能带理论(3)(紧束缚近似)
- 格式:ppt
- 大小:370.50 KB
- 文档页数:15
能带理论能带理论是目前研究固体中电子运动的一个主要理论基础,它预言固体中电子能量会落在某些限定范围或“带"中,因此,这方面的理论称为能带理论。
对于晶体中的电子,由于电子和周围势场的相互作用,晶体电子并不是自由的,因而其能量与波失间的关系E (k )较为复杂,而这个关系的描述这是能带理论的主要内容.本章采用一些近似讨论能带的形成,并通过典型的模型介绍能带理论的一些基本结论和概念。
一、三个近似绝热近似:电子质量远小于离子质量,电子运动速度远高于离子运动速度,故相对于电子的运动,可以认为离子不动,考察电子运动时,可以不考虑离子运动的影响,取系统中的离子实部分的哈密顿量为零。
平均场近似:让其余电子对一个电子的相互作用等价为一个不随时间变化的平均场。
周期场近似: 无论电子之间相互作用的形式如何,都可以假定电子所感受到的势场具有平移对称性。
原本哈密顿量是一个非常复杂的多体问题,若不简化求解是相当困难的,但 经过三个近似处理后使复杂的多体问题成为周期场下的单电子问题,从而本章的中心任务就是求解晶体周期势场中单电子的薛定谔方程,即其中二、两个模型(1)近自由电子模型1、模型概述 在周期场中,若电子的势能随位置的变化(起伏)比较小,而电子的平均动能要比其势能的绝对值大得多时,电子的运动就几乎是自由的.因此,我们可以把自由电子看成是它的零级近似,(222U m ∇+)()(r U R r U n=+而将周期场的影响看成小的微扰来求解。
(也称为弱周期场近似)2、怎样得到近自由电子模型近自由电子近似是晶体电子仅受晶体势场很弱的作用,E (K )是连续的能级。
由于周期性势场的微扰 E (K )在布里渊区边界产生分裂、突变形成禁带,连续的能级形成能带,这时晶体电子行为与自由电子相差不大,因而可以用自由电子波函数来描写今天电子行为。
3、近自由电子近似的主要结果1) 存在能带和禁带:在零级近似下,电子被看成自由粒子,能量本征值 E K0 作为 k 的函数具有抛物线形式.由于周期势场的微扰,E (k )函数将在 处断开,本征能量发生突变,出现能量间隔2︱V n ︱,间隔内不存在允许的电子能级,称禁带;其余区域仍基本保持自由电子时的数值。
固体物理中,能带论的三个近似1.引言1.1 概述固体物理是研究固体材料中原子或分子的行为和性质的学科领域。
能带论是固体物理中一个非常重要的理论,它描述了电子在晶体中的能量分布及其行为规律。
能带论的三个近似是固体物理中非常重要的概念。
第一个近似是关于能带的定义和特点。
能带是指具有相似能量的电子态的集合。
在固体中,原子间的相互作用引起了电子的周期性排列,形成能带结构。
能带结构决定了电子能量的分布及其在固体中的运动方式。
根据波尔兹曼统计,能带中的电子填充情况将影响固体的导电性、磁性等物理性质。
第二个近似是关于周期势场下的能带结构。
周期势场是指固体中原子间的周期性排列造成的电子受到的平均势场。
在周期势场下,电子的行为将受到布洛赫定理的约束,即电子波函数在晶格周期性重复。
这样,能带结构就可以通过布洛赫定理进行简化描述,从而得到电子能量与波矢的关系。
第三个近似是近自由电子近似。
近自由电子近似是指在某些特定材料中,电子在晶格势场下的运动表现出类似自由电子的行为。
在近自由电子近似下,电子的能量分布可以用简单的能带模型来描述,以及电子的运动类似于自由电子在真空中的运动。
这种近似计算方法在一些金属或导体中得到了广泛应用。
综上所述,能带论的三个近似是固体物理中不可或缺的工具,它们对于解释和预测固体材料的性质具有重要意义。
本文将对这三个近似进行详细的介绍和分析,并展望能带论在未来的发展和应用前景。
1.2文章结构1.2 文章结构本文将分为三个主要部分,分别是引言、正文和结论。
每个部分将有不同的子节,以便深入探讨和解释固体物理中能带论的三个近似。
引言部分将提供对整篇文章的概述,阐明本文的目的和重要性。
我们将简要介绍固体物理领域中的能带论及其在研究材料性质和电子行为上的重要性。
同时,引言还将展示本文的结构,介绍每个部分的主要内容及其相互关系。
正文部分将详细讨论能带论的三个近似。
第一个近似部分将探讨能带的定义和特点,以及简化的布洛赫定理。
紧束缚近似公式(一)紧束缚近似公式紧束缚近似(Tight Binding Approximation)是一种描述电子在固体晶格中行为的数学方法。
在紧束缚近似中,电子波函数被表示为原子轨道的线性组合,通过求解薛定谔方程来得到能级结构和电子态密度等信息。
Bloch定理Bloch定理表明在理想晶体中,电子波函数可以表示为平面波和某个周期函数的乘积形式。
根据Bloch定理,电子波函数可以用下式表示:Ψk(r)=e ik⋅r u k(r)其中,e ik⋅r是平面波,u k(r)是周期函数。
紧束缚近似基本公式紧束缚近似基本公式是在Bloch定理的基础上,进一步假设电子波函数由最近邻原子的原子轨道线性组合构成。
根据紧束缚近似,电子在晶体中的波函数可以用下式表示:e ik⋅R n u n(r−R n)Ψk(r)=∑c nn其中,R n是最近邻原子的位置矢量,u n(r−R n)是最近邻原子的原子轨道。
紧束缚近似能带关系根据紧束缚近似基本公式,可以得到能带关系,即能量与波矢之间的关系。
能带关系可以用下式表示:E k=∑c n∗c n e ik⋅(R n−R m)ϵnmn其中,E k是能量,c n∗和c n是电子的系数,e ik⋅(R n−R m)是相位因子,ϵnm是最近邻原子间的相互作用能。
紧束缚近似的应用举例紧束缚近似在描述材料的能带结构和电子态密度等方面有广泛的应用。
以下是一些应用举例:1.能带计算:通过紧束缚近似,可以计算材料的能带结构,进而分析材料的导电性、绝缘性等特性。
2.电子态密度计算:紧束缚近似可以用于计算材料的电子态密度,这对于研究材料的化学反应等方面非常重要。
3.值得注意的是,紧束缚近似也有其局限性,适用于描述弱相互作用体系,如共价键、金属键等。
对于强相互作用系统,如强关联电子体系,紧束缚近似可能不适用。
总之,紧束缚近似是一种重要的描述电子在晶体中行为的方法,在材料科学和凝聚态物理等领域有着广泛的应用。
能带理论摘要阐述了能带理论提出的背景以及假设条件,在此基础上,主要给出了两个模型:近自由电子近似模型、紧束缚近似模型。
两者的假设不同,近自由近似模型认为价电子近似自由,晶体的周期性势场微扰很小;紧束缚近似模型认为电子受到原子核作用比较强,将其他原子的作用看做微扰。
两者共同基础是周期性势场中电子共有化运动,由两种模型研究电子的运动状态得出同一结论--能带。
在能带理论的基础上,定性的解释了绝缘体、半导体和导体。
Abstract This paper expounds the background and hypothesis of the theory of band theory,on the basis of it,two models are given:Near-free electron approximation model,tight-binding approximation model.Their assumptions are different,The near - free approximation model considers that the valence electrons are approximately free and the periodic potential of the crystal is very small;The tight-binding approximation model considers electrons are strongly affected by the nucleus,The role of other atoms as perturbation.The common basis of them is the electron co movement in the periodic potential field,It is concluded that the two models can be used to study the motion of electrons. On the basis of band theory, the properties of insulator, semiconductor and conductor are explained qualitatively.概述(背景、出发点)能带理论是讨论晶体(包括金属、绝缘体和半导体的晶体)中电子的状态及其运动的一种重要的近似理论。
能带理论一、本章难易及掌握要求要求重点掌握:1)理解能带理论的基本假设和出发点;2)布洛赫定理的描述及证明;3)三维近自由电子近似的模型、求解及波函数讨论;4)紧束缚近似模型及几个典型的结构的计算;5)明白简约布里渊区的概念和能带的意义及应用;6)会计算能态密度。
本章难点:1)对能带理论的思想理解,以及由它衍生出来的的模型的应用。
比如将能带理论应用于区分绝缘体,导体,半导体; 2)对三种模型的证明推导。
了解内容:1)能带的成因及对称性;2)万尼尔函数概念;3)波函数的对称性。
二、基本内容1、三种近似在模型中它用到已经下假设:1)绝热近似:由于电子质量远小于离子质量,电子的运动速度就比离子要大得多。
故相对于电子,可认为离子不动,或者说电子的运动可随时调整来适合离子的运动。
多体问题化为了多电子问题。
2)平均场近似:在上述多电子系统中,可把多电子中的每一个电子,看作是在离子场及其它电子产生的平均场中运动,这种考虑叫平均场近似。
多电子问题化为单电子问题。
3)周期场近似:假定所有离子产生的势场和其它电子的平均势场是周期势场,其周期为晶格所具有的周期。
单电子在周期性场中。
2、周期场中的布洛赫定理1)定理的两种描述当晶体势场具有晶格周期性时,电子波动方程的解具有以下性质:形式一:()()ni k R n r R e r ψψ⋅+= ,亦称布洛赫定理,反映了相邻原包之间的波函数相位差形式二:()()ik rr e u r ψ⋅= ,亦称布洛赫函数,反映了周期场的波函数可用受)(r u k 调制的平面波表示.其中()()n u r u r R =+ ,n R 取布拉维格子的所有格矢成立。
2)证明过程:a. 定义平移算符 T ,)()()()(332211321a T a T a T R T m m m m =b . 证明 T 与ˆH 的对易性。
ααHT H T = c.代入周期边界条件,求出 T 在 T 与ˆH 共同本征态下的本征值 λ。