初三应用题综合复习专项训练
- 格式:docx
- 大小:22.39 KB
- 文档页数:9
中考综合应用题精选(含答案)1.小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如下表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物651140第二次购物371110第三次购物981062(1)小林以折扣价购买商品A、B是第次购物;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?2.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y 元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.3.某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?4.经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.5.某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B 两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.6.某商店经销甲、乙两种商品,现有如下信息:信息1:甲、乙两种商品的进货单价之和是50元;信息2:甲商品零售单价比进货单价多10元,乙商品零售单价比进货单价的2倍少10元;信息3:按零售单价购买甲商品3件和乙商品2件,共付了190元.请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价各多少元?(2)该商店平均每天卖出甲商品60件和乙商品40件,经调查发现,甲、乙两种商品零售单价分别每降1元,这两种商品每天可多卖出10件,为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元,在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?7.某商品现在的售价为每件40元,每天可以卖出200件,该商品将从现在起进行90天的销售:在第x(1≤x≤49)天内,当天售价都较前一天增加1元,销量都较前一天减少2件;在第x(50≤x≤90)天内,每天的售价都是90元,销量仍然是较前一天减少2件,已知该商品的进价为每件30元,设销售该商品的当天利润为y元.(1)填空:用含x的式子表示该商品在第x(1≤x≤90)天的售价与销售量.第x(天)1≤x≤4950≤x≤90当天售价(元/件)当天销量(件)(2)求出y与x的函数关系式;(3)问销售商品第几天时,当天销售利润最大,最大利润是多少?(4)该商品在销售过程中,共有多少天当天销售利润不低于4800元?请直接写出结果.8.我市为创建“国家级森林城市”政府将对江边一处废弃荒地进行绿化,要求栽植甲、乙两种不同的树苗共6000棵,且甲种树苗不得多于乙种树苗,某承包商以26万元的报价中标承包了这项工程.根据调查及相关资料表明:移栽一棵树苗的平均费用为8元,甲、乙两种树苗的购买价及成活率如表:成活率品种购买价(元/棵)甲2090%乙3295%设购买甲种树苗x棵,承包商获得的利润为y元.请根据以上信息解答下列问题:(1)求y与x之间的函数关系式,并写出自变量取值范围;(2)承包商要获得不低于中标价16%的利润,应如何选购树苗?(3)政府与承包商的合同要求,栽植这批树苗的成活率必须不低于93%,否则承包商出资补载;若成活率达到94%以上(含94%),则政府另给予工程款总额6%的奖励,该承包商应如何选购树苗才能获得最大利润?最大利润是多少?9.某加工企业生产并销售某种农产品,假设销售量与加工产量相等.已知每千克生产成本y1(单位:元)与产量x(单位:kg)之间满足关系式y1=.如图中线段AB表示每千克销售价格y2(单位:元)与产量x(单位:kg)之间的函数关系式.(1)试确定每千克销售价格y2(单位:元)与产量x(单位:kg)之间的函数关系式,并写出自变量的取值范围;(2)若用w(单位:元)表示销售该农产品的利润,试确定w(单位:元)与产量x(单位:kg)之间的函数关系式;(3)求销售量为70kg时,销售该农产品是盈利,还是亏本?盈利或亏本了多少元?10.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?11.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地,乙骑摩托车从B地到A地,到达A地后立即按原路返回,是甲、乙两人离B地的距离y (km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)A、B两地之间的距离为km;(2)直接写出y甲,y乙与x之间的函数关系式(不写过程),求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间的距离不超过3km时,能够用无线对讲机保持联系,求甲、乙两人能够用无线对讲机保持联系时x的取值范围.12.科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程:①在科研所到宿舍楼之间修一条笔直的道路;②对宿舍楼进行防辐射处理,已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为y=a+b(0≤x≤9).当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿舍楼的距离为9km或大于9km时,辐射影响忽略不计,不进行防辐射处理.设每公里修路的费用为m万元,配套工程费w=防辐射费+修路费.(1)当科研所到宿舍楼的距离x=9km时,防辐射费y=万元,a=,b=;(2)若每公里修路的费用为90万元,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?(3)如果配套工程费不超过675万元,且科研所到宿舍楼的距离小于9km,求每公里修路费用m万元的最大值.13.大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大的利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销量为y(件),月利润为w(元).(1)直接写出y与x之间的函数关系式;(2)如何确定销售价格才能使月利润最大?求最大月利润;(3)为了使每月利润不少于6000元应如何控制销售价格?14.某企业生产并销售某种产品,假设销售量与产量相等,图中的线段AB表示该产品每千克生产成本y1(单位:元)与产量x(单位:kg)之间的函数关系;线段CD表示该产品销售价y2(单位:元)与产量x(单位:kg)之间的函数关系,已知0<x≤120,m>60.(1)求线段AB所表示的y1与x之间的函数表达式;(2)若m=95,该产品产量为多少时,获得的利润最大?最大利润是多少?(3)若60<m<70,该产品产量为多少时,获得的利润最大?15.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1千米,出租车离甲地的距离为y2千米,两车行驶的时间为x小时,y1、y2关于x的函数图象如图所示:(1)根据图象,直接写出y1、y2关于x的函数图象关系式;(2)若两车之间的距离为S千米,请写出S关于x的函数关系式;(3)甲、乙两地间有A、B两个加油站,相距200千米,若客车进入A加油站时,出租车恰好进入B加油站,求A加油站离甲地的距离.16.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?17.有一种螃蟹,从河里捕获后不放养最多只能活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变,现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时市场价为每千克30元,据测算,以后每千克活蟹的市场价每天可上升1元,但是放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元.(1)设X天后每千克活蟹的市场价为P元,写出P关于x的函数关系式.(2)如果放养x天后将活蟹一次性出售,并记1000千克蟹的销售额为Q元,写出Q关于X的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=销售总额﹣收购成本﹣费用),最大利润是多少?计划投资15万元种植花卉和树木.根据市场调查与预测,种植树木的利润y1(万元)与投资量x(万元)成正比例关系:y1=2x;种植花卉的利润y2(万元)与投资量x(万元)的函数关系如图所示(其中OA是抛物线的一部分,A为抛物线的顶点;AB∥x轴).(1)写出种植花卉的利润y2关于投资量x的函数关系式;(2)求此专业户种植花卉和树木获取的总利润W(万元)关于投入种植花卉的资金t(万元)之间的函数关系式;(3)此专业户投入种植花卉的资金为多少万元时,才能使获取的利润最大,最大利润是多少?林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,如图①所示;种植花卉的利润y2与投资量x成二次函数关系,如图②所示(注:利润与投资量的单位:万元)(1)分别求出利润y1与y2关于投资量x的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润,他能获取的最大利润是多少?中考综合应用题精选一.解答题(共19小题)1.(2014•连云港)小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如下表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物651140第二次购物371110第三次购物981062(1)小林以折扣价购买商品A、B是第三次购物;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?【解答】解:(1)小林以折扣价购买商品A、B是第三次购物.故答案为:三;(2)设商品A的标价为x元,商品B的标价为y元,根据题意,得,解得:.答:商品A的标价为90元,商品B的标价为120元;(3)设商店是打a折出售这两种商品,由题意得,(9×90+8×120)×=1062,解得:a=6.答:商店是打6折出售这两种商品的.2.(2014•河南)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y 元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.【解答】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.3.(2014•扬州)某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装专卖店又缺少资金.“中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示.该店应支付员工的工资为每人每天82元,每天还应支付其它费用为106元(不包含债务).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收人=支出),求该店员工的人数;(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元?【解答】解:(1)当40≤x≤58时,设y与x的函数解析式为y=k1x+b1,由图象可得,解得.∴y=﹣2x+140.当58<x≤71时,设y与x的函数解析式为y=k2x+b2,由图象得,解得,∴y=﹣x+82,综上所述:y=;(2)设人数为a,当x=48时,y=﹣2×48+140=44,∴(48﹣40)×44=106+82a,解得a=3;(3)设需要b天,该店还清所有债务,则:b[(x﹣40)•y﹣82×2﹣106]≥68400,∴b≥,当40≤x≤58时,∴b≥=,x=﹣时,﹣2x2+220x﹣5870的最大值为180,∴b,即b≥380;当58<x≤71时,b=,当x=﹣=61时,﹣x2+122x﹣3550的最大值为171,∴b,即b≥400.综合两种情形得b≥380,即该店最早需要380天能还清所有债务,此时每件服装的价格应定为55元.4.(2014•潍坊)经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.【解答】解:(1)设车流速度v与车流密度x的函数关系式为v=kx+b,由题意,得,解得:,∴当20≤x≤220时,v=﹣x+88,当x=100时,v=﹣×100+88=48(千米/小时);(2)由题意,得,解得:70<x<120.∴应控制大桥上的车流密度在70<x<120范围内;(3)设车流量y与x之间的关系式为y=vx,当0≤x≤20时y=80x,∴k=80>0,∴y随x的增大而增大,∴x=20时,y最大=1600;当20≤x≤220时y=(﹣x+88)x=﹣(x﹣110)2+4840,∴当x=110时,y最大=4840.∵4840>1600,∴当车流密度是110辆/千米,车流量y取得最大值是每小时4840辆.5.(2014•台州)某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A 类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.【解答】解:(1)①当2≤x<8时,如图,设直线AB解析式为:y=kx+b,将A(2,12)、B(8,6)代入得:,解得,∴y=﹣x+14;②当x≥8时,y=6.所以A类杨梅平均销售价格y与销售量x之间的函数关系式为:y=;(2)设销售A类杨梅x吨,则销售B类杨梅(20﹣x)吨.①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x;w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w A+w B﹣3×20=(﹣x2+13x)+(108﹣6x)﹣60=﹣x2+7x+48;当x≥8时,w A=6x﹣x=5x;w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w A+w B﹣3×20=(5x)+(108﹣6x)﹣60=﹣x+48.∴w关于x的函数关系式为:w=.②当2≤x<8时,﹣x2+7x+48=30,解得x1=9,x2=﹣2,均不合题意;当x≥8时,﹣x+48=30,解得x=18.∴当毛利润达到30万元时,直接销售的A类杨梅有18吨.(3)设该公司用132万元共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,则购买费用为3m万元,A类杨梅加工成本为x万元,B类杨梅加工成本为[12+3(m﹣x)]万元,∴3m+x+[12+3(m﹣x)]=132,化简得:x=3m﹣60.①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x;w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w A+w B﹣3×m=(﹣x2+13x)+(6m﹣6x﹣12)﹣3m=﹣x2+7x+3m﹣12.将3m=x+60代入得:w=﹣x2+8x+48=﹣(x﹣4)2+64∴当x=4时,有最大毛利润64万元,此时m=,m﹣x=;②当x≥8时,w A=6x﹣x=5x;w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w A+w B﹣3×m=(5x)+(6m﹣6x﹣12)﹣3m=﹣x+3m﹣12.将3m=x+60代入得:w=48∴当x>8时,有最大毛利润48万元.综上所述,购买杨梅共吨,其中A类杨梅4吨,B类吨,公司能够获得最大毛利润,最大毛利润为64万元.6.(2013•许昌二模)某商店经销甲、乙两种商品,现有如下信息:信息1:甲、乙两种商品的进货单价之和是50元;信息2:甲商品零售单价比进货单价多10元,乙商品零售单价比进货单价的2倍少10元;信息3:按零售单价购买甲商品3件和乙商品2件,共付了190元.请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价各多少元?(2)该商店平均每天卖出甲商品60件和乙商品40件,经调查发现,甲、乙两种商品零售单价分别每降1元,这两种商品每天可多卖出10件,为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元,在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?【解答】解:(1)设甲商品的进价为x元,乙商品的进价为y元,由题意,得,解得:.∴甲种商品的进价为:20元,乙种商品的进价为:30元.(2)设经销甲、乙两种商品获得的总利润为W,甲种商品每件的利润为(30﹣m﹣20)元,销售数量为(60+10m),乙种商品每件的利润为(50﹣m﹣30)元,销售数量为(40+10m),则W=(10﹣m)(60+10m)+(20﹣m)(40+10m)=﹣20m2+200m+1400=﹣20(m﹣5)2+1900∵﹣20<0,∴当m定为5元时,才能使商店每天销售甲、乙两种商品获取的利润最大,每天的最大利润是1900元.7.(2014秋•硚口区期中)某商品现在的售价为每件40元,每天可以卖出200件,该商品将从现在起进行90天的销售:在第x(1≤x≤49)天内,当天售价都较前一天增加1元,销量都较前一天减少2件;在第x(50≤x≤90)天内,每天的售价都是90元,销量仍然是较前一天减少2件,已知该商品的进价为每件30元,设销售该商品的当天利润为y元.(1)填空:用含x的式子表示该商品在第x(1≤x≤90)天的售价与销售量.第x(天)1≤x≤4950≤x≤90当天售价(元/件)40+x90当天销量(件)200﹣2x200﹣2x(2)求出y与x的函数关系式;(3)问销售商品第几天时,当天销售利润最大,最大利润是多少?(4)该商品在销售过程中,共有多少天当天销售利润不低于4800元?请直接写出结果.【解答】解:(1)由题意,得当1≤x≤49时,当天的售价为:(40+x)元,当天的销量为:(20﹣2x)件.当50≤x≤90时,当天的售价为:90元,当天的销量为:(20﹣2x)件.故答案为:40+x,20﹣2x,90,20﹣2x;(2)由题意,得当1≤x≤49时,y=(40+x﹣30)(200﹣2x)=﹣2x2+180x+2000,当50≤x≤90时,y=(90﹣30)(200﹣2x)=﹣120x+12000.∴y=(3)由题意,得当1≤x≤49时,y=﹣2x2+180x+2000,y=﹣2(x﹣45)2+6050∴a=﹣2<0,=6050元.∴x=45时,y最大当50≤x≤90时,y=﹣120x+12000.∴k=﹣120<0,∴当x=50时,y最大=6000元,∴销售商品第45天时,当天销售利润最大,最大利润是6050元;(4)由题意,得当﹣2x2+180x+2000≥4800时,∴(x﹣20)(x﹣70)≤0,∴或,∴20≤x≤70.∵x≤49,∴20≤x≤49,当﹣120x+12000≥4800时x≤60.∵x≥50,∴50≤x≤60,∴当天销售利润不低于4800元共有:49﹣20+1+60﹣50+1=41天答:当天销售利润不低于4800元共有41天.8.(2014•襄阳)我市为创建“国家级森林城市”政府将对江边一处废弃荒地进行绿化,要求栽植甲、乙两种不同的树苗共6000棵,且甲种树苗不得多于乙种树苗,某承包商以26万元的报价中标承包了这项工程.根据调查及相关资料表明:移栽一棵树苗的平均费用为8元,甲、乙两种树苗的购买价及成活率如表:成活率品种购买价(元/棵)甲2090%乙3295%设购买甲种树苗x棵,承包商获得的利润为y元.请根据以上信息解答下列问题:(1)求y与x之间的函数关系式,并写出自变量取值范围;(2)承包商要获得不低于中标价16%的利润,应如何选购树苗?(3)政府与承包商的合同要求,栽植这批树苗的成活率必须不低于93%,否则承包商出资补载;若成活率达到94%以上(含94%),则政府另给予工程款总额6%的奖励,该承包商应如何选购树苗才能获得最大利润?最大利润是多少?【解答】解:(1)y=260000﹣[20x+32(6000﹣x)+8×6000]=12x+20000,自变量的取值范围是:0<x≤3000;(2)由题意,得12x+20000≥260000×16%,解得:x≥1800,∴1800≤x≤3000,购买甲种树苗不少于1800棵且不多于3000棵;(3)①若成活率不低于93%且低于94%时,由题意得,解得1200<x≤2400在y=12x+20000中,∵12>0,∴y随x的增大而增大,∴当x=2400时,y最大=48800,②若成活率达到94%以上(含94%),则0.9x+0.95(6000﹣x)≥0.94×6000,解得:x≤1200,由题意得y=12x+20000+260000×6%=12x+35600,∵12>0,∴y随x的增大而增大,∴当x=1200时,y=50000,最大值综上所述,50000>48800∴购买甲种树苗1200棵,乙种树苗4800棵,可获得最大利润,最大利润是50000元.9.某加工企业生产并销售某种农产品,假设销售量与加工产量相等.已知每千克生产成本y1(单位:元)与产量x(单位:kg)之间满足关系式y1=.如图中线段AB表示每千克销售价格y2(单位:元)与产量x(单位:kg)之间的函数关系式.(1)试确定每千克销售价格y2(单位:元)与产量x(单位:kg)之间的函数关系式,并写出自变量的取值范围;(2)若用w(单位:元)表示销售该农产品的利润,试确定w(单位:元)与产量x(单位:kg)之间的函数关系式;(3)求销售量为70kg时,销售该农产品是盈利,还是亏本?盈利或亏本了多少元?【解答】解:(1)设y2=kx+b,将点A(0,160)、B(150,10)代入,得:,解得:,∴y2=﹣x+160(0≤x≤150);(2)根据题意,当0≤x<80时,w=[﹣x+160﹣(﹣0.5x+100)]•x=﹣0.5x2+60x,当80≤x≤150时,w=[﹣x+160﹣(3x﹣180)]•x=﹣4x2+340x;(3)∵当x=70时,w=﹣0.5×702+60×70=1750>0,∴销售量为70kg时,销售该农产品是盈利的,盈利1750元.。
2023年九年级数学中考应用题专题训练原卷版1.为了加强学生的体育锻炼,某班计划购买部分绳子和实心球.已知每条绳子的价格比每个实心球的价格少23元,且84元购买绳子的数量与360元购买实心球的数量相同.(1)绳子和实心球的单价各是多少元?(2)如果本次购买的总费用为510元,且购买绳子的数量是实心球数量的3倍,那么购买绳子和实心球的数量各是多少?2.某市开展信息技术与教学深度融合的“精准化教学”,某实验学校计划购买A,B两种型号教学设备,已知A型设备价格比B型设备价格每台高20%,用30000元购买A型设备的数量比用15000元购买B型设备的数量多4台.(1)求A,B型设备单价分别是多少元;(2)该校计划购买两种设备共50台,要求A型设备数量不少于B型设备数量的.设购买a台A型设备,购买总费用为w元,求w与a的函数关系式,并求出最少购买费用.3.金鹰酒店有140间客房需安装空调,承包给甲、乙两个工程队合作安装,每间客房都安装同一品牌同样规格的一台空调,已知甲工程队每天比乙工程队多安装5台,甲工程队的安装任务有80台,两队同时安装.问:(1)甲、乙两个工程队每天各安装多少台空调,才能同时完成任务?(2)金鹰酒店响应“绿色环保”要求,空调的最低温度设定不低于26℃,每台空调每小时耗电1.5度;据预估,每天至少有100间客房有旅客住宿,旅客住宿时平均每天开空调约8小时.若电费0.8元/度,请你估计该酒店每天所有客房空调所用电费W(单位:元)的范围?4.我市某乡村振兴果蔬加工公司先后两次购买龙眼共21吨,第一次购买龙眼的价格为0.4万元/吨;因龙眼大量上市,价格下跌,第二次购买龙眼的价格为0.3万元/吨,两次购买龙眼共用了7万元.(1)求两次购买龙眼各是多少吨?(2)公司把两次购买的龙眼加工成桂圆肉和龙眼干,1吨龙眼可加工成桂圆肉0.2吨或龙眼干0.5吨,桂圆肉和龙眼干的销售价格分别是10万元/吨和3万元/吨,若全部的销售额不少于39万元,则至少需要把多少吨龙眼加工成桂圆肉?5.打油茶是广西少数民族特有的一种民俗.某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y(盒)与销售单价x(元)之间的函数图象如图所示.(1)求y与x的函数解析式,并写出自变量x的取值范围;(2)当销售单价定为多少元时,该种油茶的月销售利润最大?求出最大利润.6.为实施“乡村振兴”计划,某村产业合作社种植了“千亩桃园”.2022年该村桃子丰收,销售前对本地市场进行调查发现:当批发价为4千元/吨时,每天可售出12吨,每吨涨1千元,每天销量将减少2吨,据测算,每吨平均投入成本2千元,为了抢占市场,薄利多销,该村产业合作社决定,批发价每吨不低于4千元,不高于5.5千元.请解答以下问题:(1)求每天销量y(吨)与批发价x(千元/吨)之间的函数关系式,并直接写出自变量x的取值范围;(2)当批发价定为多少时,每天所获利润最大?最大利润是多少?7.2022年在中国举办的冬奥会和残奥会令世界瞩目,冬奥会和残奥会的吉祥物冰墩墩和雪容融家喻户晓,成为热销产品.某商家以每套34元的价格购进一批冰墩墩和雪容融套件.若该产品每套的售价是48元时,每天可售出200套;若每套售价提高2元,则每天少卖4套.(1)设冰墩墩和雪容融套件每套售价定为x元时,求该商品销售量y与x之间的函数关系式;(2)求每套售价定为多少元时,每天销售套件所获利润W最大,最大利润是多少元?8.某快递公司为了加强疫情防控需求,提高工作效率,计划购买A、B两种型号的机器人来搬运货物,已知每台A型机器人比每台B型机器人每天少搬运10吨,且A型机器人每天搬运540吨货物与B型机器人每天搬运600吨货物所需台数相同.(1)求每台A型机器人和每台B型机器人每天分别搬运货物多少吨?(2)每台A型机器人售价1.2万元,每台B型机器人售价2万元,该公司计划采购A、B两种型号的机器人共30台,必须满足每天搬运的货物不低于2830吨,购买金额不超过48万元.请根据以上要求,完成如下问题:①设购买A型机器人m台,购买总金额为w万元,请写出w与m的函数关系式;②请你求出最节省的采购方案,购买总金额最低是多少万元?9.2022北京冬奥会期间,某网店直接从工厂购进A、B两款冰墩墩钥匙扣,进货价和销售价如下表:(注:利润=销售价﹣进货价)B款钥匙扣类别价格A款钥匙扣进货价(元/件)3025销售价(元/件)4537(1)网店第一次用850元购进A、B两款钥匙扣共30件,求两款钥匙扣分别购进的件数;(2)第一次购进的冰墩墩钥匙扣售完后,该网店计划再次购进A、B两款冰墩墩钥匙扣共80件(进货价和销售价都不变),且进货总价不高于2200元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?(3)冬奥会临近结束时,网店打算把B款钥匙扣调价销售,如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?10.某文具店最近有A,B两款纪念册比较畅销.该店购进A款纪念册5本和B款纪念册4本共需156元,购进A款纪念册3本和B款纪念册5本共需130元.在销售中发现:A款纪念册售价为32元/本时,每天的销售量为40本,每降低1元可多售出2本;B款纪念册售价为22元/本时,每天的销售量为80本,B款纪念册每天的销售量与售价之间满足一次函数关系,其部分对应数据如下表所示:售价(元/本)……22232425…………80787674……每天销售量(本)(1)求A,B两款纪念册每本的进价分别为多少元;(2)该店准备降低每本A款纪念册的利润,同时提高每本B款纪念册的利润,且这两款纪念册每天销售总数不变,设A款纪念册每本降价m元;①直接写出B款纪念册每天的销售量(用含m的代数式表示);②当A款纪念册售价为多少元时,该店每天所获利润最大,最大利润是多少?11.为倡导健康环保,自带水杯已成为一种好习惯,某超市销售甲,乙两种型号水杯,进价和售价均保持不变,其中甲种型号水杯进价为25元/个,乙种型号水杯进价为45元/个,下表是前两月两种型号水杯的销售情况:时间销售数量(个)销售收入(元)(销售收入=甲种型号乙种型号售价×销售数量)第一月2281100第二月38242460(1)求甲、乙两种型号水杯的售价;(2)第三月超市计划再购进甲、乙两种型号水杯共80个,这批水杯进货的预算成本不超过2600元,且甲种型号水杯最多购进55个,在80个水杯全部售完的情况下设购进甲种号水杯a个,利润为w元,写出w与a的函数关系式,并求出第三月的最大利润.。
初三数学综合算式专项练习题数学综合运用在初三数学学科中,算式是基础和重点知识点之一,它是运用数学知识解决实际问题的基础。
本文将给出一些数学综合运用的算式专项练习题,供初三学生进行练习和巩固相关知识。
1. 解方程(1) 2x + 5 = 13(2) 3(x - 4) = 15(3) 2(3x - 1) = 4 - x2. 两个数之和与差的问题(1) 已知两个数的和为15,差为5,求这两个数。
(2) 儿子今年8岁,爸爸比儿子大32岁,求爸爸多少岁?3. 百分数计算(1) 48是160的几分之几?(2) 将0.6写成百分数。
4. 平均数和比例(1) 一组数的平均数为24,其中有4个数,除去其中一个数后的平均数为18,求这个被除去的数。
(2) 某商品原价是120元,现在打5折出售,求现价。
5. 运用速度时间公式(1) 一辆汽车以每小时40公里的速度行驶,行驶了3小时,求行驶的距离。
(2) 一辆火车以每小时80公里的速度行驶,行驶了4小时30分钟,求行驶的距离。
6. 运用利息公式(1) 本金为5000元,年利率为5%,存款2年,求两年后的本息和。
(2) 本金为8000元,年利率为4.5%,存款3年,求三年后的本息和。
7. 运用图表进行数据分析(1) 根据下表,回答问题:测验成绩表小明小红小李小华语文成绩 85 90 78 92数学成绩 92 88 95 86英语成绩 89 92 88 90体育成绩 80 85 90 85a. 数学成绩最高的同学是谁?b. 体育成绩最低的同学是谁?c. 小华的总成绩是多少?(2) 根据柱状图,回答问题:一年级每个班级学生人数的柱状图*** *** **人数 15 20 30 25a. 一年级一共有几个班级?b. 一共有多少名一年级学生?c. 学生人数最多的班级有多少人?以上是初三数学综合算式专项练习题的一部分,希望同学们能认真练习,熟练掌握相关知识点,并能在实际问题中灵活应用。
2023年中考第一轮复习应用题专项训练一、解答题1.为开展好校园足球活动,某些学校计划联合购买一批足球运动装备,经市场调查,甲、乙两商场分别以同样的价格出售同种品牌的足球队服和足球.已知每套队服比每个足球贵20元,4套队服与5个足球的费用相等,经洽谈,甲商场优惠方案是:每购买10套队服,送一个足球;乙商场优惠方案是;若购买队服超过90套,则购买足球打八折.(1)求每套队服和每个足球的价格分别是多少?(2)若计划一共购买100套队服和m(m大于10)个足球,请用含m的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若需要购买40个足球,你认为到甲、乙哪家商场购买比较合算?请说明理由.2.北京冬奥会吉祥物“冰墩墩”深受大家的喜爱,人们争相购买.现有甲、乙两种型号的“冰墩墩”,已知一个甲种型号比一个乙种型号多20元,购买甲、乙两种型号各10个共需1760元.(1)求甲、乙两种型号的“冰墩墩”单价各是多少元?(2)某团队计划用不超过4500元购买甲、乙两种型号的“冰墩墩”共50个,求最多可购买多少个甲种型号的“冰墩墩”?3.为了加强学生的体育锻炼,某班计划购买部分绳子和实心球,已知每条绳子的价格比每个实心球的价格少23元,且84元购买绳子的数量与360元购买实心球的数量相同.(1)绳子和实心球的单价各是多少元?(2)如果本次购买的总费用为510元,且购买绳子的数量是实心球数量的3倍,那么购买绳子和实心球的数量各是多少?4.《孙子算经》是中国古代重要的数学著作,该书第三卷记载:“今有兽六首四足,禽四首二足,上有七十六首,下有四十六足,问禽、兽各几何?”译文:今有一种6头4脚的兽与一种4头2脚的鸟,若兽与鸟共有76个头与46只脚.问兽、鸟各有多少?根据译文,解决下列问题:(1)设兽有x个,鸟有y只,可列方程组为;(2)求兽、鸟各有多少.5.某公司引入一条新生产线生产A,B两种产品,其中A产品每件成本为100元,销售价格为120元,B产品每件成本为75元,销售价格为100元,A,B两种产品均能在生产当月全部售出.(1)第一个月该公司生产的A,B两种产品的总成本为8250元,销售总利润为2350元,求这个月生产A,B两种产品各多少件?(2)下个月该公司计划生产A,B两种产品共180件,且使总利润不低于4300元,则B产品至少要生产多少件?6.端午节前夕,某超市从厂家分两次购进A、B两种品牌的粽子,两次进货时,两种品牌粽子的进价不变.第一次购进A品牌粽子100袋和B品牌粽子150袋,总费用为7000元;第二次购进A品牌粽子180袋和B品牌粽子120袋,总费用为8100元.(1)求A、B两种品牌粽子每袋的进价各是多少元;(2)当B品牌粽子销售价为每袋54元时,每天可售出20袋,为了促销,该超市决定对B品牌粽子进行降价销售.经市场调研,若每袋的销售价每降低1元,则每天的销售量将增加5袋.当B 品牌粽子每袋的销售价降低多少元时,每天售出B品牌粽子所获得的利润最大?最大利润是多少元?7.某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y(件)与每件售价x(元)之间存在一次函数关系(其中8≤x≤15,且x为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件.(1)求y与x之间的函数关系式.(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元?(3)设该商店销售这种消毒用品每天获利w(元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?8.为了满足师生的阅读需求,某校图书馆的藏书从2016年底到2018年底两年内由5万册增加到7.2万册.(1)求这两年藏书的年均增长率;(2)经统计知:中外古典名著的册数在2016年底仅占当时藏书总量的5.6%,在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书的年均增长率,那么到2018年底中外古典名著的册数占藏书总量的百分之几?9.为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?10.某校购进一批篮球和排球,篮球的单价比排球的单价多30元.已知330元购进的篮球数量和240元购进的排球数量相等.(1)篮球和排球的单价各是多少元?(2)现要购买篮球和排球共20个,总费用不超过1800元.篮球最多购买多少个?11.为满足顾客的购物需求,某水果店计划购进甲、乙两种水果进行销售.经了解,甲水果的进价比乙水果的进价低20%,水果店用1000元购进甲种水果比用1200元购进乙种水果的重量多10千克,已知甲,乙两种水果的售价分别为6元/千克和8元/千克.(1)求甲、乙两种水果的进价分别是多少?(2)若水果店购进这两种水果共150千克,其中甲种水果的重量不低于乙种水果重量的2倍,则水果店应如何进货才能获得最大利润,最大利润是多少?12.阅读材料:被誉为“世界杂交水稻之父”的“共和国勋章”获得者袁隆平,成功研发出杂交水稻,杂交水稻的亩产量是普通水稻的亩产量的2倍.现有两块试验田,A块种植杂交水稻,B块种植普通水稻,A块试验田比B块试验田少4亩.(1)A块试验田收获水稻9600千克、B块试验田收获水稻7200千克,求普通水稻和杂交水稻的亩产量各是多少千克?(2)为了增加产量,明年计划将种植普通水稻的B块试验田的一部分改种杂交水稻,使总产量不低于17700千克,那么至少把多少亩B块试验田改种杂交水稻?13.为了传承雷锋精神,某中学向全校师生发起“献爱心”募捐活动,准备向西部山区学校捐赠篮球、足球两种体育用品.已知篮球的单价为每个100元,足球的单价为每个80元.(1)原计划募捐5600元,全部用于购买篮球和足球,如果恰好能够购买篮球和足球共60个,那么篮球和足球各买多少个?(2)在捐款活动中,由于师生的捐款积极性高涨,实际收到捐款共6890元,若购买篮球和足球共80个,且支出不超过6890元,那么篮球最多能买多少个?14.今年我市某公司分两次采购了一批土豆,第一次花费30万元,第二次花费50万元,已知第一次采购时每吨土豆的价格比去年的平均价格上涨了200元,第二次采购时每吨土豆的价格比去年的平均价格下降了200元,第二次的采购数量是第一次采购数量的2倍.(1)问去年每吨土豆的平均价格是多少元?(2)该公司可将土豆加工成薯片或淀粉,因设备原因,两种产品不能同时加工,若单独加工成薯片,每天可加工5吨土豆,每吨土豆获利700元;若单独加工成淀粉,每天可加工8吨土豆,每吨土豆获利400元.由于出口需要,所有采购的土豆必须全部加工完且用时不超过60天,其中加工成薯片的土豆数量不少于加工成淀粉的土豆数量的23,为获得最大利润,应将多少吨土豆加工成薯片?最大利润是多少?。
初三数学《应用题复习专题》训练题(满分100分,时间90分钟)班级_______姓名_______分数_______第1~13题,每题7分,第14题9分,共100分1、由于节约用水,小明发现他家同样是用10m3的水,本月比上月能多用5天。
已知本月小明家每天的平均用水量比上月少20%,求小明家上月每天的平均用水量。
2、一件商品的成本价是100元,提高50%后标价,又以8折出售,则这件商品的售价是多少?3、甲、乙两种商品原来的单价和为100元。
因市场变化,甲商品降价10%,乙商品提价40%,调价后,两种商品的单价之和比原来的单价之和提高了20%。
求甲、乙两种商品原来的单价分别是多少?4、某车间加工1000个零件,由于采用了新工艺,效率提高了一倍,这样加工同样多的零件就少用5小时。
求该车间采用新工艺前、后每小时分别加工多少个零件?5、今年以来,CPI(居民消费价格总水平)的不断上涨已成热门话题。
已知某种食品在9月份的售价为8.1元/kg,11月份的售价为10元/kg。
求这种食品平均每月上涨的百分率是多少?6、“佳佳商场”在销售某种进货价为20元/件的商品时,以30元/件售出,每天能售出100件.调查表明:这种商品的售价每上涨1元/件,其销售量就将减少2件.(1)为了实现每天1600元的销售利润,“佳佳商场”应将这种商品的售价定为多少?(2)物价局规定该商品的售价不能超过40元/件,“佳佳商场”为了获得最大的利润,应将该商品售价定为多少?最大利润是多少?7、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。
若商场平均每天要盈利1200元,每件衬衫应降价多少元?8、为了能以“更新、更绿、更洁、更宁”的城市形象迎接2011年大运会的召开,深圳市全面实施市容环境提升行动。
九年级数学下册综合算式专项练习题函数与方程的应用九年级数学下册综合算式专项练习题:函数与方程的应用一、函数的应用函数是数学中的重要概念,它在各个领域都有广泛的应用。
本节将介绍一些函数的实际应用例子,并通过综合算式专项练习题来巩固学习。
函数的定义是“自变量和因变量之间的对应关系”,即当自变量取某个值时,因变量也对应取一个值。
其中,自变量通常表示问题中的已知量,而因变量则表示我们要求解的未知量。
例题1:某商品的售价与销量之间存在函数关系,已知该函数的表达式为:售价 = 20 - 0.5 ×销量。
若销量为200时,求售价。
解析:根据函数的定义,我们将销量代入函数表达式中即可求得售价。
代入销量为200,得到:售价 = 20 - 0.5 × 200 = 20 - 100 = 200元。
练习题1:某车厂生产的汽车的价格P(万元)与产量x(台)之间的函数关系是:P = 30 - 0.2 × x。
请问,当产量为500台时,汽车的价格是多少万元?解答略。
二、方程的应用方程是数学中的另一个重要概念,它用于描述未知量之间的关系。
在实际问题中,我们常常通过建立方程来求解未知量。
例题2:某同学参加了一场足球赛,已知他进球的数量加上传球的数量等于10。
设进球的数量为x,传球的数量为y,建立方程求解。
解析:根据题意,我们可以建立方程x + y = 10。
通过解方程,我们可以求解出该同学进球和传球的具体数量。
练习题2:一个长方形的长是宽的三倍,周长为28米。
请问,长方形的长和宽各是多长?解答略。
三、综合应用对于函数和方程的应用,我们在解决实际问题时往往需要综合运用多个概念和方法。
下面的综合应用题将考察你对函数与方程应用的综合运用能力。
例题3:已知一个数减去5,然后再乘以6的结果等于126。
求这个数是多少?解析:设这个数为x,根据题意,我们可以建立方程6(x - 5) = 126。
通过解方程,我们可以求解出这个数的值。
一次函数应用题1、(辽宁)某单位急需用车,但又不准备买车,他们准备和一个体车主或一国营出租车公司其中的一家订月租车合同.设汽车每月行驶x千米,应付给个体车主月租费是y1元,应付给出租车公司的月租费是y2元,y1和y2分别与x之间的函数关系图象(两条射线)如图4,观察图象回答下列问题:(1)每月行驶的路程在什么范围内时,租国营公司的车合算?(2)每月行驶的路程等于多少时,两家车的费用相同?(3)如果这个单位估计每月行驶的路程为2300千米,那么这个单位租那家的车合算?2、(陕西咸阳)现在有甲、乙两个氮肥厂向A、B两地运送化肥.已知甲厂可调出50吨化肥,乙厂可调出40吨化肥,A地需30吨化肥,B地需60吨化肥,两厂到A、B两地的路程和运费如表2(表中运费栏“元/吨·千米”表示每吨化肥运送1千米所需人民币).根据题意,请设计出合理的运送方案,使所需的总运费最低,并求出最低的总运费.3、某厂生产四驱动玩具车,成本为每辆16元。
现有两种销售方式:第一种是直接由厂家门市部销售,每辆车售价为20元,需每月支出固定费用1520元(包括门市部房租、水电、销售人员工资等);第二种是批发给文化用品及玩具模型商店分销售,批发价为每辆18元。
已知这两种销售方式均需缴纳税款为销售金额的5%。
(1)求出该厂这两种销售方式的月利润y与售出辆数x的函数关系式;(2)就每月销售车辆数,讨论哪种销售方式所获利润多;(3)若该厂今年七月计划销售这种玩具车1500辆,应选择哪种销售方式,才能获利较大?4、从A地向B地打长途电话,按时收费,3分内收费元,每加1分加收1元,求电话费y(元)与时间t的函数关系式,并写出相应的自变量x的取值范围。
一元二次方程应用题1.一个一元二次方程,其两根之和是5,两根之积是-14,求出这两个根。
2、一个两位数,十位数字与个位数字之和是5,把这个数的个位数字与十位数字对调后,所得的新两位数与原两位数的乘积为736,求原来的两位数。
2019届初三物理中考复习。
综合应用题。
专项训练含答案2019届初三物理中考复综合应用题专项训练1.一辆质量为3 t的小型载重汽车,额定功率为100 kW,车上装有6 t的砂石。
汽车先以10 m/s的速度在平直公路上以20 kW的功率匀速行驶了10 ___,消耗汽油1.2 kg,然后又以额定功率用了2 ___的时间,将砂石从山坡底运送到50 m高的坡顶施工现场。
g取10 N/kg。
问题如下:1)1.2 kg的汽油完全燃烧放出的热量是多少?已知汽油的热值为4.5×10^7 J/kg。
2)汽车在平直公路上匀速行驶时,受到的阻力是多少?3)汽车从坡底向坡顶运送砂石的机械效率是多少?2.适当的足浴对身体很有好处。
___所示,___姐姐给奶奶买了一台家用足浴盆,其功率为1000 W,质量为2.5 kg,最大容水量为5 kg,限定最高温度为50℃。
足浴盆底部装有四个轮子,与地面的总接触面积为8 cm^2.已知水的比热容为4.2×10^3 J/(kg·℃)。
问题如下:1)足浴盆装满水后对水平地面的压强是多少?2)若将最大容量的水从20℃加热到最高温度,至少需要多长时间?3)足浴盆底部安装有按摩轮,按摩轮工作时将____能转化为_____能。
请写出足浴盆的设计应用到的其他物理知识。
3.一名体重为500 N、双脚与地面接触面积为0.04 m^2的学生站在水平地面上,要用滑轮组在20 s内将600 N的重物匀速提升1 m。
1)他站在地面上时对地面的压强是多少?2)若滑轮组的机械效率为75%,拉力F是多少?拉力的功率是多少?4.某同学想知道一种液体的密度,设计了如图所示的实验。
已知木块的重力为1.2 N,体积为200 cm^3,当木块静止时弹簧测力计的示数为2 N,g=10 N/kg。
问题如下:1)木块受到的浮力是多少?2)液体的密度是多少?3)剪断细绳,木块稳定时处于什么状态?所受浮力又是多大?5.如图所示,工人将一底面积为0.06 m^2,高为2 m,密度为2.0×10^3 kg/m^3的圆柱形实心物体从水下匀速提升1 m。
初三数学下册综合算式专项练习题圆应用在初三数学下册的学习中,我们学习了许多与圆有关的知识,包括圆的性质、弦、弧、切线等。
通过这些知识的学习,我们可以运用所学的方法和技巧解决与圆相关的问题。
在本文中,我们将通过综合算式专项练习题来巩固和应用这些知识。
练习题一:已知圆的半径为r,求圆的周长和面积。
解答:圆的周长公式为C=2πr,面积公式为S=πr²。
根据给定的半径r,我们可以直接代入公式进行计算。
例如,当半径r=3时,周长C=2π×3≈18.85,面积S=π×3²≈28.27。
因此,圆的周长为18.85,面积为28.27。
练习题二:已知圆心角θ和圆的半径r,求弧长L。
解答:圆心角与弧长的关系为L=θ/360°×2πr。
根据给定的圆心角θ和半径r,我们可以代入公式计算弧长L的值。
例如,当θ=45°、r=5时,弧长L=45/360°×2π×5≈3.93。
因此,弧长L约为3.93。
练习题三:已知圆的直径为d,求圆的半径、周长和面积。
解答:圆的直径与半径的关系为d=2r,因此可得半径r=d/2。
在已知半径r的情况下,圆的周长和面积的计算可参考练习题一中的公式。
练习题四:已知圆上两点A、B,求弦AB的中垂线与弧的交点坐标。
解答:首先,通过连接弦AB和圆心O,可得到弧的中点M。
由于中垂线垂直于弦,因此中垂线OM与弦AB垂直。
根据几何知识,垂直的直线相交于圆上的两点与圆心连线互相垂直,且交点到圆心的距离相等。
因此,我们可以通过求弦AB中点M的坐标,然后求出中垂线OM 的斜率,从而确定中垂线的方程。
进一步求解可以得到中垂线与弧的交点坐标。
练习题五:已知切线与半径的关系,求切线和半径的长度。
解答:切线与半径的关系为切线的平方等于半径的平方加上切点到圆心的距离的平方。
即T²=r²+OM²,其中T为切线的长度,r为半径的长度,OM为切点到圆心的距离。
初三数学综合算式专项练习题应用题解答1. 一家餐厅以58元为基准,包括小费共计支付255元,该餐厅的小费是多少元?我们设小费为x元,则餐厅的消费金额为58元+x元。
根据题意,消费金额加上小费等于255元,可以得到方程:58 + x = 255解方程得:x = 255 - 58x = 197所以该餐厅的小费是197元。
2. 一辆汽车经过一段路程需要耗费20升的汽油,已知该段路程长120千米,汽油的价格为7元/升。
求该段路程的油费。
根据题目信息,我们可以计算油费的公式为:油费 = 汽油价格 ×汽油用量汽油用量 = 距离 / 油耗其中,距离为120千米,油耗为20升,汽油价格为7元/升。
将数值代入公式中,可以得到:汽油用量 = 120 / 20 = 6 升油费 = 7 × 6 = 42 元所以该段路程的油费为42元。
3. 小明有300元,他买了一篮桃子,单价为每篮15元,还剩下多少钱?根据题目信息,我们可以计算小明购买桃子花费的公式为:花费 = 单价 ×数量其中,单价为15元,数量为篮数。
将数值代入公式中,可以得到:花费 = 15 ×篮数由题目知道,小明有300元,所以我们可以得到方程:300 = 15 ×篮数解方程得:篮数 = 300 / 15篮数 = 20所以小明共买了20篮桃子。
因此,小明购买桃子后剩下的钱为:剩下的钱 = 总钱数 - 花费剩下的钱 = 300 - (15 × 20)剩下的钱 = 300 - 300剩下的钱 = 0元所以小明购买桃子后剩下的钱为0元。
4. 一本书原价为60元,商家打折促销活动,以4折出售。
小明使用100元购买了这本书,他找零多少钱?折扣后的价格为原价的4折,即60 × 0.4 = 24元。
小明使用100元购买了这本书,所以他找零的金额为:找零 = 支付金额 - 商品价格找零 = 100 - 24找零 = 76元所以小明找零的金额为76元。
新课标初三应用题综合复习专项训练
一、 选择题
1•一个两位数的十位数字与个位数字的和是 7,把这个两位数加上45后,结果
恰好成为数字对调后组成的两位数,则这个两位数是( )
A 、16
B 、25
C 、34
D 、61
2•甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是(
)
A 、10 岁
B 、15 岁
C 、20 岁
D 、30 岁
3 •小明买了 80分与2元的邮票共16枚,化了 18元8角,若设他买了 80分邮 票x 枚,可列方程为( )
A 、80x+2(16—x )=188
B 、80x+2(16—x )=18.8
C 、0.8x+2(16— x )=18.8
D 、8x+2(16—x )=188
4•在一个农场,母鸡的只数与猪的头数之和是
70,而腿数之和是196,则母鸡 比猪多( ) A 、14 B 、16 C 、22 D 、42
5•小明把400元钱存入银行,年利率为1.8%,至V 期时小明得到利息36元,则 她一共存了( )
A 、6年
B 、5年
C 、4年
D 、3年 6.一个三位数,个位数字是 c ,十位数字是b ,百位数字是a ,这个三位数是
( ) A 、abc B 、1000abc C 、a+b+c D 、100a+10b+c
7•甲、乙两人同时同地相背而行,甲每小时行 a 千米,乙每小时行b 千米,x 小时后,二人相距(
) A x x f a b ,
A 、
B 、
C 、ax+bx
D 、ax — bx a b x x 8 •随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低
m 元后又降20%,现售价为n 元,那么该电脑的原售价为( )
4 5
A 、 n m 兀
B 、 n m 兀
C 、(5m+n )
D 、(5n+m )
5 4 9.一项工程,甲独做需 m 天,乙独做需n 天,则甲、乙合做需(
) 1 1 十 mn 十 亠 m n 十
A、天
B、天
C、天
D、以上都不对
m n m n mn
二、填空题
10•国家规定:存款利息税二利息X 20%,银行一年定期储蓄的年利率为1.98%.小明有一笔一年定期存款,如果到期后全取出,可取回1219元•若设小明
的这笔一年定期存款是x元,根据题意,可列方程
为________________________ •
11 •如图是“星星超市”中“飘扬”洗发水的价格标签,请你在横线上
填写它的原价.
12•某月日历有一竖列四个日期,其中第二个日期与第四个日期的和是
36,那
么第三个日期是______________
13. 年暑假,李老师一家三口人外出旅行一周,这一周各天的日期之和是91,那
么李老师是__________ 回家的
14. 果这个月的5号是星期三,则20号是星期_____________
15. 根铁丝长为40cm,把它围成一个四边形,则得到的最大的面积是
_________ c n i
16. _______ 辆汽车以a千米/的速度行驶b千米,若速度加快10千米/时,则可以少用___________ 小时
17. 人上山的速度为4千米/时,下山的速度为6千米/时,则此人上山下山的整个
路程的平均速度是______________ 米/时
18. ______________________________________________ 商品利润是a元,利润率是20%,此商品进价是 _________________________________ (利润率=利润/成本) 19. 甲数为x,且甲数比乙数的2倍大5,则乙数为_______________ (用含x的代数式
表示)
20. 商店购进一种商品,出售时要在进价基础上加一定的利润,销售量x与售价C 间的
销售数量x (千克) 12
34
价格C (元) 2.5+0.25+0.47.5+0.610+0.8
(1)用数量x表示售价C的公式,C= _________________
(2)当销售数量为12千克时,售价C为_________________
21 •某校为适应电化教学的需要,新建阶梯教室,教室的第一排有a个座位,后
面每一排都比前一排多一个座位,若第n排有m个座位,教室共有p个座位,贝U a、n 和m 之间的关系为_______________________ a n和p之间的关系为_______________ 三•解答题
22某民航规定旅客可以免费携带a千克物品,但若超过a千克,则要收一定的费用,费用规定如下:旅客的携带的重量b千克(b>a)乘以10,再减去200,就得你应该交的费用。
(1)小明携带了50千克的物品,问他应交多少费用?
(2)小王交了100元费用,问他携带了多少千克物品?
(3)这里的a等于多少?
23.室有2 扇门和4 扇窗户,已知每扇门的价格为200 元,每扇窗户价格为400 元(1)n 个这样的教室的门窗共需多少元?
(2)某校教学楼共有36 个教室,那么门窗需多少钱?
24.用代数式表示下列问题的答案:
甲、乙两人从同于点出发,甲每小时走akm,乙每小时走bkm (b<a),用代数式表示:
(1)反向行走th,两人相距多少千米?
(2)同向行走th,两人相距多少千米?
(3)反向行走,甲比乙早出发mh,乙走nh,两人相距多少千米?
(4)同向行走,甲比乙晚出发mh,乙走nh (n>m),两人相距多少千米?
25 一串数字的排列规律是:第一个数是20,从第二个数起,每一个数比前一个
数小8
(1)第10个数是多少?(2)第n个数是多少?(3)第几个数是一60
26某打工者第一个月的工资为300元,以后每个月比前一个月增加工资50元,
(1)打工一年半以后的首次工次为多少元?
(2)经过多长时间,他的月工资将达到xx元?
27某仓库堆放一批圆木,一共20层,第一层3根,每往下一层多1根,问这堆圆木一共有多少根?
(1) 从左下角到右上角的三个数字之和为45那么这9个数的和是多少这9个
日期中最后一天是1月几日?
(2) 用这样的方框能否圈出总和为162的9个数?
29某地出租车的收费标准是:起步价5元,超过3千米,则超过部分每千米1.8 元,若某人乘坐x (x>3)千米的路程
(1)请你写出他应该支付的费用(用含x的代数式表示);
(2)若他乘坐了15千米的路程,则他应付多少元钱?
(3)若他支付了23元钱,则他乘坐了多少千米?
30 一份数学试卷有20道选择题,规定做对一题得5 分,不做或做错扣1 分,结果某学生得分为76 分,问他做对了几题?
31.中学初一(1)班23 名同学星期天去公园游览,公园售票窗口标明票价:每人10 元,团体票25 人以上(含25人)8折优惠,请你为这23 名同学设计一个较好的购票方案
32 某书店在促销活动中,推出一种优惠卡,每张卡售价20 元,凭此卡购书可享受8 折优惠,有一次,李明同学到书店购书,结账时,他先买优惠卡再凭卡付款,结果节省了人民币12 元,那么李明同学此次购书的总价值是多少元?
33.将一个底面半径是5cm,高为40cm的圆柱,锻压成底面半径为8cm的圆柱, 其高变成了多少?表面积减少了多少?
34.某商店积压了100件某种商品,为使这批货物尽快脱手,该商店采取了如下销售方案,将价格提高到原来的2.5倍,再作三次降价处理:
第一次降价30%,第二次降价30%,第三次再降价30%,三次降价处理销售结果如下表:
问:(1)第三次降价后的价格占原价的百分比是多少?
(2)该商品按新销售方案销售,相比原价全部售完,哪一种方案更盈利?
35.现在,人们生活日益富足,大部分家庭日常开支除外,都有结余,节余下来的钱存入银行,一来可以支持国家经济建设,二来自己也可获得一部分利息,国家规定,存款利息的纳税办法是:利息税=利息乂20%,储户取款时由银行代扣代收,若银行一年定期储蓄的年利率为1.98%,某储户到银行领取一年到期的本金和利息时,扣除了利息税198 元。
问:(1)该储户存入的本金是多少元?
(2)该储户实得利息多少元?
36.某地有两家通讯公司,移动通讯收费标准如下:第一家规定不收月租费,每分钟收费是0.6 元;第二家规定要收月租费,每月收50 元,另外每分钟收费0.4 元(1)某用户每月打电话的时间为x 分钟,请你写出这两种收费方式下应该支付的费用;
(2)某用户每月打电话的时间为200分钟,你认为应该采用哪一家通讯公司合算;(3)你认为每月打电话时间超过多少分钟,第二家通讯公司比较合算?
37.小明的爸爸是做服装生意的,现在他有一批成本价为每件100 元的服装,他想每件服装的利润在30元到60元之间.请你帮他设计一个符.合.条.件.的.、诱.人.的
销售方案,并计算出方案中每件服装的实际利润。
你的方案为:
请用列方程解应用题的方法,计算并验证方案中每件服装的实际利润:
38.xx 年世界杯足球赛韩国组委会公布的四分之一决赛门票价格为:一等席300 美元,二等席200 美元,三等席125 美元. 某服装公司在促销活动中,组织获奖的36 名顾客到韩国观看xx 年世界杯足球赛四分之一决赛,除去其它费用后,计划恰好用5025 美元购买两种门票. 你能设计出几种购票方案供该服装公司选择?并说明理由.
39.股民李明星期五买进某公司的股票1000股,每股16.8元,下表是第二周一至周五
(1) 星期三收盘时,每股是多少元?
(2) 本周内最咼价每股多少兀?最低价每股多少兀?
(3) 若买进股票和卖出股票都要交0.2%的各种费用,现在小明在星期五收盘前将全部股票卖出,他的收益情况如何?。