s x ds y ds
如果该曲线G满足:
dx ds
a
dy
ds
b
特征线
x
特征线简化了 方程,在空气 动力学领域应
用广泛
则有:
duaubuc ds x y
特征相容关系 (特征线上物理量的简化方程)
✓偏微方程在特征线上变成了常微分方程 Slide 5
演示: 如何利用特征线计算物理量
a(x,y)ub(x,y)uc(x,y)
特征方程(3) 有两个相同实根,且无法对角化 -> 抛物型
特征方程(3)无实根
-> 椭圆型
Slide 9
4. 讨论Euler方程组
一维非定常流动:
f(U)AU
x
x
U f(U) 0 t x
Uu
E
0
1
0
AU f ((232)u3)u2u/2c21
(3)u c2 32u2 1 2
1
u
推导
u f(U)u2 p
第四章 偏微分方程的性质 Behavior of Partial Differential Equations
Slide 1
超音速钝体绕流问题的解决
Slide 2
偏微方程的分类及特征
1. 一阶偏微分方程
➢ (常用)特例:常系数线性单波方程
u cu 0 t x
初值: u(x,0)(x)
方程的精确解: u(x,t)(xc)t
Slide 31
1.特征线为虚数,故与特征线有关 的解法不适用;
2.无有限影响区域和依赖区域,流 场参数信息可以向任何方向传播;
3.图中P点参数影响整个区域的信息, 同时区域内任意点的参数也影响P 点的参数。