差示扫描量热分析
- 格式:ppt
- 大小:1.02 MB
- 文档页数:6
差示量热扫描法
差示扫描量热法(DSC)是一种热分析技术,用于测量在程序控制温度下输入到试样和参比物的功率差(如以热的形式)与温度的关系。
差示扫描量热仪记录到的曲线称为DSC曲线,它以样品吸热或放热的速率,即热流率dH/dt(单位毫焦/秒)为纵坐标,以温度T或时间t为横坐标,可以测量多种热力学和动力学参数,例如比热容、反应热、转变热、相图、反应速率、结晶速率、高聚物结晶度、样品纯度等。
差示扫描量热法有补偿式和热流式两种。
在差示扫描量热中,为使试样和参比物的温差保持为零在单位时间所必需施加的热量与温度的关系曲线为DSC曲线。
差示扫描量热法具有试样用量少、基本不需要前处理、耗时短等优势,并被广泛应用于测定物质的纯度。
通过该方法测定的纯度准确度和精确度均优于其他方法,能准确地测定物质的绝对纯度,并且在精确度和准确度上优于其他方法。
差示扫描量热法的使用范围很广,可在无机物、有机化合物及药物分析中进行应用。
此外,它还可在食品和制药行业中用于表征和微调某些性质,例如大分子的稳定性、折叠或展开信息,以及测定玻璃化转变温度等。
实验二差示扫描量热法(DSC)在等速升温(降温)的条件下,测量试样与参比物之间的温度差随温度变化的技术称为差热分析,简称DTA(Differential Thermal Analysis)。
试样在升(降)温过程中,发生吸热或放热,在差热曲线上就会出现吸热或放热峰。
试样发生力学状态变化时(如玻璃化转变),虽无吸热或放热,但比热有突变,在差热曲线上是基线的突然变动。
试样对热敏感的变化能反映在差热曲线上。
发生的热效大致可归纳为:(1)发生吸热反应。
结晶熔化、蒸发、升华、化学吸附、脱结晶水、二次相变(如高聚物的玻璃化转变)、气态还原等。
(2)发生放热反应。
气体吸附、氧化降解、气态氧化(燃烧)、爆炸、再结晶等。
(3)发生放热或吸热反应。
结晶形态转变、化学分解、氧化还原反应、固态反应等。
用DTA方法分析上述这些反应,不反映物质的重量是否变化,也不论是物理变化还是化学变化,它只能反映出在某个温度下物质发生了反应,具体确定反应的实质还得要用其他方法(如光谱、质谱和X光衍射等)。
由于DTA测量的是样品和基准物的温度差,试样在转变时热传导的变化是未知的,温差与热量变化比例也是未知的,其热量变化的定量性能不好。
在DTA基础上增加一个补偿加热器而成的另一种技术是差示扫描量热法。
简称DSC(Differential Scanning Calorimetry)。
因此DSC直接反映试样在转变时的热量变化,便于定量测定。
DTA、DSC广泛应用于:(1)研究聚合物相转变,测定结晶温度Tc 、熔点Tm、结晶度XD。
结晶动力学参数。
(2)测定玻璃化转变温度Tg。
(3)研究聚合、固化、交联、氧化、分解等反应,测定反应热、反应动力学参数。
一、目的要求:1.了解DTA、DSC的原理。
2.掌握用DSC测定聚合物的Tg 、Tc、Tm、XD。
二、基本原理:1.DTA图(11-1)是DTA的示意图。
通常由温度程序控制、气氛控制、变换放大、显示记录等部分所组成。
差示扫描量热法
差示扫描量热法(DSC)是一种用于确定受控温度范围内被测样品与参考样品之间热流率差异的技术。
该分析过程是在一个封闭的系统中实现的,该封闭系统与周围环境之间通过边界隔离,只有热量和能量可以流动,而质量不能通过边界流动。
差示扫描量热法可以在恒定压力或恒定体积下进行,这使分析人员可以监测由所研究的反应引起的温度变化。
差示扫描量热法。
DSC常用于:1,获取未知材料的性质和成分信息;2,研究样品纯度和确认成分分析。
同时,DSC在食品和制药行业中也很流行,用于表征和微调某些性质;大分子的稳定性,折叠或展开信息也可以通过DSC实验测量。
差示扫描量热法可应用于:
1,相变分析。
通过测量焓随温度的变化来确定熔点、结晶点和相变;
2,玻璃化温度测量。
用高分辨率量热法检测玻璃化转变温度(Tg);3,比热容的测量。
用蓝宝石标准测定固体和液体的Cp(比热容);4,化学反应焓的测定。
测定化学反应的吸热和放热焓ΔH;
5,热、氧化稳定性的测定。
测定各种气体环境和不同压力下的氧化诱导时间。
示差扫描量热法
示差扫描量热法(Differential Scanning Calorimetry,DSC)是一种利用固体、液体或气态样品随着温度变化所产生的热力学性质变化进行测试和分析的技术。
该方法利用示差式扫描量热计(Differential Scanning Calorimeter)测量试样与基准的热流差值随温度变化的情况,从而获得样品在升温或降温过程中的热反应特性。
具体地,DSC在实验中,通常会将试样和基准置于两个独立的炉腔中,随着温度的变化逐步加热或冷却。
测量过程中,试样和基准分别接收到不同的能量流,差值就称为示差热流信号,通过这个信号,我们可以分析得到试样的热反应情况,如熔化、结晶、玻璃化、聚合等物理化学过程以及与空气或其他气体发生反应的物质。
可以根据试样的变化以及热反应等性质解释得到样品本身的特性、纯度等信息。
DSC技术广泛应用于化学制品、医药、食品等领域,它具有操作简便、测试精度高等优点,同时可以提供大量有用的热学数据,为高分子材料、金属材料、药物、食品等领域的研究和应用提供了强有力的支持。
简述差热分析,差示扫描量热分析的基本原理差热分析和差示扫描量热分析(DSC)是测量材料的物理性质的一种常用技术。
它们可以测量和分析材料的热量流失,在加热和冷却过程中材料的温度,以及在这两个过程中发生的化学反应。
这些技术也常用于分析材料的物化特性,如熔点,热容量等。
差热分析是一种根据材料在不同温度下的热导率,来测量材料特性的技术。
它通过控制一个样品在不同温度,以及使用固定的快速热流,来直接测量材料的热传导性能。
它的基本原理是,当样品和热源之间的温度差达到一定的值时,样品会吸收热量,加热;同时,温度差值会随着温度的变化而变化。
差示扫描量热分析(DSC)是一种更加精确的测量技术,它可以测量更小的温度变化,以及更小的热量流失。
它将差热分析中的快速热流替换成一致热流,从而得到更精确的测量结果。
它的基本原理是,在一个固定的温度量程内(由上下限确定),控制一个样品在升温或降温过程中,样品吸收或放出热量,从而使得温度变化,从而得到热量流失的精确值。
在差热分析和差示扫描量热分析的应用中,需要使用专业的仪器来测量和控制温度。
这些仪器可以精确地控制温度,使用户可以在短时间内得到精确的测量结果。
差热分析和差示扫描量热分析是材料特性分析中常用的技术,它们可以测量材料的热量流失,温度变化,以及发生的化学反应。
它们通过精确的控制温度,以及使用固定的快速热流或一致热流,来测量材料的热传导性能,以及材料的物理和化学特性。
同时,它们也可以帮助用户轻松地得到精确的测量结果。
总之,差热分析和差示扫描量热分析是研究材料特性常用的技术,它们的基本原理是,在一定温度差达到一定大小时,样品会吸收或放出热量,从而使得温度变化。
同时,这些技术也需要使用专业的仪器,来获得精确的测量结果。
常用热分析技术:差示扫描量热法(DSC)、差热分析(DTA)、热重分析(TAG)物质的物理状态和化学状态发生变化(如升华、氧化、聚合、固化、硫化、脱水、结晶、熔融、晶格改变或发生化学反应)时,往往伴随着热力学性质(如热焓、比热、导热系数等)的变化,故可通过测定其热力学性能的变化,来了解物质物理或化学变化的过程。
主要方法有:▪差热分析-DTA;▪差示扫描量热法-DSC;▪热重分析-TGA。
▪1. TG的基本原理TG:可调速的加热或冷却环境中,以被测物重量作为时间或温度的函数进行记录的方法。
DTG:微商热重曲线,热重曲线对时间或温度的一阶微商的方法获得的曲线。
2. 分析方法:升温法和恒温法升温法:样品在真空或其他任何气体中进行等速加温,样品将温度的升高发生物理变化和化学变化使原样品失重—动态法。
原理:在某特定的温度下,会发生重量的突变,以确定样品的特性。
恒温法:在恒温下,记录样品的重量变化作为时间的函数的方法。
3. 影响TGA数据的因素(1)气体的浮力和对流浮力的影响:样品周围的气体因温度的升高而膨胀,比重减小,则样品的TGA值增加。
对流的影响:对流的产生使得测量出现起伏。
(2)挥发物的再凝聚凝聚物的影响:物质分解产生的挥发物质可能凝聚在与称重皿相连而又较冷的部位上,影响失重的测定结果。
(3)样品与称量皿的反应反应的影响:某些物质在高温下会与称量皿发生化学反应而影响测定结果。
(4)升温速率的影响升温速率的影响:升温速率太快,TGA曲线会向高温移动;速度太慢,实验效率降低。
(5)样品用量和粒度用量和粒度影响:样品用量大,挥发物不易逸出,影响曲线比那话的清晰度;样品细,反应会提前影响曲线低温移动。
(6)环境气氛环境气氛对热失重曲线的影响4. 热重分析的应用热重分析主要研究在空气或惰性气氛材料的热稳定性、热分解作用和氧化分解等物理化学变化;也广泛用于涉及质量变化的所有物理过程。
根据热失重曲线可获得材料热分解过程的活化能和反应级数:k = dm/dt= A·mn·e-E/RT;ln(dm/dt) = lnA + nlnm- E/RT;获得n和E的方法:a. 示差法;b. 不同升温速率法;ln(d m/d t) = lnA + n ln m- E/RT;ln k= 0时,有:E/RT0= lnA + n ln m;T0—反应速度的对数为零时的温度;1. DSC的工作原理差示扫描量热法(DSC)是在程序控制温度条件下,测量输入给样品与参比物的功率差与温度关系的一种热分析方法。
差示扫描量热仪(DSC/DTA)简介1. 简介差示扫描量热仪(Differential Scanning Calorimetry,DSC)和差示热分析仪(Differential Thermal Analysis,DTA)是常用的热分析仪器。
它们广泛应用于材料科学、化学、生物学等领域,在研究样品的热性质、热变化以及相变等方面起到关键作用。
2. 差示扫描量热仪(DSC)的原理差示扫描量热仪通过比较待测样品与参比样品之间的热量差异,来分析样品的热性质。
其主要原理是利用两个温度探测器来测量样品和参比样品之间的温度差异,并通过控制和调整样品和参比样品的温度,以获取相应的热量数据。
3. 差示扫描量热仪(DSC)的仪器组成差示扫描量热仪主要由以下几个部分组成:3.1 采样系统采样系统用于装载和固定待测样品和参比样品,并提供温度控制和调整的环境。
样品采用常见的形式,如粉末、片状、颗粒状等。
3.2 温度控制系统温度控制系统用于精确控制样品和参比样品的温度,并能够按照特定的温度程序进行加热或冷却。
3.3 热量测量系统热量测量系统由两个温度探测器组成,分别测量样品和参比样品的温度变化。
常用的温度探测器包括热电偶和铂电阻温度计等。
3.4 数据记录和分析系统数据记录和分析系统负责采集、记录和分析差示扫描量热仪所产生的数据。
它可以提供实时数据显示和曲线分析功能,以便进一步研究样品的热性质和热变化规律。
4. 差示扫描量热仪(DSC)的应用领域差示扫描量热仪广泛应用于材料科学、化学、生物学等领域。
它可以用于测量和研究固体、液体和气体等样品的热性质,包括热容、热导率、热膨胀系数、熔点、熔融焓、晶型转变等。
在材料科学领域,差示扫描量热仪可以用于材料的热稳定性研究,新材料的开发和性能评价,以及相变、晶型转变等研究。
在化学领域,差示扫描量热仪可以用于测量和研究化学反应的热效应,包括吸热反应、放热反应、放热反应的速率等。
在生物学领域,差示扫描量热仪可以用于生物分子的稳定性研究,生物催化反应的研究,以及生物样品的热变化和相变等研究。
示差扫描量热法原理示差扫描量热法是一种常用的热分析技术,用于研究物质在加热或冷却过程中的热性质变化。
该方法通过测量样品和参比物温度之间的差异来确定样品的热容量和热效应。
下面将详细介绍示差扫描量热法的原理及其应用。
一、示差扫描量热法原理示差扫描量热法基于热平衡原理,通过对比样品和参比物的温度差异来测量样品的热性质变化。
该方法主要包括以下几个步骤:1. 样品和参比物的准备:选择适当的样品和参比物,样品应具有所需研究的热性质变化,参比物应具有稳定的热性质。
样品和参比物应具有相似的质量和形状,以保证在相同条件下吸收或释放相同的热量。
2. 样品和参比物的装填:将样品和参比物分别装填到示差扫描量热仪的样品盒和参比盒中。
装填时要注意避免气泡的产生,以确保热传导的准确性。
3. 扫描温度:将样品和参比物的温度从初始温度升至最高温度或降至最低温度的过程称为扫描温度。
在扫描温度过程中,示差扫描量热仪会记录样品和参比物的温度变化。
4. 温度差分析:示差扫描量热仪将记录的样品和参比物温度差异转换为热性质变化数据。
通过计算样品和参比物之间的温度差异,可以确定样品的热容量和热效应。
二、示差扫描量热法的应用示差扫描量热法广泛应用于材料科学、化学工程、生物医学和环境科学等领域,主要用于以下方面的研究:1. 热性质分析:示差扫描量热法可以测量材料的热容量、热导率和热膨胀系数等热性质参数,用于分析材料的热稳定性和热行为。
2. 反应动力学研究:通过示差扫描量热法可以研究化学反应或生物反应的热效应和反应动力学参数,如反应速率常数、反应活化能等。
3. 材料相变分析:示差扫描量热法可以用于研究材料的相变行为,如熔化、凝固、晶化和玻璃化等过程,从而揭示材料的结构和性质变化。
4. 生物热学研究:示差扫描量热法可以用于生物体系的热学研究,如生物大分子的热解、蛋白质的折叠和解聚等过程。
5. 药物研究:示差扫描量热法可以用于药物的热稳定性和热效应研究,包括药物的热解、溶解、晶型转变等。