场所是否可能发生粉尘爆炸的主要依据。
需要注意的是:同一场所同时存在两种或两种以上可燃粉尘,或粉尘在与可燃气体同时存在时,混合物的爆炸下限值比组成混合物各单独成分的爆炸下限值均要低。
换句话说,即混合物的爆炸危险更大些。
(2)了解粉尘的粒度、比重、自燃温度、导电性等物理性质。
这些物理性质直接与燃爆危险性有关。
一般说来,粒度越细,密度越小,自燃性低且具导电性的粉尘,燃爆危险性越大。
(3)了解在正常生产状态下,可燃粉生在产生与释放的情况:如粉尘在释放的具体部位、释放量、释放速度、方向、时间间隔、频率(单位时间次数)及其在空间可能分布的范围。
总之是要掌握粉尘释放的规律。
这不仅可以判断生产场所的危险状况,而且为进一步采取安全技术措施提供了依据。
(4)了解生产场所的通风情况:如通风方式(自然通风或强制通风)、通风效果、排出粉尘的处理情况(直排大气还是用除尘器收集)等。
(5)了解生产场所的其它情况:1)现场有无点火源(包括潜在的点火源);2)有无易积存粉尘的部位;3)有无报警或指示信号装置等;根据以上情况进行综合分析,初步作出该场所有无粉尘燃爆危险性的判断。
粉尘爆炸的过程是怎样的?粉尘爆炸是因其粒子表面氧化而发生的,其爆炸过程包括以下几个阶段:(1)粉尘粒子表面接受外界能量,导致表面温度上升;(2)粒子表面的分子产生热分解作用或干馏作用生成气体包围在粒子周围;(3)分解(或干馏)气体与空气混合成为爆炸性混合气体,遇点火源即发生氧化反应;(4)由于反应产生的热,加速了粉尘粒子的分解,产生气体,与空气混合,发生氧化反应,使火焰不断向外传播。
当外界能量足够时,火焰传播速度越来越快,最后引起爆炸哪些粉尘容易发生爆炸?目前发现具有粉尘爆炸危险的行业主要有:(1)金属行业(镁、钛、铝粉等)(2)煤炭行业(活性炭、煤尘等)3)合成材料行业(塑料、染料粉尘等)4)轻纺行业(棉尘、麻尘、纸尘、木尘等)5)化纤行业(聚酯粉尘、聚丙烯粉尘等)6)军工、烟花行业(火药、炸药尘等)7)粮食行业(面粉、淀粉等)8)农副产品加工行业(棉花尘、烟草尘、糖尘等)9)饲料行业(血粉、鱼粉等)怎样从爆炸极限的数值来判断可燃气体(蒸气、粉尘)燃爆危险度?一般说来,可燃气体(蒸气、粉尘)的爆炸下限数值越低,爆炸极限范围越大,则它的燃爆危险性越大。
如氢气的爆炸极限是4.0%〜75.6%,氨气的爆炸极限是15.0%〜28.0% 可以看出,氢气的燃爆危险性比氨气要大。
为了更加科学地进行分析比较,又提出了爆炸危险度这个指标,它综合考虑了爆炸下限和爆炸范围两个方面:爆炸危险度=(爆炸上限浓度-爆炸下限浓度)/爆炸下限浓度可燃气体爆炸危险度越大,则其燃爆危险性越大。
三种气体爆炸危险性比较为:氢气〉甲烷〉氨气什么是可燃气体(蒸气、粉尘)的爆炸极限?可燃气体(蒸气)与空气的混合物,并不是在任何浓度下,遇到火源都能爆炸,而必须是在一定的浓度范围内遇火源才能发生爆炸。
这个遇火源能发生爆炸的可燃气浓度范围,称为可燃气的爆炸极限(包括爆炸下限和爆炸上限)。
不同可燃气(蒸气)的爆炸极限是不同的,如氢气的爆炸极限是4.0 %〜75.6 % (体积浓度),意思是如果氢气在空气中的体积浓度在4.0%〜75.6%之间时,遇火源就会爆炸,而当氢气浓度小于4.0%或大于75.6%时,即使遇到火源,也不会爆炸。
甲烷的爆炸极限是5.0%〜15%意味着甲烷在空气中体积浓度在5.O%〜15%之间时,遇火源会爆炸,否则就不会爆炸。
可燃粉尘爆炸极限的概念与可燃气爆炸极限是一致的。
爆炸极限一般用可燃气(粉尘)在空气中的体积百分数表示(%),也可以用可燃气(粉尘)的重量百分数表示(克/米* 或是毫克/升)。
爆炸极限是一个很重要的概念,在防火防爆工作中有很大的实际意义:(1 )它可以用来评定可燃气体(蒸气、粉尘)燃爆危险性的大小,作为可燃气体分级和确定其火灾危险性类别的依据。
我国目前把爆炸下限小于是10%的可燃气体划为一级可燃气体,其火灾危险性列为甲类。
(2)它可以作为设计的依据,例如确定建筑物的耐火等级,设计厂房通风系统等,都需要知道该场所存在的可燃气体(蒸气、粉尘)的爆炸极限数值。
(3)它可以作为制定安全生产操作规程的依据。
在生产、使用和贮存可燃气体(蒸气、粉尘)的场所,为避免发生火灾和爆炸事故,应严格将可燃气体(蒸气、粉尘)的浓度控制在爆炸下限以下。
为保证这一点,在制定安全生产操作规程时,应根据可燃气(蒸气、粉尘)的燃爆危险性和其它理化性质,采取相应的防范措施,如通风、置换、惰性气体稀释、检测报警等。
为什么汽油、煤气等有时会发生燃烧而有时则会爆炸?汽油、煤气等可燃物的燃烧与爆炸的本质都是氧化反应,区别在于速度不同。
对于同一种可燃物来说,速度取决于燃烧条件。
因此,汽油、煤气等由于燃烧条件不同,有时是平稳燃烧,有时则可能发生爆炸。
煤气的情况在题25 已经说明。
现在讲一下汽油的情况。
如果我点燃盛装在敞口容器中的汽油,实际上是汽油表面的蒸气在燃烧,可以看作是一种扩散燃烧,像管道煤气燃烧一样,蒸发多少就烧掉多少,一般不会发生爆炸。
如果容器中的汽油未被点燃而任其蒸发并扩散到空间,与空气形成预混气,遇明火则可能爆炸。
还有一个情况,如密封的汽油桶受热爆炸,则是因汽油受热蒸发形成的压力造成汽油桶破裂,蒸气弥漫到空间形成预混气遇明火发生爆炸。
什么是扩散燃烧和动力燃烧(混合燃烧)?在可燃气体(蒸气)与空气混合气的燃烧过程中,可燃气(蒸气)分子与氧比剂分子从释放源通过扩散达到相互接触,在点火源所提供能量的激发下,发生氧化反应而燃烧(或爆炸)。
细分起来.燃烧过程可以分为分子扩散混合与氧化反应两个阶段,而分子扩散速度远比氧化反应速度慢得多。
因此可燃气(蒸气)分子与氧化剂分子扩散混合情况就成了燃烧速度快慢的制约因素。
据此,将燃烧分为扩散燃烧和动力燃烧(混合燃烧)两类。
扩散燃烧:如果可燃气(蒸气)与氧化剂(空气中氧气)的混合是在燃烧过程中进行的,即边混合边燃烧,这种燃烧叫做扩散燃烧。
动力燃烧:如果可燃气与空气(或其它氧化剂)在未点燃前已经均匀混合好,并且完全是气相,一旦遇火源发生燃烧(爆炸)。