差示扫描量热法
- 格式:ppt
- 大小:2.03 MB
- 文档页数:205
DSC 差示扫描量热法差示扫描量热法(differential scanning calorimetry)这项技术被广泛应用于一系列应用,它既是一种例行的质量测试和作为一个研究工具。
该设备易于校准,使用熔点低,是一种快速和可靠的热分析方法。
差示扫描量热法(DSC)是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术。
DSC和DTA仪器装置相似,所不同的是在试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化,当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时则使参比物一边的电流增大,直到两边热量平衡,温差ΔT消失为止。
换句话说,试样在热反应时发生的热量变化,由于及时输入电功率而得到补偿,所以实际记录的是试样和参比物下面两只电热补偿的热功率之差随时间t 的变化关系。
如果升温速率恒定,记录的也就是热功率之差随温度T的变化关系。
物质在温度变化过程中,往往伴随着微观结构和宏观物理,化学等性质的变化。
宏观上的物理,化学性质的变化通常与物质的组成和微观结构相关联。
通过测量和分析物质在加热或冷却过程中的物理、化学性质的变化,可以对物质进行定性,定量分析,以帮助我们进行物质的鉴定,为新材料的研究和开发提供热性能数据和结构信息。
在差热分析中当试样发生热效应时,试样本身的升温速度是非线性的。
以吸热反应为例,试样开始反应后的升温速度会大幅度落后于程序控制的升温速度,甚至发生不升温或降温的现象;待反应结束时,试样升温速度又会高于程序控制的升温速度,逐渐跟上程序控制温度,升温速度始终处于变化中。
而且在发生热效应时,试样与参比物及试样周围的环境有较大的温差,它们之间会进行热传递,降低了热效应测量的灵敏度和精确度。
因此,到目前为止的大部分差热分析技术还不能进行定量分析工作,只能进行定性或半定量的分析工作,难以获得变化过程中的试样温度和反应动力学的数据。
差示量热扫描法
差示扫描量热法(DSC)是一种热分析技术,用于测量在程序控制温度下输入到试样和参比物的功率差(如以热的形式)与温度的关系。
差示扫描量热仪记录到的曲线称为DSC曲线,它以样品吸热或放热的速率,即热流率dH/dt(单位毫焦/秒)为纵坐标,以温度T或时间t为横坐标,可以测量多种热力学和动力学参数,例如比热容、反应热、转变热、相图、反应速率、结晶速率、高聚物结晶度、样品纯度等。
差示扫描量热法有补偿式和热流式两种。
在差示扫描量热中,为使试样和参比物的温差保持为零在单位时间所必需施加的热量与温度的关系曲线为DSC曲线。
差示扫描量热法具有试样用量少、基本不需要前处理、耗时短等优势,并被广泛应用于测定物质的纯度。
通过该方法测定的纯度准确度和精确度均优于其他方法,能准确地测定物质的绝对纯度,并且在精确度和准确度上优于其他方法。
差示扫描量热法的使用范围很广,可在无机物、有机化合物及药物分析中进行应用。
此外,它还可在食品和制药行业中用于表征和微调某些性质,例如大分子的稳定性、折叠或展开信息,以及测定玻璃化转变温度等。
实验二差示扫描量热法(DSC)在等速升温(降温)的条件下,测量试样与参比物之间的温度差随温度变化的技术称为差热分析,简称DTA(Differential Thermal Analysis)。
试样在升(降)温过程中,发生吸热或放热,在差热曲线上就会出现吸热或放热峰。
试样发生力学状态变化时(如玻璃化转变),虽无吸热或放热,但比热有突变,在差热曲线上是基线的突然变动。
试样对热敏感的变化能反映在差热曲线上。
发生的热效大致可归纳为:(1)发生吸热反应。
结晶熔化、蒸发、升华、化学吸附、脱结晶水、二次相变(如高聚物的玻璃化转变)、气态还原等。
(2)发生放热反应。
气体吸附、氧化降解、气态氧化(燃烧)、爆炸、再结晶等。
(3)发生放热或吸热反应。
结晶形态转变、化学分解、氧化还原反应、固态反应等。
用DTA方法分析上述这些反应,不反映物质的重量是否变化,也不论是物理变化还是化学变化,它只能反映出在某个温度下物质发生了反应,具体确定反应的实质还得要用其他方法(如光谱、质谱和X光衍射等)。
由于DTA测量的是样品和基准物的温度差,试样在转变时热传导的变化是未知的,温差与热量变化比例也是未知的,其热量变化的定量性能不好。
在DTA基础上增加一个补偿加热器而成的另一种技术是差示扫描量热法。
简称DSC(Differential Scanning Calorimetry)。
因此DSC直接反映试样在转变时的热量变化,便于定量测定。
DTA、DSC广泛应用于:(1)研究聚合物相转变,测定结晶温度Tc 、熔点Tm、结晶度XD。
结晶动力学参数。
(2)测定玻璃化转变温度Tg。
(3)研究聚合、固化、交联、氧化、分解等反应,测定反应热、反应动力学参数。
一、目的要求:1.了解DTA、DSC的原理。
2.掌握用DSC测定聚合物的Tg 、Tc、Tm、XD。
二、基本原理:1.DTA图(11-1)是DTA的示意图。
通常由温度程序控制、气氛控制、变换放大、显示记录等部分所组成。
差示扫描量热法
差示扫描量热法(DSC)是一种用于确定受控温度范围内被测样品与参考样品之间热流率差异的技术。
该分析过程是在一个封闭的系统中实现的,该封闭系统与周围环境之间通过边界隔离,只有热量和能量可以流动,而质量不能通过边界流动。
差示扫描量热法可以在恒定压力或恒定体积下进行,这使分析人员可以监测由所研究的反应引起的温度变化。
差示扫描量热法。
DSC常用于:1,获取未知材料的性质和成分信息;2,研究样品纯度和确认成分分析。
同时,DSC在食品和制药行业中也很流行,用于表征和微调某些性质;大分子的稳定性,折叠或展开信息也可以通过DSC实验测量。
差示扫描量热法可应用于:
1,相变分析。
通过测量焓随温度的变化来确定熔点、结晶点和相变;
2,玻璃化温度测量。
用高分辨率量热法检测玻璃化转变温度(Tg);3,比热容的测量。
用蓝宝石标准测定固体和液体的Cp(比热容);4,化学反应焓的测定。
测定化学反应的吸热和放热焓ΔH;
5,热、氧化稳定性的测定。
测定各种气体环境和不同压力下的氧化诱导时间。
示差扫描量热法
示差扫描量热法(Differential Scanning Calorimetry,DSC)是一种利用固体、液体或气态样品随着温度变化所产生的热力学性质变化进行测试和分析的技术。
该方法利用示差式扫描量热计(Differential Scanning Calorimeter)测量试样与基准的热流差值随温度变化的情况,从而获得样品在升温或降温过程中的热反应特性。
具体地,DSC在实验中,通常会将试样和基准置于两个独立的炉腔中,随着温度的变化逐步加热或冷却。
测量过程中,试样和基准分别接收到不同的能量流,差值就称为示差热流信号,通过这个信号,我们可以分析得到试样的热反应情况,如熔化、结晶、玻璃化、聚合等物理化学过程以及与空气或其他气体发生反应的物质。
可以根据试样的变化以及热反应等性质解释得到样品本身的特性、纯度等信息。
DSC技术广泛应用于化学制品、医药、食品等领域,它具有操作简便、测试精度高等优点,同时可以提供大量有用的热学数据,为高分子材料、金属材料、药物、食品等领域的研究和应用提供了强有力的支持。
第五节差示扫描量热法一、基本原理差示扫描量热仪分功率补偿型和热流型两种,都获得国际热分析协会的认可。
两者的最大差别在于结构设计原理上的不同,下面分别加以介绍。
功率补偿型的DSC是内加热式,装样品和参比物的支持器是各自独立的元件,如图1所示,在样品和参比的底部各有一个加热用的铂热电阻和一个测温用的铂传感器。
它是采用动态零位平衡原理,即要求样品与参比物温度,不论样品吸热还是放热时都要维持动态零位平衡状态,也就是要维持样品与参比物温度差趋向零1(△T≥0)。
DSC测定的是维持样品和参比物处于相同温度所需要的能量差AW,反映了样品热焓的变化。
DSC仪器的工作原理如图2所示。
图中第一个回路是平均温度控制回路,它保证试样和参比物能按程序控温速率进行。
检测的试样和参比物的温度信号与程序控制提供的程序信号在TA放大处(平均温度放大器)相互比较,如果程序温度高于试样和参比物的平均温度,则由放大器提供更多的热功率给试样和参比以提高它们的平均温度,与程序温度相匹配,这就达到程序控温过程。
第二个回路是补偿回路,检测到试样和参比物产生温差时(试样产生放热或吸热反应),能及时由温差AT放大器输入功率以消除这一差别。
热流型DSC 是外加热式,如图3所示,采取外加热的方式使均温块受热然后通过空气和康铜做的热垫片两个途径把热传递给试样杯和参比杯,试样杯的温度由镍铬丝和镍铝丝组成的高灵敏度热电偶检测,参比杯的温度由镍铬丝和康铜组成的热电偶加以检测。
由此可知,检测的是温差ΔT ,它是试样热量变化的反映。
根据热学原理,温差ΔT 的大小等于单位时间试样热量变化s dQ dt 和试样的热量向外传递所受阻力R 的乘积,即sdQ T R dt ∆= (2)式中R 和热传导系数与热辐射、热容等有关,且强烈依赖于实验条件和温度,因此ΔT 不是一个很确定的量,它反映热量,但不一定与热量成正比。
这是DTA定量性不良的症结所在。
3 s dQ dt解决的办法,一是采用高灵敏度的热电偶对试样和参比物的温差进行精确的测量;二是采用高导热率材料制成的圆盘把热流快速均匀地传给试样和参比物;三是对热阻进行温度校正,即所谓的多点校正法(有的仪器采用20个点),在测试的温度范围内,随温度不断升高,获得热阻R与温度的非线性函数关系,以不断修正的R值作为常数,就能按照热流公式(2)将检测的ΔT转换成能量。
差式扫描量热法(DSC)扎卡里·沃拉斯(Zachary Voras)1.分类差式扫描量热法(differential scanning calorimetry,DSC)属于破坏式分析技术。
2.说明DSC与差热分析(differential thermal analysis,DTA)有关,是一种能够识别材料热稳定性差异的定量技术。
利用DSC可以分辨一种材料与标准物质在结晶度、玻璃化转变状态或熔点/沸点方面的差异。
虽然该技术无法像光谱法或质谱法那样提供阳性定性,但它对热稳定性差异的检测非常灵敏,因此成为有机材料劣化研究的最佳选择。
这种技术会在样品加热过程中测量样品所发生物理/化学变化的各种属性。
实验基本设置为,将样品和标准物质分别置入两只样品托盘,放入分析室内统一加热,以便生成热谱图。
这种托盘只需毫克级样品就可进行分析。
分析室内可有各种氛围条件,如真空或气体吹扫(如氧气、氮气或氩气吹扫)。
应根据要检测的物理/化学变化来监控样品托盘的加热温度和(或)功率。
此外,还可使用吹扫气体诱导样品表征(例如用氧气令样品氧化)来调节DSC实验中的观察结果。
现代设备可完全自动化运转,也可在一个实验中加热多个样品,因此可获得更高的实验效率。
在这些实验中,得到的热谱图可用于观察与样品能量属性相关的所有变化,如结晶、相变、放热/吸热过程和动力学速率。
DSC有3种常见类型:功率补偿型DSC、热流型DSC和调制型DSC。
功率补偿型DSC是用两组独立的加热元件分别加热样品和标准物质,再监测维持恒定温度所用的功率差。
图2为功率补偿型DSC实验的一般示意图。
热流型DSC实验是以相同速率加热样品和标准物质,再测量热流差异并生成热谱图。
调制型DSC的实验设置与热流型DSC相似,不过样品和标准物质是在温度循环(热/冷循环)条件下测量热流并加以比较。
图3是热流型DSC或调制型DSC实验的一般示意图。
凭借检测生成的热谱图,分析人员可对各种转变温度进行量化,再将量化结果转化为比热、玻璃化转变温度、结晶温度和动力学速率等物理量。
药物分析中的差示扫描量热法研究差示扫描量热法(Differential Scanning Calorimetry,DSC)是一种广泛应用于药物分析领域的热分析技术。
它通过测量物质在加热或冷却过程中吸收或放出的热量来研究其热力学性质和相变过程。
在药物分析中,差示扫描量热法被广泛用于药物研发、质量控制以及稳定性评价等方面。
本文将重点介绍差示扫描量热法在药物分析中的应用及其研究方法。
一、差示扫描量热法原理差示扫描量热法基于样品与参比品之间的热交换原理进行测量。
在实验中,将待测样品与已知热特性的参比品同时放入量热仪中,通过对两个样品进行同时加热或冷却,测量样品与参比品之间的温差和热量差,从而获得样品的热特性信息。
差示扫描量热法主要包括两种工作模式:差示扫描热量仪(DSC)和差示红外热量仪(DSC-IR)。
DSC主要用来测量样品的热量变化,可以得到样品的熔融点、结晶度、玻璃化转变、相分离等信息。
DSC-IR则结合了差示扫描热量仪和红外光谱仪的功能,可以通过红外光谱分析样品中的吸收峰来获取更加详细的化学信息。
二、差示扫描量热法在药物研发中的应用1. 药物配方研究差示扫描量热法可以用于研究药物的配方中所使用的各种成分对药物性质的影响。
通过对不同配方药物的扫描分析,可以对比不同药物的热力学特性差异,从而确定最佳的配方组合。
2. 药物溶解性研究差示扫描量热法可通过测量药物在不同温度下的溶解热来判断药物的溶解性。
通过分析药物的热解曲线,可以了解药物在不同溶剂中的溶解度,为药物的制剂开发提供重要依据。
3. 药物相变研究差示扫描量热法可用于研究药物的相变过程。
通过测量药物在不同温度下吸热或放热的情况,可以确定药物的熔点、晶型转变、溶解度等热力学参数,帮助药物科研人员了解药物的稳定性和相容性。
4. 药物质量控制差示扫描量热法可用于药物制剂的质量控制。
通过对药物样品的热分析,可以鉴定药物的成分、含量和纯度等质量指标,确保药物的质量符合规定标准。