激光测距(非常详细)综述
- 格式:pdf
- 大小:163.16 KB
- 文档页数:3
激光测距工作原理激光测距是一种精确、高效的测量技术,广泛应用于工程测量、制造业、建筑、物流等领域。
本文将介绍激光测距的工作原理,并探讨其在实际应用中的优势和限制。
一、激光测距工作原理激光测距的基本原理是利用激光束的传播时间来计算被测物体与测距装置之间的距离。
激光测距装置通常由激光发射器、接收器、时钟和计算器等组成。
1.1 激光发射器激光发射器产生一束高亮度、狭窄束的激光线,发射出去的激光以近似平行的形式向被测物体传播。
1.2 接收器接收器用于接收被测物体反射回来的激光信号。
激光束照射到物体上后,一部分光线被反射回来并被接收器接收到,接收器将接收到的光信号转换为电信号。
1.3 时钟和计算器时钟和计算器用于测量激光从发射到接收的时间差,并根据光速和时间差计算出被测物体到激光测距设备的距离。
二、激光测距的优势激光测距具有以下几个显著的优势:2.1 高精度激光测距的精度可以达到亚毫米级别,远高于其他测距技术。
这使得激光测距成为精确测量和定位的首选工具。
2.2 高速测量激光测距设备的工作速度非常快,可以在几毫秒内完成一次测量。
这使得激光测距特别适用于大规模测量和批量生产环境下的快速测量需求。
2.3 非接触测量激光测距采用非接触式测量方式,无需与被测物体接触,避免了因接触而带来的测量误差和对被测物体的破坏。
2.4 长测距范围激光测距技术可以实现从几米到几百米乃至更远距离的测量。
这使得激光测距在各个领域中都能找到应用,如航天、船舶测量等。
三、激光测距的限制激光测距虽然具有许多优势,但也存在一些限制:3.1 对目标表面要求高激光测距对被测物体的表面要求较高,通常要求表面光洁度高且有一定反射能力。
如果被测物体表面粗糙或较暗,会导致激光信号被吸收或散射,从而影响测距的准确性。
3.2 受环境影响大激光传播过程中的大气湍流、尘埃、雾霾等环境因素会对激光传输造成散射和吸收,从而影响测距的准确性和稳定性。
因此,在一些恶劣的环境中,激光测距的性能可能会受到影响。
了解激光测距技术在测绘中的应用激光测距技术是一种基于激光原理实现测量目标距离的技术,它在测绘领域具有广泛的应用。
本文将从激光测距技术的原理、设备和应用三个方面来探讨激光测距技术在测绘中的应用。
一、激光测距技术的原理激光测距技术是利用激光发射器向目标发射一束非常短暂的激光脉冲,然后通过接收器接收反射回来的激光信号,并测量激光脉冲的行程时间来计算目标的距离。
这种技术具有高精度、非接触和快速测量等特点,被广泛应用于测绘领域。
二、激光测距技术的设备在进行测绘任务时,通常需要使用激光测距仪。
激光测距仪由激光发射器、接收器、定位系统和数据处理单元等部分组成。
激光发射器负责发射激光脉冲,接收器接收反射回来的激光信号,并测量信号传播的时间。
定位系统用于确定仪器在空间中的位置,以便计算目标的坐标。
数据处理单元负责接收和处理激光测距数据,并生成相应的测量结果。
三、激光测距技术在测绘中的应用1.地面测量激光测距技术在地面测量中具有重要的应用价值。
例如,在土地测绘中,可以利用激光测距技术实现地面的高程测量,精确计算地形的高度和三维坐标。
此外,在城市规划中,激光测距技术也可以用于测量建筑物、道路和河流等地貌要素,为城市规划和土地利用提供重要的数据支持。
2.水文测量激光测距技术在水文测量中也有广泛的应用。
利用激光测距技术可以测量河流、湖泊和水库的水深,以及河床和湖底的地形。
这些测量数据可以用于水文模拟和水资源管理,帮助决策者更好地了解水资源的分布和利用情况。
3.航空遥感激光测距技术在航空遥感中也起到了重要的作用。
利用激光测距仪搭载在飞机或无人机上,可以对地球表面进行高分辨率的三维测量。
这种技术被广泛用于地形测量、植被覆盖分析、土地利用监测等领域,为资源调查、环境保护和城市规划等提供了重要的数据支持。
4.地下勘探除了地面测量和水文测量,激光测距技术在地下勘探中也具有重要的应用价值。
激光测距技术可以用于地下隧道和洞穴的勘测,帮助工程师了解地质结构、地下水位和应力情况。
激光测距原理发布日期:2010-8-26 [ 收藏评论没有找到想要的知识 ]激光测距工作方式上可分为:脉冲激光测距和连续波激光测距。
(1) 脉冲激光测距脉冲激光测距原理是,用脉冲激光器向目标发射一列很窄的光脉冲(脉冲宽度小于50ns),光达到目标表面后部分被反射,通过测量光脉冲从发射到返回接收机的时间,可算出测距机与目标之间的距离。
假设所测距离为h,光脉冲往返时间为t,光在空中的的传播速度为c,则:h=ct/2脉冲激光测距机能发出很强的激光.测距能力较强,即使对非合作目标,最大测距也能达到30000m以上。
其测距精度一般为5米,.最高的可达0.15m。
脉冲激光测距机既可在军事上用于对各种非合作目标的测距,也可在气象上用于测定能见度和云层高度.以及应用在对人造卫星的精密距离测量等领域。
(2)连续波激光测距(相位式激光测距)相位式激光测距仪是用无线电波段的频率,对激光束进行幅度调制并测定调制光往返测线一次所产生的相位延迟,再根据调制光的波长,换算此相位延迟所代表的距离。
即用间接方法测定出光经往返测线所需的时间。
与脉冲激光测距机相比,连续波激光测距机发射的(平均)功率较低,因而测远距离能力相对较差。
相位式激光测距仪一般应用在精密测距中。
由于其精度高,一般为毫米级,为了有效的反射信号,并使测定的目标限制在与仪器精度相称的某一特定点上,对这种测距仪都配置了被称为合作目标的反射镜。
对非合作目标,相位法测距的最大测程只有1~3km。
若调制光角频率为ω,在待测量距离D上往返一次产生的相位延迟为φ,则对应时间t 可表示为:t=φ/ω将此关系代入式中距离D可表示为D=1/2 ct=1/2 c·φ/ω=c/(4πf) (Nπ+Δφ)=c/4f (N+ΔN)=U(N+)式中:φ——信号往返测线一次产生的总的相位延迟。
ω——调制信号的角频率,ω=2πf。
U——单位长度,数值等于1/4调制波长N——测线所包含调制半波长个数。
测绘技术的激光测距原理在现代科技的进步下,测绘技术的发展也取得了突飞猛进的进展。
而在测绘技术中,激光测距技术成为了一项不可或缺的关键技术。
激光测距的原理是基于激光的特性和测量原理,本文将对其详细介绍。
激光测距技术利用了光的特性来实现测量距离的目的。
激光是一种特殊的单色相干光,具有高方向性、窄带宽和高亮度等特点。
这意味着激光束是非常纯净和集中的,可以准确地传输到目标物体上,并反射回来。
首先,我们需要了解激光的测距原理。
激光测距仪通常使用一种叫做“飞行时间法”的方法来测量距离。
该方法是通过测量激光从发送器发射出去到被目标物体反射回来所消耗的时间来计算距离。
当激光束发射出去时,会以光速传播。
根据光速的知识,我们知道光能在一秒钟内传播约3万公里。
所以,如果我们能够测量出激光从发送器到目标物体反射回来所用的时间,我们就可以通过光速公式计算出距离。
那么,怎样才能测量出这个时间呢?激光测距仪通常会在激光束发射出去时启动一个计时器,当反射回来时停止计时。
通过计时器记录下的时间,我们就可以得到激光从发射到反射所用的时间。
然而,这还不够。
由于光传播速度极快,我们需要一种非常精确的计时器才能测量出很小的时间差。
激光测距仪通常使用的是高频振荡器和计数器来进行计时,这样就可以达到纳秒级的时间精度,从而实现精确的距离测量。
除了飞行时间法外,还有一种常见的激光测距原理叫做相位差法。
相位差法主要是通过测量激光发射器和接收器之间的相位差来计算距离。
相位差法的原理是利用了光的波动特性。
当激光从发送器发出后,会在与目标物体相遇时发生一定的相位改变。
通过测量这个相位改变,我们就可以得到距离信息。
在实际应用中,激光测距技术主要应用在测绘、地理信息系统、建筑工程等领域。
激光测距仪可以通过扫描地面、建筑物等目标,快速且精确地获取距离数据。
这些数据可以用来生成3D模型、进行地形分析、监测结构变形等。
总结一下,测绘技术的激光测距原理是基于激光的特性和测量原理。
激光测距技术在空间的应用随着空间技术和航天工业的发展。
空间距离测量已成为空间领域的重要研究内容。
传统雷达测距在太空中极易受到高能粒子和电磁波的干扰,测量精度低,无法满足高精度测量的要求。
宇宙空间空气稀薄、温度变化剧烈,无法进行超声波测距。
因此。
测量空间距离需要一种适合空间环境、抗干扰能力强和测量精度高的测距方法。
激光测距技术是一种自动非接触测量方法,对电磁干扰不敏感,抗干扰能力强,测量精度高。
与一般光学测距技术相比,它具有操作方便、系统简单及白天和夜晚都可以工作的优点。
与雷达测距相比,激光测距具有良好的抗干扰性和很高的精度。
在重复测距的同时,以细激光束对空间扫描,同时获得目标的距离、角度和速度等信息,这就是激光雷达。
激光雷达能实现很多传统雷达达不到的性能要求。
激光的发散角小、能量集中。
能够实现极高的探测灵敏度和分辨率;其极短的波长使得天线和系统尺寸可以很小,这些都是传统雷达所不可比拟的。
与微波雷达相比,激光测距仪方向性好、体积小、重量轻。
非常适用于搭载在航天器上进行空间目标距离测量。
激光测距技术综合了激光器技术、光子探测技术、信号处理技术等多项技术。
测距精度高。
测程大,可靠性高,能够满足空间目标高精度、大测程测距的要求。
在空间测量领域获得了广泛应用。
1.1研究背景及意义激光是一种自然界原本不存在的,因受激而发出的具有方向性好、亮度高、单色性好和相干性好等特性的光,激光的特点有:1.方向性好——普通光源(太阳、白炽灯或荧光灯)向四面八方发光,而激光的发光方向可以限制在小于几个毫弧度立体角内,这就使得在照射方向上的照度提高千万倍。
激光准直、导向和测距就是利用方向性好这一特性。
2.亮度高——激光是当代最亮的光源,只有氢弹爆炸瞬间强烈的闪光才能与它相比拟。
太阳光亮度大约是103瓦/(厘米2·球面度),而一台大功率激光器的输出光亮度经太阳光高出7~14个数量级。
这样,尽管激光的总能量并不一定很大,但由于能量高度集中,很容易在某一微小点处产生高压和几万摄氏度甚至几百万摄氏度高温。
激光测距原理激光测距原理激光测距是一种利用激光来测量目标距离的技术。
它基于激光的特性以及光的传播原理,通过测量激光的时间或相位差来计算目标物体与测距装置之间的距离。
1. 激光的特性激光是一种特殊的光源,具有高亮度、高方向性和高单色性的特点。
这使得激光在测距应用中具有很大的优势。
激光束发射出去后几乎不会扩散,能够保持较小的束径,从而提供了较高的测量精度。
2. 光的传播原理光在真空中的速度是一个恒定值,约为每秒299,792,458米。
当光从一种介质传播到另一种介质中时,光的速度会发生改变。
这种速度改变会导致光线发生折射,即光线的传播方向发生偏离。
根据光的折射原理,可以通过测量光线的传播时间或传播方向的变化来计算出目标物体与测距装置之间的距离。
3. 测量时间法激光测距中常用的一种方法是测量光线从发射到接收所经过的时间。
测量时,激光器会发射一束脉冲激光,激光脉冲经过目标物体后被接收器接收。
通过测量激光脉冲发射和接收的时间差,可以计算出激光从发射到接收所经过的时间。
由于光在真空中的速度是已知的,因此可以根据光速和时间差计算出目标物体与测距装置之间的距离。
4. 测量相位差法另一种常用的激光测距方法是测量激光发射时和接收时的光的相位差。
这种方法利用了激光的相干性质,通过测量光的相位差来计算距离。
激光发射时的相位和接收时的相位之差与光的传播距离有关。
通过测量相位差的变化,可以计算出目标物体与测距装置之间的距离。
5. 应用领域激光测距技术在很多领域都有广泛的应用。
例如,激光测距常用于建筑施工、地理测绘、工业制造和自动驾驶等领域。
在建筑施工中,激光测距可以用于测量建筑物的高度、宽度和距离,帮助工程师进行设计和施工规划。
在地理测绘中,激光测距可以用于测量地形地貌、建筑物高度和森林覆盖等信息。
在工业制造中,激光测距可以用于精密测量和质量控制,提高生产效率。
在自动驾驶中,激光测距可以用于障碍物检测和距离测量,实现智能驾驶和安全行驶。