AZ31B镁合金板材的织构
- 格式:pdf
- 大小:507.92 KB
- 文档页数:9
AZ31B镁合金动态力学行为的研究镁合金具有密度低、比强度和比刚度高、良好的铸造性能、较强的电磁屏蔽能力以及易于再生利用等一系列独特的优点,被誉为“21世纪最具发展潜力和前途的材料”。
其结构件在汽车、飞机、计算机、通讯等领域获得了日益广泛的应用。
由于具有良好的延展率和较高的强度等优点,AZ31B变形镁合金是目前应用最广泛的挤压变形镁合金。
在镁合金的应用中,冲击与循环等动态载荷的作用不可避免,因此对变形镁合金的动态力学行为与组织结构之间关系的研究,对变形镁合金结构件的安全设计及合理使用具有重要的指导意义。
本文主要针对AZ31B变形镁合金挤压棒材的动态拉伸、快速冲击和低周疲劳行为进行了研究,探讨了不同载荷条件下的塑性变形机制以及织构对变形机制和动态力学行为的影响。
研究结果表明,具有{0001}//ED织构的样品(轴向样品)在普通拉伸条件下,其真应力-真应变曲线呈现下凹形,而具有拉伸轴沿<0001>-<11-20>和<0001>-<10-10>织构分布的样品(径向样品),其真应力-真应变曲线为直线形;而在动态拉伸条件下,大量{10-12}拉伸孪生的开动导致了真应力-真应变曲线中平台的出现,并且随着孪生数量的增加平台宽度也增大,轴向样品曲线平台出现在屈服前,而径向样品曲线平台出现在屈服后。
由于{10-12}拉伸孪生、{10-11}压缩孪生、基面滑移、柱面滑移、锥面滑移的CRSS的不同,导致其参与变形的程度和所起作用的不同,Schmid因子对各种变形机制启动起重要作用,这是具有不同织构样品在动态拉伸过程中产生不同力学行为的主要原因;在超快速拉伸条件下,轴向样品的屈服强度、断裂强度、总应变量均随着应变速率的增加而增加。
应变速率越大,样品发生脆性断裂的倾向性也越大。
在快速冲击载荷下,轴向样品和径向样品的屈服强度、断裂强度、总应变量均随着应变率的增加而增加,并且对应{10-12}拉伸孪生的数量也增加。
单向多道次弯曲工艺对AZ31B镁合金板材冷冲压成形性能的影响摘要:研究单向多道次弯曲(RUB,repeated unidirectional bending)工艺对AZ31B镁合金的冷冲压成形性能影响。
室温下RUB处理的镁合金板材由于基面织构发生了一定的转动,极限拉伸比(LDR,limiting drawing ratio)在轧制方向可以达到1.5。
同时实验也证明了使用RUB处理的AZ31B镁合金板材可以在曲柄压力机上成功的冲压出手机外壳。
室温冲压成形性能的提高可归因于织构的改善,从而导致屈服强度降低、断裂伸长率提高,塑性应变比(r值)的降低以及应变硬化指数(n值)提高。
关键词:镁合金板材单向多道次弯曲工艺织构冲压成形性手机外壳Cold stamping formability of AZ31B magnesium alloy sheet undergoing repeated unidirectional bending processAbstract:The repeated unidirectional bending (RUB) process was carried out on an AZ31B magnesium alloy in order to investigate its effects on the cold stamping formability. The limiting drawing ratio (LDR) of the RUB processed magnesium alloy sheet with an inclination of basal pole in the rolling direction can reach 1.5 at room temperature. It was also confirmed that cell phone housings can be stamped successfully in crank press using the RUB processed AZ31B magnesium alloy sheet. The improvement of the stamping formability at room temperature can be attributed to the texture modifications, which led to a lower yield strength, a larger fracture elongation, and a smaller Lankford value (r-value) and a larger strain hardening exponent (n-value).Keywords:Magnesium alloy sheetRUBTextureStamping formabilityCell phone housing1、引言目前为止镁合金产品主要是由铸造或压铸生产,在航空航天、汽车、民用家电等产品中均有广泛应用。
变形镁合金AZ31的织构演变与力学性能镁合金作为一种新型轻质金属结构材料,在汽车制造、通讯电子、航空航天等工业领域具有广阔的应用前景。
由于镁是密排六方(HCP)结构材料,其塑性变形在室温下仅限于基面{0001}<11(?)0>滑移及锥面{10(?)2}<1011>孪生,因此,镁合金的室温塑性加工能力较差。
目前大多数镁合金制品的加工局限于铸造,特别是压铸成型,然而,铸件的力学性能不够理想且容易产生组织缺陷,极大地限制了镁合金的应用范围。
变形镁合金在铸造后往往通过热变形方式(如挤压、轧制等)细化晶粒、改善合金的组织结构来提高合金的力学性能。
与铸造镁合金相比,变形镁合金的综合力学性能优异;但常规变形镁合金在热变形后一般会产生强烈的{0002}基面织构,而该织构的存在是导致变形镁合金低的室温塑性和高的各向异性的主要原因。
良好的室温塑性是变形镁合金广泛应用的前提之一,而如何通过织构控制及晶粒细化法有效地改善和提高镁合金的室温塑性成为变形镁合金工业发展中的重要方向。
针对上述问题,本论文开展了如下研究工作:(1)铸态纯镁热轧变形过程中{0002}基面织构的演变规律;(2)异步轧制AZ31镁合金板材的形变织构及退火织构;(3)非对称热挤压AZ31镁合金板材的显微组织、织构特征及力学性能;(4)晶粒尺寸及织构对AZ31镁合金室温压缩变形行为的影响。
主要结论如下:铸态纯镁在400℃热轧过程中发生了明显的动态再结晶,伴随晶粒细化和{0001}基面织构的形成。
随着轧制道次的增加,晶粒逐渐细化,晶粒大小趋于均匀,孪晶数量减少;织构由初始态的无规则取向逐渐转化为{0002}基面织构,且基面织构的强度随着热轧变形量的增加而增加。
经多道次热轧后(ε=78%),纯镁板材内部形成均匀的等轴晶组织和较强的{0002}基面织构。
热轧纯镁中动态再结晶的形核机制主要为基于孪生的动态再结晶形核机制。
第4期(总第143期)2007年8月机械工程与自动化M ECHA N ICAL EN GI NEER IN G & AU T O M A T IO N N o.4A ug.文章编号:1672-6413(2007)04-0081-03AZ 31B 镁合金正挤压成形工艺研究*王向东,张宝红,张治民(中北大学材料科学和工程学院,山西 太原 030051)摘要:研究了A Z31B 镁合金正挤压工艺与模具的设计,试验结果表明A Z31B 镁合金经400℃保温16h 均匀化退火后,在挤压温度为250℃~450℃、挤压比为20的工艺条件下,能挤出具有较高表面质量的制品,而且随着锭坯温度的增加,变形抗力峰值减少,较挤压前能获得比较致密的组织和良好的力学性能。
关键词:A Z 31B 镁合金;正挤压;模具中图分类号:T G376.2 文献标识码:A*国家自然科学基金资助项目(50605059)收稿日期:2007-01-23;修回日期:2007-03-07作者简介:王向东(1982-),男,江苏江阴人,硕士研究生。
0 引言进入20世纪90年代以来,由于镁合金具有一系列的优点,在美、英、日、德等发达国家,镁合金以其巨大的发展势头在航空、汽车、电子通讯等广阔的领域中不断得到开发与应用。
与铸造镁合金相比[1],变形镁合金在组织上更细、成分上更均匀、内部更致密,更具有发展前途和潜力,通过变形可以生产出尺寸多样的管、棒、板、型材及锻件产品,并可以通过材料组织的控制和热处理工艺的应用,获得更高的强度、更好的延展性和更多样化的力学性能,从而满足更多样化结构件的需求。
变形镁合金的塑性变形主要有模锻、挤压、轧制等方法,其中挤压是最基本的方法,与其它塑性变形方法相比,经过挤压加工的镁合金产品具有较高的强度、较好的延展性和力学性能。
本研究就是以AZ31B 变形镁合金铸棒为例,采用正挤压加工方法形成镁合金棒材,同时,对其挤压工艺与模具设计进行了初步的研究和探讨。
变形镁合金AZ31的织构演变与力学性能共3篇变形镁合金AZ31的织构演变与力学性能1变形镁合金AZ31是一种广泛应用于航空、汽车、电子、医疗等领域的轻金属材料。
其具有轻质、高比强度、高耐腐蚀性等突出特点,逐渐成为各个领域中的热门材料。
然而,AZ31合金在加工过程中存在明显的异方性,其机械性能受到材料的组织结构影响较大。
因此,对于AZ31合金织构演变对力学性能的影响进行深入研究,有助于提高这种合金材料的使用性能。
AZ31合金的织构演变与力学性能1. AZ31合金的结构特点AZ31合金属于Mg-Al-Zn系列,由镁、铝、锌组成,其中镁含量最高,达到90%以上。
该合金的强度和塑性取决于其织构和显微结构。
AZ31合金虽然密度较低,但其非球形晶粒结构导致其劣异性强,机械性能较差。
而AZ31合金加工过程中的塑性变形,会导致晶体的取向趋向于某些方向,进而改变其结构和性能。
2. AZ31合金的织构演变材料的织构是指其晶体结构的方向取向分布情况。
AZ31合金材料经过加工后,其晶体取向会出现明显的变化。
织构演变主要表现为以下几个方面:(1) 轧制织构AZ31合金在轧制过程中,由于强制变形而出现滑移活动和晶胞旋转,引起晶体取向转移。
随着轧制次数的增加,合金的织构也发生了显著变化。
初始材料晶粒的织构为强烈的(0001)取向,随着轧制次数的增加,晶胞几乎沿着轧制方向旋转。
在轧制后5次,(0001)织构逐渐消失,取向随机化趋势增强。
(2) 拉伸织构AZ31合金在拉伸过程中,晶粒沿着应力方向伸展。
拉伸应变随机化使得AZ31合金中的(0001)取向被破坏,取向随机性增强。
此外,拉伸过程中晶粒的滑移和旋转也会影响其织构。
(3) 桶形拉伸织构桶形拉伸是一种在不一致模式下进行的拉伸,能够产生高度逆变形,有利于产生组织细化和显着的织构改善。
桶形拉伸后,(0001)取向分布更为均匀,且滞后角度明显减小。
3.织构演变对AZ31合金力学性能的影响材料的力学性能受到其组织结构的影响。
挤压2剪切工艺挤压AZ31镁合金的组织和织构演变Microst ruct ure and Text ure Evolution of A Z31Magnesium Alloy Processed by Ext rusion2shear Technique张丁非1.2,刘杰慧1,胡红军1,石国梁1,戴庆伟1(1重庆大学材料科学与工程学院,重庆400045;2重庆大学国家镁合金材料工程技术研究中心,重庆400044) ZHAN G Ding2fei1,2,L IU Jie2hui1,HU Hong2jun1,SHI Guo2liang1,DA I Qing2wei1(1College of Materials Science and Engineering,Chongqing University,Chongqing400045,China;2Natio nal Engineering Research Center forMagnesium Alloys,Chongqing University,Chongqing400044,China)摘要:采用大变形技术“挤压2剪切”(Extrusion2shear,ES)工艺挤压AZ31镁合金并研究其组织和织构演变。
结果表明:经ES工艺挤压后能得到细小均匀的再结晶晶粒;其宏观组织内存在多种类型的织构,削弱了基面织构的主导地位;由极图可知{0002}基面织构强度下降,ES工艺的再结晶机制是连续动态再结晶。
关键词:大变形;挤压2剪切工艺;组织形貌;织构演变;镁合金中图分类号:T G335.5 文献标识码:A 文章编号:100124381(2010)0720024205Abstract:Microst ruct ure and text ure evolution of AZ31magnesium wrought alloy p rocessed by a new severe plastic deformation including ext rusion and shear were investigated.The result s showed t hat fine and uniform microstruct ures can be achieved by extrusion2shear technique and variety types of text ure can also found in microstruct ures,which weakened t he t he dominant of base text ure.In ad2 dition,t he{0002}basal text ure intensity reduced after ES technique,which can be observed in t he pole figures and t he recrystallization mechanism of ES Technology is continuous dynamic recrystalliza2 tion.K ey w ords:severe plastic deformation;ext rusion2shear technique;microst ruct ure;text ure evolution; magnesium alloy 传统挤压是比较成熟的工艺,但是晶粒细化效果不明显。
镁合金轧制工艺绪论1 绪论镁是结构材料中最轻的金属,近年来已经逐渐被应用到航空航天、国防军工、汽车、电子通讯等领域,同时这些领域对其力学性能的要求也在不断提高。
传统的铸造镁合金已经渐渐无法满足要求,而通过挤压、锻造、轧制等工艺生产的变形镁合金产品具有更高的强度、更好的延展性、更多样化的力学性能。
其中,轧制作为镁合金塑性加工的重要手段得到了长足的发展。
镁合金是密排六方晶体结构,c/a 轴比为1.6236,在室温下仅具有一个滑移面,在滑移面上有3个密排方向,即有3个滑移系,根据多晶体塑性变形协调性原则,要使多晶体在晶界处的变形相互协调,必须有5个独立滑移系,显然密排六方结构的镁合金不满足该条件。
因此,在室温下,镁合金的塑性很低。
当变形温度达到225℃时,高温滑移面(棱柱面)被激活,镁合金的塑性有所改善。
镁及其合金的另一个重要特征是加热升温与散热降温比其他金属都快。
因此,在塑性加工过程中,温度下降很快且不均匀,则易发生边裂和裂纹,相对于其它金属材料而言,镁及其合金的热加工温度范围较窄。
镁合金滑移系较少,在室温和低温条件下塑性较差,而且迄今对镁合金塑性变形机理的认识还不够全面和深入,镁合金板材制备及其轧制成形工艺的研究尚处于初级阶段。
镁合金板材轧制成形的以下特点制约了镁合金板材的发展与应用:1)镁合金室温塑性变形能力差,轧制过程中易出现裂纹等变形缺陷;2)目前镁合金板材制备多采用普通的对称轧制,轧制后的组织有强烈的(0002)基面织构,存在严重的各向异性,不利于后续加工;3)镁合金轧制道次压下量较钢和铝小很多,生产效率不高。
制备优质的镁合金板材,大部分工艺都需要经过多道次轧制工序,轧制过程受许多因素的影响,这些因素可以分为两大类:第一类为影响轧制金属本身性能的一些因素,即金属的化学成分和组织状态以及热力学条件;第二类为轧制的工艺因素,如轧制温度、轧制变形量和轧制速度以及后续的热处理工艺。
国内外很多学者针对如何改进镁合金轧制工艺和轧制技术,以获得二次成形性能优良的板材做了大量的研究工作。
硕士学位论文2电磁超声能场对铸轧板坯微观组织和织构的影响因此,其织构分布比普通铸轧板更加散漫,取向极密度更低,晶粒的取向聚集现象更少,但其柱面织构分布却比普通铸轧镁板略高,这是因为在铸轧过程中产生的再结晶组织增加晶粒的柱面取向。
2.4本章小结由t/。
由1/。
图2.11两种铸轧镁合金带坯的柱面取向分布通过复合能场铸轧实验和普通铸轧实验制备了两种AZ31B镁合金铸轧带坯,对比分析两种带坯的微观组织和织构,可得如下结论:(1)复合能场可以使镁合金带坯晶粒明显细化和均匀化。
普通铸轧得到的镁合金带坯平均晶粒尺寸(直径)为75.851.tm,枝晶网胞发达;复合能场铸轧得到的镁合金带坯平均晶粒尺寸(直径)为40.501.tm,大部分晶粒为椭球状的等轴晶,有细小的再结晶组织存在。
(2)织构测试表明:两种的镁合金带坯在铸轧过程中均形成以基面织构和柱面织构为主的原始织构。
铸轧带坯在复合能场作用下,原始织构的强度降低,各织构组分分布更均匀,锥面织构组分提高,择优取向较弱。
硕士学位论文3AZ31B镁合金温轧的组织、织构和力学性能演变形量的增加而提高,并基本呈现出RD方向最大,450方向次之,TD方向最小的现象。
复合能场铸轧镁板三个方向的屈服强度、抗拉强度和延伸率始终高于普通铸轧镁板,各向异性程度小于普通铸轧镁板。
而热轧镁板的初始屈服强度、抗拉强度都较高,但在后续温轧中增加缓慢。
(4)三种镁合金板材的延伸率变化规律各不相同:复合能场铸轧镁板的延伸率前四个道次温轧时稳定增加,在第五道次大幅度增加,第六七道次减小;普通铸轧镁板延伸率前两个道次略有减小,然后逐渐增加,最后两道次减小;商用热轧镁板的初始延伸率较大,但在前四道次温轧中逐渐减小,第五道次开始缓慢增加。
(5)在温轧过程中,复合能场铸轧镁板第五道次温轧板材表现出细小均匀的微观组织和散漫的织构分布,其综合力学性能超过同道次的热轧镁板。