洛必达法则完全证明
- 格式:docx
- 大小:67.87 KB
- 文档页数:2
洛必达法则:若实函数()00:,f U x R δ→和()00:,g U x R δ→在定义域上处处可微,()0g x ≠且()0g x '≠,()()00lim lim 0x x x x f x g x →→==或()0lim x x g x →=∞,极限()()0l i m x x f x g x →''存在或趋于无穷,那么()()()()00lim lim x x x x f x f x g x g x →→'='。
证明:为方便证明,设00x =,一般情形的证明是类似的。
(I )若()()0lim x x f x g x →''的极限值是有限实数。
若设()()0lim x f x a g x →'=',根据极限的定义,对任意正数ε,存在正数δ,使得当x δ<总有()()2f x ag x ε'-<' (1) 若()()00lim lim 0x x x x f x g x →→==任取x δ<,令()()()()()f x f t tg x g t ϕ-=-。
()00:,f U x R δ→和()00:,g U x R δ→是可微的因而也是连续的,所以()t ϕ是连续的。
因为()()00lim lim 0x x x x f x g x →→==,所以()()()0lim y f x t g x ϕ→=。
所以存在实数y 满足y 与x 同号且y x <,使得()()()2f x y g x εϕ-<。
由柯西中值定理存在ξ介于x 和y 之间,使得()()()()()()()f x f y f y g x g y gξϕξ'-=='-,所以 ()()()()2f f xg g x ξεξ'-<' 又x ξδ<<,所以()()2f a g ξεξ'-<'。
洛必达法则洛必达法则洛必达法则洛必达法则(L'Hospital法则),是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。
设(1)当x→a时,函数f(x)及F(x)都趋于零;(2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0;(3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么x→a时 lim f(x)/F(x)=lim f'(x)/F'(x)。
再设(1)当x→∞时,函数f(x)及F(x)都趋于零;(2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0;(3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x)。
利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意:①在着手求极限以前,首先要检查是否满足0/0或∞/∞型未定式,否则滥用洛必达法则会出错。
当不存在时(不包括∞情形),就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。
比如利用泰勒公式求解。
②若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
③洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等. 泰勒公式(T aylor's formula)泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和:f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!*(x-x.)^2,+f'''(x.)/3!*(x-x.)^3+……+f(n)(x.) /n!*(x-x.)^n+Rn其中Rn=f(n+1)(ξ)/(n+1)!*(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。
洛必达公式数学洛必达公式是数学中的一个重要定理,它在微积分和复分析等领域都有广泛的应用。
洛必达公式的全称是洛必达法则,它是由法国数学家洛必达发现并证明的。
洛必达公式主要用于求解极限。
在微积分中,我们经常遇到一些函数的极限问题,而洛必达公式提供了一种简便的方法来求解这些问题。
它的核心思想是通过对函数的导数进行比较来判断函数的极限值。
具体来说,洛必达公式的表述是:如果函数f(x)和g(x)在某一点a 的某个邻域内都可导,并且g'(x)不等于0,那么当x趋近于a时,如果f(x)和g(x)的极限存在,那么f'(x)和g'(x)的极限也存在,并且有以下关系:lim[x->a] (f(x)/g(x)) = lim[x->a] (f'(x)/g'(x))这个公式的应用非常广泛。
比如,我们可以利用洛必达公式来求解一些常见的极限,如0/0型、无穷/无穷型、0*无穷型等。
通过对函数的导数进行逐步化简,我们可以将复杂的极限计算转化为简单的代数运算,从而得到准确的结果。
除了在求解极限问题上的应用,洛必达公式还可以帮助我们研究函数的性质。
通过对函数的导数进行分析,我们可以判断函数在某一点的单调性、凹凸性以及极值等特征。
这对于函数的图像绘制和函数的最优化问题都具有重要的意义。
洛必达公式的证明过程比较复杂,需要运用到一些高级的数学工具和理论。
但是在实际的应用中,我们通常只需要记住公式的表述和应用方法即可,而不必深入研究其证明过程。
洛必达公式是数学中一个非常重要的工具,它为我们解决函数极限问题提供了简便的方法,同时也帮助我们研究函数的性质。
掌握洛必达公式的应用,对于学习微积分和复分析等相关学科都具有重要的意义。
无论是在科学研究中还是在实际问题中,洛必达公式都扮演着重要的角色,为我们提供了有力的工具和思路。
备战2020高考数学冲刺秘籍之恒成立与有解问题解法大全第一篇专题五 洛必达法则一、问题指引“洛必达法则”是高等数学中的一个重要定理,用分离参数法(避免分类讨论)解决成立、或恒成立命题时,经常需要求在区间端点处的函数(最)值,若出现00型或∞∞型可以考虑使用洛必达法则。
二、方法详解法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x af x →= 及()lim 0x ag x →=;(2)在点a 的去心邻域内,f(x) 与g(x) 可导且g'(x)≠0; (3)()()limx af x lg x →'=',那么 ()()limx af xg x →=()()limx af x lg x →'='。
法则2 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞= 及()lim 0x g x →∞=;(2)0A∃,f(x) 和g(x)在(),A -∞与(),A +∞上可导,且g'(x)≠0;(3)()()limx f x l g x →∞'=', 那么 ()()lim x f x g x →∞=()()limx f x l g x →∞'='。
法则3 若函数f(x) 和g(x)满足下列条件:(1) ()lim x af x →=∞及()lim x ag x →=∞;(2)在点a 的去心邻域内,f(x) 与g(x) 可导且g'(x)≠0;(3)()()limx a f x l g x →'=',那么 ()()lim x a f x g x →=()()limx a f x l g x →'='。
利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意:1.将上面公式中的x→a ,x→∞换成x→+∞,x→-∞,x a +→,x a -→洛必达法则也成立。
导数利器——洛必达法则一、问题指引“洛必达法则”是高等数学中的一个重要定理,用分离参数法(避免分类讨论)解决成立、或恒成立命题时,经常需要求在区间端点处的函数(最)值,若出现00型或∞∞型可以考虑使用洛必达法则。
二、方法详解法则1 若函数f(x) 和g(x)满足下列条件:(1) ()lim 0x af x →= 及()lim 0x ag x →=;(2)在点a 的去心邻域内,f(x) 与g(x) 可导且g'(x)≠0;(3)()()lim x a f x l g x →'=', 那么 ()()limx af xg x →=()()limx af x lg x →'='。
法则2 若函数f(x) 和g(x)满足下列条件:(1)()lim 0x f x →∞=及()lim 0x g x →∞=;(2)0A∃,f(x)和g(x)在(),A -∞与(),A +∞上可导,且 g'(x)≠0;(3)()()lim x f x l g x →∞'=', 那么 ()()lim x f x g x →∞=()()limx f x l g x →∞'='。
法则3 若函数f(x) 和g(x)满足下列条件:(1) ()lim x af x →=∞及()lim x ag x →=∞;(2)在点a 的去心邻域内,f(x) 与g(x) 可导且g'(x)≠0; (3)()()limx af x lg x →'=', 那么 ()()lim x a f x g x →=()()lim x a f x l g x →'='。
利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意:1.将上面公式中的x→a ,x→∞换成x→+∞,x→-∞,x a +→,x a -→洛必达法则也成立。
2.洛必达法则可处理00x a -→,∞∞,0⋅∞,1∞,0∞,00,∞-∞型。
浅析洛必达法则求函数极限.docx⽤洛必达法则求未定式极限的⽅法⼀、洛必达法则求函数极限的条件及适⽤范围(⼀) 洛必达法则定理定理1⑴若函数/(X )与函数g(x)满⾜下列条件: (1)在。
的某去⼼邻域讥兀)内可导,且g?)HO (2) lim /(x) = 0 XTG+0 lim g(x) = 0 XTO+0 v f\x) A(3) lim ------ ------ = A兀T"+0 g\x)则lim /⑴⼆lim f = A (包括A 为⽆穷⼤的情形)XT"+0 g(x)g'(x)定理2若函数/(兀)和g(x)满⾜下列条件+ ⼀, X -> X o ,兀 TOO,兀⼀>+00,X —>—00。
定理证明:作辅助函数于是函数F(x)及G(x)在[d,d +》)连续,在(d,G + /)可导,并且G (%)丰0?今对(G ,G + /) 内任意⼀点x,利⽤柯西中值定理得(1) 在d 的某去⼼邻域Mr)内可导,且g3 H 0(2) lim /(x) = oolim p(x) = ooX->X ()(3) r⼴(x)⼈ lim = A则lim = lim 以卫=5+o 0(x) 5+() g(x) 5+0 g\x)A (包括A 为⽆穷⼈的怙:形)此外法则所述极限过程对下述六类极限过程均适⽤:F (兀)=0, 当兀=aG(x) =0, 当兀=a空n(叽空丄G(x) G(x)-G(G ) G\X Q )由F(Q 及G (劝的定义,上式B |jZW =ZW g(x) gUo)所以当XTQ + 0时(这时显然有兀oTG + O ),对上式两端取极限,即证毕。
关于定理⼆的证明⽅法也同定理1类似,这⾥就不点出。
当然,还有其他不同的证明⽅法。
(-)洛必达法则使⽤条件只有在分⼦、分母同时趋于零或者同时趋于⽆穷⼤时,才能使⽤洛必达法则。
连续多次使⽤法则时,每次都要检査是否满⾜定理条件,只有未定式⽅可使⽤,若是检查结果满⾜法则使⽤条件,才可连续使⽤洛必达法则,直到求出函数极限或者为⽆穷⼤,否则就会得出错谋的结果,下⾯举个例⼦来说明。