试求传递函数Cs
- 格式:ppt
- 大小:1.86 MB
- 文档页数:27
第2章习题2.1 列写如图题2.1所示电路中以电源电压U 作为输入,电容1C ,2C 上的电压1c U 和2c U 作为输出的状态空间表达式。
图题2.1答案:X L R LL M C R M C M C R M C C X ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−−−−+−=211321321100)(& X y ⎥⎦⎤⎢⎣⎡=010001其中)(3221311C C C C C C R M ++=2.2 如图题2.2所示为RLC 网络,有电压源s e 及电流源s i 两个输入量。
设选取状态变量23121,,C C L u x u x i x ===;输出量为y 。
建立该网络动态方程,并写出其向量-矩阵形式(提示:先列写节点a ,b 的电流方程及回路电势平衡方程)。
图题2.2*答案:⎥⎦⎤⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡−+⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡−−+−=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡s s e i C L L R C C L L L RR 0001100100111x x x 12121321&&&U 3+-se[]111−−−=R y ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321x x x +[]⎥⎦⎤⎢⎣⎡s s e i R 11 2.3 列写图题2.3所示RLC 网络的微分方程。
其中,r u 为输入变量,c u 为输出变量图题2.3答案:r c cc u u dt du RC dtu d LC =++22 2.4 列写图题2.4所示RLC 网络的微分方程,其中r u 为输入变量,c u 为输出变量。
图题2.4答案:r c cc uu dt du R L dtu d LC =++22 2.5 图题2.5所示为一弹簧—质量—阻尼器系统,列写外力)(t F 与质量块位移)(t y 之间)(t图题2.5答案:)()()()(22t f t ky dt t dy f dtt y d m =++ 2.6 列写图题2.6所示电路的微分方程,并确定系统的传递函数,其中r u 为输入变量,cu 为输出变量。
自动控制原理习题及其解答第一章(略) 第二章例2-1 弹簧,阻尼器串并联系统如图2-1示,系统为无质量模型,试建立系统的运动方程。
解:(1) 设输入为y r ,输出为y 0。
弹簧与阻尼器并联平行移动。
(2) 列写原始方程式,由于无质量按受力平衡方程,各处任何时刻,均满足∑=0F ,则对于A 点有021=-+K K f F F F其中,F f 为阻尼摩擦力,F K 1,F K 2为弹性恢复力。
(3) 写中间变量关系式220110)()(y K F Y Y K F dty y d f F K r K r f =-=-⋅=(4) 消中间变量得 020110y K y K y K dtdy f dt dy f r r=-+- (5) 化标准形 r r Ky dtdyT y dt dy T +=+00 其中:215K K T +=为时间常数,单位[秒]。
211K K K K +=为传递函数,无量纲。
例2-2 已知单摆系统的运动如图2-2示。
(1) 写出运动方程式 (2) 求取线性化方程 解:(1)设输入外作用力为零,输出为摆角θ ,摆球质量为m 。
(2)由牛顿定律写原始方程。
h mg dtd l m --=θθsin )(22其中,l 为摆长,l θ 为运动弧长,h 为空气阻力。
(3)写中间变量关系式)(dtd lh θα= 式中,α为空气阻力系数dtd l θ为运动线速度。
(4)消中间变量得运动方程式0s i n 22=++θθθmg dt d al dtd ml (2-1) 此方程为二阶非线性齐次方程。
(5)线性化由前可知,在θ =0的附近,非线性函数sin θ ≈θ ,故代入式(2-1)可得线性化方程为022=++θθθmg dt d al dtd ml 例2-3 已知机械旋转系统如图2-3所示,试列出系统运动方程。
解:(1)设输入量作用力矩M f ,输出为旋转角速度ω 。
(2)列写运动方程式f M f dtd J+-=ωω式中, f ω为阻尼力矩,其大小与转速成正比。
传递函数怎么求例题传递函数(Transfer Function)是控制理论中一个非常重要的概念,通过这个概念我们可以建立控制系统的数学模型,从而对系统进行分析、设计和优化。
那么,传递函数怎么求呢?下面我们就来一步步地讲解。
第一步:建立系统模型对于一个控制系统,首先需要建立它的数学模型。
在建立数学模型时,我们需要确定系统的输入和输出,以及系统组成的各个部分。
通常情况下,可以使用方程、框图等形式来表示系统。
第二步:提取系统的传递函数在建立系统模型之后,我们需要找到它的传递函数。
传递函数指的是系统的输出与输入之间的关系,通常使用频域法或者拉普拉斯变换来求得。
如果采用频域法求传递函数,可以通过系统的频率响应曲线来求解。
根据频率响应曲线的公式,我们可以得到系统的增益和相位,从而求得传递函数。
如果采用拉普拉斯变换来求传递函数,需要进行以下步骤:1. 对系统模型进行拉普拉斯变换2. 将求得的拉普拉斯变换表达式中的输入变量转化为拉普拉斯变换域中的变量3. 求出输出变量与输入变量之间的比值,即可得到传递函数例如,一个系统模型为:$$y(t) = \frac{1}{sC} \cdot \int_{0}^{t}x(\tau) e^{-\frac{t-\tau}{RC}} d\tau$$将其进行拉普拉斯变换:$$Y(s) = \frac{1}{sC} \cdot \frac{1}{1+RCs} \cdot X(s)$$再将其化简,可以得到传递函数:$$\frac{Y(s)}{X(s)}=\frac{1}{1+RCs}$$第三步:对传递函数进行分析得到传递函数后,我们可以对它进行分析。
通过分析传递函数,可以得到系统的特性,比如阶数、稳定性、极点、零点、频率响应等。
通过这些特性,可以对系统进行优化,实现良好的控制效果。
通过以上步骤,我们就可以求得一个系统的传递函数了。
需要注意的是,在实际应用中,传递函数通常是被作为一个重要的参数使用,帮助我们建立系统模型、进行系统设计优化等。
第2章系统的数学模型(习题答案)2.1什么是系统的数学模型?常用的数学模型有哪些?解:数学模型就是根据系统运动过程的物理、化学等规律,所写出的描述系统运动规律、特性、输出与输入关系的数学表达式。
常用的数学模型有微分方程、传递函数、状态空间模型等。
2.2 什么是线性系统?其最重要的特性是什么?解:凡是能用线性微分方程描述的系统就是线性系统。
线性系统的一个最重要的特性就是它满足叠加原理。
2.3 图( 题2.3) 中三图分别表示了三个机械系统。
求出它们各自的微分方程, 图中x i表示输入位移, x o表示输出位移, 假设输出端无负载效应。
题图2.3解:①图(a):由牛顿第二运动定律,在不计重力时,可得整理得将上式进行拉氏变换,并注意到运动由静止开始,即初始条件全部为零,可得[]于是传递函数为②图(b):其上半部弹簧与阻尼器之间,取辅助点A,并设A点位移为x,方向朝下;而在其下半部工。
引出点处取为辅助点B。
则由弹簧力与阻尼力平衡的原则,从A和B两点可以分别列出如下原始方程:消去中间变量x,可得系统微分方程对上式取拉氏变换,并记其初始条件为零,得系统传递函数为③图(c):以的引出点作为辅助点,根据力的平衡原则,可列出如下原始方程:移项整理得系统微分方程对上式进行拉氏变换,并注意到运动由静止开始,即则系统传递函数为2.4试建立下图(题图2.4)所示各系统的微分方程并说明这些微分方程之间有什么特点,其中电压)(t u r 和位移)(t x r 为输入量;电压)(t u c 和位移)(t x c 为输出量;1,k k 和2k 为弹簧弹性系数;f 为阻尼系数。
+-+-u )tfC)+-+-f)(a )(b )(c )(d R题图2.4【解】:)(a方法一:设回路电流为i ,根据克希霍夫定律,可写出下列方程组:⎪⎩⎪⎨⎧=+=⎰i R u u dt i C u cc r 1消去中间变量,整理得:dtdu RC u dt du RCrc c =+方法二:dtdu RC u dt du RCRCs RCs CsR R s U s U rc c r c =+⇒+=+=11)()( 由于无质量,各受力点任何时刻均满足∑=0F ,则有:cc r kx dt dxdt dx f =-)(dtdx k f x dt dx k f rc c =+⇒()r r c c r c u dtduC R u dt du C R R Cs R R Cs R Cs R R CsR s U s U +=++⇒+++=+++=221212212)(1111)()( 设阻尼器输入位移为a x ,根据牛顿运动定律,可写出该系统运动方程r rc c aa c a r c r x dtdx k f x dt dx f k k k k dt dx f x x k x x k x x k +=++⇒⎪⎩⎪⎨⎧=--=-22121221)()()( 结论:)(a 、)(b 互为相似系统,)(c 、)(d 互为相似系统。
如何求传递函数传递函数是描述信号在系统中传递过程的数学函数,也称为系统函数。
在信号与系统领域中,传递函数是一个重要的概念,用于描述线性时不变系统对输入信号的响应过程。
求传递函数的方法有多种,下面将介绍几种常用的方法。
1. 基于系统的微分方程求解传递函数对于线性时不变系统,可以通过求解系统的微分方程来得到传递函数。
首先,根据系统的输入输出关系建立微分方程,然后进行变换和求解,最终得到传递函数。
例如,对于一个二阶系统,可以根据系统的微分方程和初始条件,通过拉普拉斯变换将微分方程转化为代数方程,然后解代数方程得到传递函数。
2. 基于频域分析法求解传递函数频域分析法是一种常用的分析系统性能的方法,可以通过输入输出信号的频谱特性来求解传递函数。
通过对系统的输入信号进行傅里叶变换得到输入信号的频谱,再通过对输出信号进行傅里叶变换得到输出信号的频谱,最后将输出信号的频谱除以输入信号的频谱,即可得到传递函数。
3. 基于脉冲响应求解传递函数脉冲响应是指系统对单位脉冲信号的响应过程,通过脉冲响应可以求解传递函数。
首先,将系统对单位脉冲信号的响应过程测量或模拟得到脉冲响应函数,然后对脉冲响应函数进行拉普拉斯变换,即可得到传递函数。
4. 基于频率响应求解传递函数频率响应是指系统对不同频率输入信号的响应特性,通过频率响应可以求解传递函数。
可以通过输入不同频率的正弦信号或其他频率特性已知的信号,测量或模拟得到系统的频率响应曲线,然后对频率响应曲线进行数学处理,即可得到传递函数。
总结起来,求解传递函数的方法主要有基于系统的微分方程、频域分析法、脉冲响应和频率响应等方法。
不同的方法适用于不同的系统和信号特性。
在实际应用中,根据系统的性质和所需的分析结果选择合适的方法进行求解。
通过求解传递函数,可以深入理解系统的特性和性能,对信号在系统中的传递过程有更加全面的认识。
同时,传递函数的求解也为系统的分析、设计和控制提供了重要的数学工具。
求系统的传递函数常用的方法(一)求系统的传递函数常用什么是系统的传递函数?系统的传递函数是描述输入与输出之间关系的数学表达式,它在信号处理和控制系统中起到了重要作用。
通过分析系统的传递函数,我们可以了解系统对不同频率信号的响应以及系统的稳定性等性质。
常用的求系统传递函数的方法以下是常用的求系统传递函数的几种方法:1. 系统的微分方程法•根据系统的微分方程列出系统的特征方程;•将特征方程变换为拉普拉斯变换形式,得到系统的传递函数。
2. 系统的状态空间法•将系统的微分方程转化为状态空间表达式;•对状态空间表达式进行拉普拉斯变换,得到系统的传递函数。
3. 系统的频域响应法•对系统的输入进行傅里叶变换,得到输入信号在频域上的表示;•对系统的输出进行傅里叶变换,得到输出信号在频域上的表示;•根据输入和输出的频域表示,求得系统的传递函数。
4. 反馈控制法•通过反馈控制的计算方法,得到系统的传递函数。
5. Bode图法•对系统的频率响应进行测量,并绘制Bode图,从图中获取系统的传递函数。
6. 试探法•利用试探函数对系统进行近似建模,得到系统的传递函数。
7. 逆拉普拉斯变换法•已知系统在频域上的传递函数表达式,通过逆拉普拉斯变换求得系统的微分方程,从而得到系统的传递函数。
8. Z变换法•对离散系统进行Z变换得到系统的传递函数。
总结求系统的传递函数是进行信号处理和控制系统设计的基础工作之一。
通过对不同系统的特点和性质的分析,我们可以选择合适的方法来求解系统的传递函数,并进一步应用于实际工程中。
以上是常用的求系统传递函数的几种方法,每种方法都有其适用范围和优缺点,可以根据具体情况选择合适的方法来进行求解。
希望本文对您理解求系统传递函数方法有所帮助。
9. MATLAB/Simulink方法•MATLAB/Simulink 是一种常用的工具,可以用于求解系统的传递函数。
在 MATLAB 中,可以使用tf函数来创建传递函数对象,并使用相应的参数来指定系统的传递函数形式。
第2章系统的数学模型(习题答案)2.1什么是系统的数学模型?常用的数学模型有哪些?解:数学模型就是根据系统运动过程的物理、化学等规律,所写出的描述系统运动规律、特性、输出与输入关系的数学表达式。
常用的数学模型有微分方程、传递函数、状态空间模型等。
2.2 什么是线性系统?其最重要的特性是什么?解:凡是能用线性微分方程描述的系统就是线性系统。
线性系统的一个最重要的特性就是它满足叠加原理。
2.3 图( 题2.3) 中三图分别表示了三个机械系统。
求出它们各自的微分方程, 图中x i表示输入位移, x o表示输出位移, 假设输出端无负载效应。
题图2.3解:①图(a):由牛顿第二运动定律,在不计重力时,可得整理得将上式进行拉氏变换,并注意到运动由静止开始,即初始条件全部为零,可得[]于是传递函数为②图(b):其上半部弹簧与阻尼器之间,取辅助点A,并设A点位移为x,方向朝下;而在其下半部工。
引出点处取为辅助点B。
则由弹簧力与阻尼力平衡的原则,从A和B两点可以分别列出如下原始方程:消去中间变量x,可得系统微分方程对上式取拉氏变换,并记其初始条件为零,得系统传递函数为③图(c):以的引出点作为辅助点,根据力的平衡原则,可列出如下原始方程:移项整理得系统微分方程对上式进行拉氏变换,并注意到运动由静止开始,即则系统传递函数为2.4试建立下图(题图2.4)所示各系统的微分方程并说明这些微分方程之间有什么特点,其中电压)(t u r 和位移)(t x r 为输入量;电压)(t u c 和位移)(t x c 为输出量;1,k k 和2k 为弹簧弹性系数;f 为阻尼系数。
+-+-u )tfC)+-+-f)(a )(b )(c )(d R题图2.4【解】:)(a方法一:设回路电流为i ,根据克希霍夫定律,可写出下列方程组:⎪⎩⎪⎨⎧=+=⎰i R u u dt i C u cc r 1消去中间变量,整理得:dtdu RC u dt du RCrc c =+方法二:dtdu RC u dt du RCRCs RCs CsR R s U s U rc c r c =+⇒+=+=11)()( 由于无质量,各受力点任何时刻均满足∑=0F ,则有:cc r kx dt dxdt dx f =-)(dtdx k f x dt dx k f rc c =+⇒()r r c c r c u dtduC R u dt du C R R Cs R R Cs R Cs R R CsR s U s U +=++⇒+++=+++=221212212)(1111)()( 设阻尼器输入位移为a x ,根据牛顿运动定律,可写出该系统运动方程r rc c aa c a r c r x dtdx k f x dt dx f k k k k dt dx f x x k x x k x x k +=++⇒⎪⎩⎪⎨⎧=--=-22121221)()()( 结论:)(a 、)(b 互为相似系统,)(c 、)(d 互为相似系统。
自动控制原理复习题A一 、已知控制系统结构图如下图所示;试通过结构图等效变换求系统传递函数Cs /Rs ;二 、已知系统特征方程为 025103234=++++s s s s 试用劳思稳定判据确定系统的稳定性;三 、已知单位反馈系统的开环传递函数 试求输入分别为rt =2t 和 rt =2+2t+t 2 时系统的稳态误差;四 、设单位反馈控制系统开环传递函数如下,试概略绘出相应的闭环根轨迹图要求确定分离点坐标d :五、1 、绘制下列函数的对数幅频渐近特性曲线:2 、已知最小相位系统的对数幅频渐近特性曲线如图所示,试确定系统的开环传递函数;六 、已知线性离散系统的输出zz z z z z C 5.05.112)(2323+-++=,计算系统前4个采样时刻c 0,cT ,c 2T 和c 3T 的响应; 七 、已知非线性控制系统的结构图如下图所示;为使系统不产生自振,试利用描述函数法确定继电特性参数a ,b 的数值;继电特性的描述函数为a X X a X b X N ≥⎪⎭⎫ ⎝⎛-= ,14)(2π; 自动控制原理复习题A 答案一 223311321)1)(1()()(H G H G H G G G G s R s C +++=二 系统不稳定;三 ∞ , ∞四五12 )1100/)(1/()1/001.0(100)(11+++=s s s s G ωω 六 c 0=1 cT = c 2T = c 3T =七 b a π38> 自动控制原理复习题B一 、已知控制系统结构图如下图所示;试通过结构图等效变换求系统传递函数Cs /Rs ;二 、已知单位反馈系统的开环传递函数)12.0)(1()15.0()(2++++=s s s s s K s G试确定系统稳定时的K 值范围;三 、已知单位反馈系统的开环传递函数试求输入分别为 rt =2t 和 rt =2+2t+t 2 时,系统的稳态误差;四 、设单位反馈控制系统的开环传递函数要求:1 画出准确根轨迹至少校验三点;2 确定系统的临界稳定开环增益K c;3 确定与系统临界阻尼比相应的开环增益K ;五 、1 、绘制下列函数的对数幅频渐近特性曲线:2.已知最小相位系统的对数幅频渐近特性曲线如图所示,试确定系统的开环传递函数;六 、已知线性离散系统的闭环脉冲传递函数为2.01.0)(22-++=Φz z z z z ,试判断该系统是否稳定; 七 、试用等倾线法证明 )1( 022>=++ζωζωx x x n n相轨迹中有两条过原点直线,其斜率分别为微分方程的两个特征根;自动控制原理复习题B 答案 一 1211223232141)()(H G G H G H G G G G G G s R s C -+++=二解:由题可知系统的特征方程为列劳斯表如下由劳斯稳定判据可得解上述方程组可得 0 1.705K <<三 , ∞四 12 K c =1503 K =五12六 稳定七自动控制原理复习题C一、已知Gs 和Hs 两方框相对应的微分方程分别是且初始条件均为零,试求传递函数Cs /Rs ;二、已知非线性控制系统的结构图如下图所示;为使系统不产生自振,试利用描述函数法确定继电特性参数a ,b 的数值;继电特性的描述函数为a X X a X b X N ≥⎪⎭⎫ ⎝⎛-= ,14)(2π; 三、已知单位反馈系统的开环传递函数试求输入分别为rt =2t 和 rt =2+2t+t 2 时系统的稳态误差;四 、设单位反馈控制系统开环传递函数 )12()1()(++=s s s K s G , 试概略绘出相应的闭环根轨迹图要求确定分离点坐标d : 五、 1、绘制下列函数的对数幅频渐近特性曲线:2 、已知最小相位系统的对数幅频渐近特性曲线如图所示,试确定系统的开环传递函数;六 、设开环离散系统如图所示,试求开环脉冲传递函数GZ ;七 、各系统的Gjω与-1/Nx 曲线如下图所示,试判断各系统的稳定性P =0;1 、2、自动控制原理复习题C 答案一二 b a π38> 三 0 , 20四五12六七1自振点2a 为自振点,b 为不稳定周期运动。
自动控制原理试题2. (10分)已知某系统初始条件为零,其单位阶跃响应为)0(8.08.11)(94≥+-=--t e e t h t t ,试求系统的传递函数及单位脉冲响应。
3.(12分)当ω从0到+∞变化时的系统开环频率特性()()ωωj j H G 如题4图所示。
K 表示开环增益。
P 表示开环系统极点在右半平面上的数目。
v 表示系统含有的积分环节的个数。
试确定闭环系统稳定的K 值的范围。
4.(12分)已知系统结构图如下,试求系统的传递函数)(,)(s E s C1.(10分)已知某单位负反馈系统的开环传递函数为)5(4)(+=S S s G ,求该系统的单位脉冲响应和单位阶跃响应。
3.(10分)系统闭环传递函数为2222)(nn n s s G ωξωω++=,若要使系统在欠阻尼情况下的单位阶跃响应的超调量小于16.3%,调节时间小于6s ,峰值时间小于6.28s ,试在S 平面上绘出满足要求的闭环极点可能位于的区域。
(8分)0,3==p v (a )0,0==p v (b ) 2,0==p v (c ) 题4图 题2图6. (15分)已知最小相位系统的对数幅频特性曲线如下图所示(分段直线近似表示)1、.(10分)已知某单位负反馈系统的开环传递函数为)5(6)(+=s s s G ,试求系统的单位脉冲响应和单位阶跃响应。
3、(10分)已知系统的结构图如下,试求: (1)开环的对数幅频和相频特性曲线;(2)单位阶跃响应的超调量σ%,调节时间ts ; (3)相位裕量γ,幅值裕量h 。
7.(15分)已知系统结构图如下图所示,试求传递函数)()(,)()(s R s E s R s C 。
(1)试写出系统的传递函数G(s);(2)画出对应的对数相频特性的大致形状; (3)在图上标出相位裕量Υ。
3. (10分)已知某系统初始条件为零,其单位阶跃响应为)0(8.08.11)(94≥+-=--t e e t h t t ,试求系统的传递函数及单位脉冲响应。
如何求传递函数传递函数是系统理论中非常重要的概念,它描述了信号在线性时不变系统中的传递过程。
在控制系统、信号处理等领域中,传递函数作为系统的数学模型,被广泛应用于系统分析与设计中。
那么,如何求传递函数呢?我们需要了解传递函数的定义。
传递函数是输入信号与输出信号的关系函数,通常用H(s)表示,其中s是复变量。
传递函数描述了系统对输入信号的响应过程,可以通过对系统的输入输出进行分析求得。
下面我们将介绍两种常见的求传递函数的方法。
一、脉冲响应法脉冲响应法是一种常用的求传递函数的方法。
它的基本思想是通过对系统输入一个单位脉冲信号,然后观察系统的输出响应,从而得到传递函数。
具体步骤如下:1. 将系统的输入信号设置为单位脉冲信号δ(t),其中δ(t)表示单位冲激函数。
2. 记录系统的输出响应h(t),即系统对单位脉冲信号的响应。
3. 对记录的输出响应进行傅里叶变换,得到系统的频率响应H(jω),其中ω是频率变量。
4. 将频率响应H(jω)除以单位脉冲信号的傅里叶变换F(jω)=1,即可得到传递函数H(jω)。
通过脉冲响应法求得的传递函数是系统的拉普拉斯变换形式,可以直接用于系统分析与设计。
二、频率响应法频率响应法是另一种常用的求传递函数的方法。
它的基本思想是通过对系统输入一个正弦信号,然后观察系统的输出响应,从而得到传递函数。
具体步骤如下:1. 将系统的输入信号设置为正弦信号x(t)=Acos(ωt),其中A是振幅,ω是角频率。
2. 记录系统的输出响应y(t),即系统对正弦信号的响应。
3. 对记录的输入信号和输出响应进行傅里叶变换,得到输入信号的频率谱X(jω)和输出响应的频率谱Y(jω)。
4. 将输出响应的频率谱Y(jω)除以输入信号的频率谱X(jω),即可得到传递函数H(jω)=Y(jω)/X(jω)。
通过频率响应法求得的传递函数是系统的频域形式,可以用于频率特性分析和滤波器设计等应用。
需要注意的是,在实际应用中,由于系统的输入和输出通常是连续信号,所以需要进行傅里叶变换将其转换为频域信号。