北师大版2021年中考数学总复习《实数》(含答案)
- 格式:pdf
- 大小:145.29 KB
- 文档页数:4
一、选择题1.下列算式中,运算错误的是( )A =B =C =D .2(=32.在-1.4141,π,2+,3.14这些数中,无理数的个数为( ) A .2B .3C .4D .5 3.一个边长为bcm 的正方形的面积与一个长为8cm 、宽为5cm 的长方形的面积相等,则b 的值在( )A .3与4之间B .4与5之间C .5与6之间D .6与7之间 4.与数轴上的点一—对应的数是( )A .分数或整数B .无理数C .有理数D .有理数或无理数 5.下列运算中正确的是( )A =B .+=C =D .1)3-= 6.若方程2(1)5x -=的解分别为,a b ,且a b >,下列说法正确的是( )A .a 是5的平方根B .b 是5的平方根C .1a -是5的算术平方根D .1b -是5的算术平方根 7.下列各式中,正确的是( )A .3=B 3=±C 3=-D 3=8.如x 为实数,在“1)□x ”的“□”中添上一种运算符号(在“+”、“-”、“×”、“÷”中选择),其运算结果是有理数,则x 不可能是( )A 1B 1C .D .1-9.8b =+ ).A .3±B .3C .5D .5±10.下列计算正确的是( )A +=B =C 4=D 3=-11.下列计算结果,正确的是( )A 3B +C .=1D .2=5 12.下列说法正确的是( )A .4的平方根是2B ±4C .-36的算术平方根是6D .25的平方根是±5二、填空题13.的整数部分是a .小数部分是b ,则2a b -=______.14.材料:一般地,n 个相同因数a 相乘:n a a a a a ⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____.15.已知10x ,小数部分是y ,求x ﹣y 的相反数_____.16.已知M 是满足不等式a <<N M N +的平方根为__________.17.=__________. 18.若3109,b a =-且b 的算术平方根为4,则a =__________.19.已知2x =,2y =+.则代数式x 2+y 2﹣2xy 的值为_____.20.若50x -=,则x y +=________.三、解答题 21.化简求值:21a ,b =,求1a b b a ++的值. 22.(1)计算:;).(2)解方程:①4(x -1)2-9 =0;②8x 3+125=0.23.已知某正数的两个不同的平方根是3a ﹣14和a +2;b +11的立方根为﹣3;c 的整数部分;(1)求a +b +c 的值;(2)求3a ﹣b +c 的平方根.24.如果n x y =,那么我们记为:(),x y n =.例如239=,则()3,92=.(1)根据上述规定,填空:()2,8=___________,12,4⎛⎫= ⎪⎝⎭__________; (2)若()4,2a =,(),83b =,求(),b a 的值.25.计算:(1)7|2|--(2)2 311 5422⎛⎫⎛⎫⨯-÷-⎪ ⎪⎝⎭⎝⎭26.|1-【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次根式的加减法则,乘法,除法,乘方法则计算判断即可.【详解】解:∵=∴A选项不合题意;∵=∴B选项不合题意;∵∵C选项符合题意;∵﹣2(=3,正确,∴D选项不合题意;故选:C.【点睛】本题考查了二次根式的混合运算,熟记二次根式运算的基本法则是解题的关键. 2.B解析:B【分析】根据无理数的定义判断即可.【详解】解:-1.4141是有限小数,不是无理数;是无理数;π是无理数;2+=2,不是无理数;3.14是有限小数,不是无理数;所以,无理数有3个,故选:B.【点睛】本题考查了无理数的定义,解题关键是知道无理数是无限不循环小数,常见的有π和开不尽方的算术平方根.3.D解析:D【分析】由于边长为bcm的正方形的面积与长、宽分别为8cm、5cm的长方形的面积相等,根据面积公式列出等量关系式,由此求出b的值,再估计b在哪两个整数之间即可解决问题.【详解】解:∵边长为bcm的正方形的面积与长、宽分别为8cm、5cm的长方形的面积相等,∴b2=5×8=40,,∵36<40<49,∴67.故选:D.【点睛】本题考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.4.D解析:D【分析】实数与数轴上的点一一对应,实数包括有理数和无理数.【详解】A. 分数或整数,只是有理数,不是数轴上所有点,故此项不正确;B. 只是无理数,不是数轴上所有点,故此项不正确;C. 只是有理数,不是数轴上所有点,故此项不正确;D. 有理数和无理数是实数的组成,实数与数轴上的点一一对应,故此项正确;故选D.【点睛】此题考查了实数的意义,能掌握实数与数轴的关系是解答此题的关键.5.A解析:A【分析】根据二次根式的除法法则对A进行判断;根据二次根式的加减法对B、C进行判断;利用二次根式的乘法法则对D进行判断.【详解】A=B 、=C ==D 、221)11=-=,原计算错误,不符合题意;故选:A .【点睛】本题考查了二次根式的加减乘除运算,解题的关键是熟悉二次根式的四则运算方法. 6.C解析:C【分析】根据方程解的定义和算术平方根的意义判断即可.【详解】∵方程2(1)5x -=的解分别为,a b ,∴2(1)5a -=,2(1)5b -=,∴a-1,b-1是5的平方根,∵a b >,∴11a b ->-,∴a-1是5的算术平方根,故选C.【点睛】本题考查了方程解的定义,算术平方根的定义,熟记定义,灵活运用定义是解题的关键. 7.D解析:D【分析】根据二次根式的性质化简判断.【详解】A 、3=±,故该项不符合题意;B 3=,故该项不符合题意;C 3=,故该项不符合题意;D 3=,故该项符合题意; 故选:D .【点睛】此题考查二次根式的化简,正确掌握二次根式的性质是解题的关键.8.C解析:C【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】-=,故选项A不符合题意;解:A、1)1)0⨯=,故选项B不符合题意;B、1)1)2C1与C符合题意;+-=,故选项D不符合题意.D、1)(10故选:C.【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键.9.C解析:C【分析】根据二次根式的性质求出a=17,b=-8【详解】∵a-17≥0,17-a≥0,∴a=17,∴b+8=0,解得b=-8,∴==,5故选:C.【点睛】此题考查二次根式的性质,化简二次根式,熟记二次根式的性质是解题的关键.10.B解析:B【分析】由二次根式的乘法、除法,二次根式的性质,分别进行判断,即可得到答案.【详解】解:A A错误;B=,故B正确;C==C错误;=,故D错误;D3故选:B.【点睛】本题考查了二次根式的乘法、除法,二次根式的性质,解题的关键是熟练掌握运算法则进行解题.11.D解析:D【分析】利用二次根式的性质对A、D进行判断;根据二次根式的加减法对B、C进行判断.【详解】解:A、原式=3,所以A选项错误;B B选项错误;C、原式C选项错误;D、原式=5,所以D选项正确.故选:D.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12.D解析:D【分析】根据平方根和算术平方根的定义判断即可.【详解】解:A. 4的平方根是±2,故错误,不符合题意;±2,故错误,不符合题意;C. -36没有算术平方根,故错误,不符合题意;D. 25的平方根是±5,故正确,符合题意;故选:D.【点睛】本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断.二、填空题13.6-16【分析】先估算确定ab的值进而即可求解【详解】∵<<∴3<<4又∵a是的整数部分b是的小数部分∴a=3b=−3∴3-(−3)2=3-(10-6+9)=3-10+6-9=6-16故答案是:6-解析:-16【分析】,确定a,b的值,进而即可求解.【详解】∵∴3<4,又∵a b 的小数部分,∴a =3,b−3,∴2a b -=−3)2-16.故答案是:-16.【点睛】本题考查无理数的估算、完全平方公式,确定a 、b 的值是解决问题的关键.14.3;【分析】由可求出由可分别求出继而可计算出结果【详解】解:(1)由题意可知:则(2)由题意可知:则∴故答案为:3;【点睛】本题主要考查定义新运算读懂题意掌握运算方法是解题关键解析:3; 1173. 【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果.【详解】解:(1)由题意可知:239=,则2log 93=,(2)由题意可知: 4216=,43=81,则2log 164=,3log 814=, ∴223141(log 16)log 811617333+=+=, 故答案为:3;1173. 【点睛】本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键. 15.【分析】先判断在那两个整数之间用小于的整数与10相加得出整数部分再用10+减去整数部分即可求出小数部分【详解】解:∵∴的整数部分是1∴10+的整数部分是10+1=11即x =11∴10+的小数部分是112【分析】10相加,得出整数部分,再用10+减去整数部分即可求出小数部分.【详解】解:∵12<, ∴1,∴1010+1=11,即x =11,∴101011﹣1,即y 1,∴x ﹣y =111)=111=12∴x ﹣y 的相反数为﹣(1212.12.【点睛】在1~2之间.16.±3【分析】先通过估算确定MN 的值再求M+N 的平方根【详解】解:∵∴∵∴∵∴∴a 的整数值为:-1012M=-1+0+1+2=2∵∴N=7M+N=99的平方根是±3;故答案为:±3【点睛】本题考查了算解析:±3【分析】先通过估算确定M 、N 的值,再求M+N 的平方根.【详解】解:∵<< ∴221, ∵< ∴23<<,∵a <<∴23a -<<,∴a 的整数值为:-1,0,1,2,M=-1+0+1+2=2, ∵<∴78<<,N=7, M+N=9,9的平方根是±3;故答案为:±3.【点睛】本题考查了算术平方根的估算,用“夹逼法”估算算术平方根是解题关键.17.2a 【分析】根据二次根式的除法法则计算再将计算结果化为最简二次根式即可解题【详解】故答案为:【点睛】本题考查二次根式的除法最简二次根式等知识是重要考点难度较易掌握相关知识是解题关键解析:2a【分析】根据二次根式的除法法则计算,再将计算结果化为最简二次根式即可解题.【详解】2a==== 故答案为:2a .【点睛】本题考查二次根式的除法、最简二次根式等知识,是重要考点,难度较易,掌握相关知识是解题关键.18.5【分析】先求出b=16再代入根据立方根的定义即可解答【详解】解:∵的算术平方根为∴b=16∴∴∴a=5故答案为5【点睛】本题考查算术平方根的定义和立方根的定义熟知定义是解题关键解析:5【分析】先求出b=16,再代入3109b a =-,根据立方根的定义即可解答.【详解】解:∵b 的算术平方根为4,∴b=16,∴316109a =-,∴3125a =,∴a =5.故答案为5.【点睛】本题考查算术平方根的定义和立方根的定义,熟知定义是解题关键.19.【分析】根据二次根式的减法法则求出利用完全平方公式把原式化简代入计算即可【详解】解:则故答案为:12【点睛】本题考查的是二次根式的化简求值掌握完全平方公式二次根式的加减法法则是解题的关键解析:【分析】根据二次根式的减法法则求出x y -,利用完全平方公式把原式化简,代入计算即可.【详解】解:2x =-2y =+ 23x y, 则22222()(23)12x y xy x y , 故答案为:12.【点睛】本题考查的是二次根式的化简求值,掌握完全平方公式、二次根式的加减法法则是解题的关键.20.8【分析】根据绝对值的非负性及算术平方根的非负性得到x=5y=3再计算代数式即可【详解】∵∴x-5=0y-3=0∴x=5y=3∴x+y=5+3=8故答案为:8【点睛】此题考查代数式的代入求值正确掌握解析:8 【分析】根据绝对值的非负性及算术平方根的非负性得到x=5,y=3,再计算代数式即可.【详解】∵50x -+=,50x -≥≥,∴x-5=0,y-3=0,∴x=5,y=3,∴x+y=5+3=8,故答案为:8.【点睛】此题考查代数式的代入求值,正确掌握绝对值的非负性及算术平方根的非负性求得x=5,y=3是解题的关键.三、解答题21.()2a b ab ab +-;7【分析】 将a 、b 进行分母有理化,然后求出+a b 、ab 的值,对代数式变形,采用整体代入的方法求值 【详解】 ∵21a,b =,∴1a ==,1b ==, ∴)()21211ab =+=,11a b +=++=∴1a b b a++ 221a b ab+=+ 22a b ab ab++= ()2a b abab +-=(2171-==. 故1a b b a++的值为7. 【点睛】本题考察二次根式的有理化,根据二次根式的乘除法则进行二次根式有理化,代数式求值的问题可以先对代数式进行变形,采用整体代入的方法,可使运算简便22.(1)①5;②6-;(2)52x =或12x =-; ②52x =-. 【分析】(1)①先把各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算; ②根据平方差公式计算即可;(2)①将方程移项,再整理为2x a =的的形式,再根据平方根定义求解即可; ②将方程移项,再整理为3x a =根据立方根定义求解即可;【详解】解:(1)解:①原式== 5=.②原式1218=-6=-.(2)解:①原方程可化为29(1)4x -=则312x -=或312x -=-, 解得,52x =或12x =-.②原方程可化为3125 8x=-,解得,52x=-.【点睛】本题考查了平方根、立方根及实数的运算,主要考查学生的运算能力,题目比较好,解题关键是理解平方根、立方根的意义.23.(1)-33;(2)7±【分析】(1)由平方根的性质知3a-14和a+2互为相反数,可列式,解之可得a=3,根据立方根定义可得b的值,根据23<<可得c的值;(2)分别将a,b,c的值代入3a-b+c,可解答.【详解】解:(1)∵某正数的两个平方根分别是3a-14和a+2,∴(3a-14)+(a+2)=0,∴a=3,又∵b+11的立方根为-3,∴b+11=(-3)3=-27,∴b=-38,又∵469<<,∴23<<,又∵c的整数部分,∴c=2;∴a+b+c=3+(-38)+2=-33;(2)当a=3,b=-38,c=2时,3a-b+c=3×3-(-38)+2=49,∴3a-b+c的平方根是±7.【点睛】本题主要考查了立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义.24.(1)3;-2;(2)4【分析】(1)理解题意,根据有理数乘方及负整数指数幂的计算求解;(2)根据题意,由有理数的乘方计算求得a与b的值,然后求解【详解】解:(1)∵328=∴()2,8=3∵-22112=24=∴12,4⎛⎫= ⎪⎝⎭-2 故答案为:3;-2(2)∵()4,2a =,2416=∴a=16∵(),83b =,328=∴b=2∴()(),=2,16b a又∵4216=∴(),b a 的值为4【点睛】此题主要考查了有理数的乘方及负整数指数幂的运算,正确将原式变形是解题关键. 25.(1)2;(2)5【分析】(1)先计算绝对值及开立方,再计算加减法;(2)先计算括号中的减法及乘方,再按顺序计算乘除法.【详解】解:(1)7|2|--=7-2-3=2;(2)23115422⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭=15144⨯÷ =5.【点睛】 此题考查实数的混合运算,掌握运算法则及运算顺序是解题的关键.26.1.【分析】根据二次根式的性质、绝对值的性质、立方根的性质依次化简再计算加减法.【详解】解:原式12=+1=. 【点睛】此题考查实数的混合运算,二次根式的加减运算,掌握二次根式的性质、绝对值的性质、立方根的性质是解题的关键.。
2024年中考数学总复习第一章《数与式》第一节:实数★解读课标★--------------熟悉课标要求,精准把握考点1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小;了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值;2.借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道|a|的含义;3.会用科学记数法表示数;4.了解平方根、算术平方根、立方根的概念.会用根号表示数的平方根、算术平方根、立方根,会用平方运算求百以内整数的平方根;5.掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主);能运用有理数的运算解决简单的问题.★中考预测★--------------统计考题频次,把握中考方向1.实数与运算在历年中考中以考查基础为主,也是考查重点,年年考查,是广大考生的得分点,分值为14~28分。
2.预计2024年各地中考还将继续重视对正负数的意义、相反数、绝对值、倒数、数轴等实数的相关概念及实数的分类的考查,也会对有理数的运算、科学记数法、数的开方、零次幂、负整数指数幂、二次根式及运算等进行考查,且考查形式多样,为避免丢分,学生应扎实掌握。
★聚焦考点★--------------直击中考考点,落实核心素养有理数及其相关概念1.整数和分数统称为有理数。
(有限小数与无限循环小数都是有理数。
)2.正整数、0、负整数统称为整数。
正分数、负分数统称分数。
3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
4.正数和负数表示相反意义的量。
【注意】0既不是正数,也不是负数。
数轴 1.数轴的三要素:原点、正方向、单位长度。
数轴是一条直线。
2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。
3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表第1页共44页。
北师大版八年级(上)第二单元达标测试卷(二)数 学(考试时间:100分钟 满分:120分)学校: 班级: 考号: 得分:一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列实数中,属于无理数的是( )A .53B C .3.14D22π,0.其中无理数出现的频率为( ) A .0.2B .0.4C .0.6D .0.83.若Rt ABC 的两边长a ,b 满足()240a -=,则第三边的长是( )A .5B C .5或7D .54.若27a ab m +=+,29b ab m +=-.则a b +的值为( ) A .4±B .4C .2±D .252b +4=4b ,则20152016•a b 的值是( ) A .12B .12-C .2D .﹣26.下列等式正确的是( )A 3=-B 712± C 4= D .32=- 7.下列说法中正确的是( )A .81的平方根是9B 4CD .64的立方根是4±8 ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间91最接近的是( )A .0.4B .0.6C .0.8D .110.若用我们数学课本上采用的科学计算器进行计算,其按键顺序如图,则输出结果应为( )A .8B .4C .12D .1411.估计)301182) A .0和1 B .1和2C .2和3D .3和4123236x y z +++=x 、y 、z 为有理数.则xyz =( )A .34B .56 C .712D .1318二、填空题(本大题共6小题,每小题3分,共18分)1311163-⎛⎫-= ⎪⎝⎭__________. 14.一个正数a 的两个平方根是21b -和4b +,则a b +的立方根为_______. 155x +x 53x a没有实数根,那么a 的取值范围是__.16.已知a 、b 是相邻的两个正整数,且a <11﹣1<b ,则a +b 的值是_____. 17.已知:1502222a b c -==ab +c =________. 18.若实数,x y 满足22425x y x y +-=-x yx y+-_________ 三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程) 19.把下列各数分别填入相应的集合里.3.14、0.121121112…、2113⎛⎫- ⎪⎝⎭、|6|-、-2011、22-、13π、20% 无理数集合:{}… 负整数集合:{}… 分数集合: {}…正数集合: {}…20.我们规定:a ≥b 时,a ★b =a -b ;当a < b 时,a ★b =a 2-b 2. (1)求5★3的值;(2)若m > 0,化简(m +3)★(2m +3); (3)若x ★3=7,求x 的值; 21.计算:(1)217110.5395⎛⎫-÷⨯- ⎪⎝⎭(2)()()22231532732-+---⨯+-22.对于一个实数m (m 为非负实数),规定其整数部分为a ,小数部分为b ,例如:当3m =时,则3a =,0b =;当 4.5m =时,则4a =,0.5b =.(1)当m π=时,b = ;当11=m 时,a = ; (2)若5a =,630=-b ,则m = ; (3)当97=+m 时,求-a b 的值.23.实数a ,b ,c ,d ,e 在数轴上的位置如图所示.a 是最小的自然数,b 是最大的负整数,c 和d 是互为相反数,e 表示的数是7.(1)用“>”或“<”填空:b 0,c e ,b +c 0; (2)求代数式:|b ﹣e |+|d +c |×2019+2020a的值. 24.已知线段a ,b ,c ,且线段a ,b 满足|a 48+(b 322=0 (1)求a ,b 的值;(2)若a ,b ,c 是某直角三角形的三条边的长度,求c 的值.参考答案三、选择题(本大题共12小题,每小题3分,共36分。
八年级第二章实数单元测试试题(满分120分 时间120分钟)一、单选题。
(每小题3分,共30分) 1.下列是无理数的是( )A.0B.2022C.﹣π0D.√932.√81的平方根是( )A.9B.±9C.3D.±3 3.计算|√7-3|的结果是( )A.√7+3B.﹣√7-3C.3-√7D.√7-3 4.下列不是最简二次根式的是( )A.√56B.√7C.√21D.√395.下列说法中:①﹣164的立方根是﹣18;②0.081的算术平方根是0.9;③√9=±3;④算术平方根和立方根都等于本身的是0;⑤0.027的立方根为0.3,其中正确的有( )个。
A.0 B.1 C.2 D.3 6.估计8-√17的值在( )A.1和2之间B.2和3之间C.3和4之间D.4和5之间 7.下列计算正确的是( )A.√2+√3=√5B.√42+52=4+5=9C.√24÷√6=2D.4√3-√3=4 8.下列说法正确的是( )A.无限小数都是无理数B.任何数都有算术平方根和平方根C.实数分为正有理数和负有理数D.√10的小数部分是√10-39.若x ,y 都是实数,且满足y=√x -3×√3-x5-2,则x y 的值为( )A.6B.﹣6C.9D.1910.如果一个等腰三角形的两条边长分别为3√3和4√7,那么这个等腰三角形的周长为( )A.6√3+4√7B.6√3+8√7C.6√3+4√7或6√3+8√7D.3√3+8√7 二、填空题。
(每小题3分,共18分)11.﹣√(﹣23)2= .12.一个正数的两个平方根分别是3x+5和﹣x+1,则这个正数是 . 13.若√x +4在实数范围内有意义,则x 的取值范围是 .14.实数a 在数轴上对应的点位置如图所示,则化简|a -√4|-√(1-a )2= .15. 6-√5的整数部分是a ,6+√5的小数部分是b ,则(a+√5)(b -1)= . 16.我们规定:a △b=√b (√2a -√b ),例如:2△3=√3(√4-√3),则8△9= . 三、解答题。
一、选择题1. 现有 a ,b ,c ,d 四个正整数,将它们随机抽取两个并相加,所得的和都是 6,7,8,9 中的一个,并且 6,7,8,9 这 4 个数都能取到,那么 a ,b ,c ,d 这四个正整数 ( ) A .各不相等B .有且只有两个数相等C .有且只有三个数相等D .全部相等2. 实数 a 在数轴上的位置如图所示,则 √(a −4)2+√(a −11)2 化简后为 ( )A . 7B . −7C . 2a −15D .无法确定3. 如图,点 A ,B ,C 分别是同一数轴上的三个点,且 AB =AC ,A ,B 两点对应的实数分别是 1 和 −√3,则点 C 位于下列哪两个相邻整数之间 ( )A . 3 和 4B . 2 和 3C . 1 和 2D . 4 和 54. 下列二次根式中,最简二次根式是 ( ) A . √8 B . √x2C . √9aD . √x 2+y 25. 设 √2 的整数部分用 a 表示,小数部分用 b 表示,4−√2 的整数部分用 c 表示,小数部分用 d 表示,则 b+d ac值为 ( )A . 12B . 14C .√2−12D .√2+126. 在二次根式:① √12;② √23;③ √23;④ √27 中,与 √3 是同类二次根式的是 ( )A .①和③B .②和③C .①和④D .③和④7. 下列各数中,与 2−√3 的乘积是有理数的是 ( )A . 2−√3B . 2+√3C . −2+√3D . √38. 在 √4,27,0.201,√3,π5,0.1010010001⋯ 这 6 个数中,无理数共有 ( )A . 2 个B . 3 个C . 4 个D . 5 个9. 对任意两个正实数 a ,b ,定义新运算 a ★b 为:若 a ≥b ,则 a ★b =√ab ;若 a <b ,则 a ★b =√ba .则下列说法中正确的有 ( ) ① a ★b =b ★a ; ② (a ★b )(b ★a )=1; ③ a ★b +1a ★b <2. A .① B .② C .①② D .①②③10. 下列整数中,与 10−√13 最接近的是 ( ) A . 4 B . 5 C . 6 D . 7二、填空题 11. 已知 a =(−34)−2,b =(−π+14)0,c =0.8−1,则 a ,b ,c 按从小到大的顺序排列的结果是(用“<”连接).12. 最简二次根式 √2m −1 与 √34−3m n−1是同类二次根式,则 mn = .13. 若 y =√x−4+√4−x2−2,则 (x +y )y = .14. 已知 x 1=√3+√2,x 2=√3−√2,则 x 12−x 22= .15. 面积为 a 的正方形的边长为 .16. 比较下列各数大小:(1)√2 π2; (2)2√5 5;(3)−2+√3 −2+√5.17. 规定用符号 [m ] 表示一个实数 m 的整数部分,例如:[23]=0,[3.14]=3.按此规定,则[√3+√5] 的值为 .三、解答题18.计算:(1) 计算∣1−√3∣√3√12−(π−3)0+√(−3)2.(2) 若a=−12−√32,b=−12+√32,求a2−ab+b2的值.19.下列各数有没有平方根?如果有,请求出它的平方根和算术平方根;如果没有,请说明理由.36,1100,0,1,−1.20.计算.(1) √18+√32+√27.(2) √48÷√3−√12×√12+√24.21.计算:(√3−√2)(√3+√2)+(√5−1)2.22.已知4x2+y2−4x−6y+10=0,求(23x√9x+y2√xy3)−(x2√1x−5x√yx)的值.23.已知x=12(√5+√3),y=12(√5−√3),求式子x2−xy+y2的值.24.2√12×14√3÷5√2.25.计算:(2√6−3√2)(3+2√3)−(√15−√24)(5+√40).答案一、选择题1. 【答案】B【解析】∵四个正整数a,b,c,d具有同等不确定性,不妨设a≤b≤c≤d,故a+b=6,c+d=9,(1)当a=1时,得b=5,∵a≤b≤c≤d,∴c,d为4或5,不合题意舍去,所以a≠1;(2)当a=2时,得b=4,∴c=4,d=5,符合题意,四个数是:2,4,4,5;(2)当a=3时,得b=3,∴c=3,d=6,不符合题意,两数之和不能得7;或c=4,d=5,符合题意,四个数是:3,3,4,5;综上所述:这四个数只能是:2,4,4,5或3,3,4,5.【知识点】实数的大小比较2. 【答案】A【解析】由数轴上点的位置可知5<a<10,∴a−4>0,a−11<0,∴√(a−4)2+√(a−11)2=∣a−4∣+∣a−11∣=a−4+11−a=7.【知识点】二次根式的性质与化简3. 【答案】A【解析】设点C所表示的数为x,∵点B与点C到点A的距离相等,∴AC=AB,即x−1=1+√3,解得:x=2+√3.∵1<√3<2,∴3<2+√3<3,即点C位于3和4之间.【知识点】其它(D)、平方根的估算4. 【答案】D【解析】A、原式=2√2,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;B、被开方数含分母,不是最简二次根式,故本选项错误;C、原式=3√a,被开方数含能开得尽方的因数,不是最简二次根式,故本选项错误;D、符合最简二次根式的定义,故本选项正确;故选:D.【知识点】最简二次根式5. 【答案】A【解析】 ∵1<2<4, ∴1<√2<2, ∴a =1,b =√2−1, ∵2<4−√2<3,∴c =2,d =4−√2−2=2−√2, ∴b +d =1,ac =2, ∴b+d ac=12.【知识点】平方根的估算6. 【答案】C【知识点】同类二次根式7. 【答案】B【解析】 ∵2−√3 的有理化因式为 2+√3, ∴ 与 2−√3 的积为有理数的是 2+√3. 【知识点】二次根式的乘法8. 【答案】B【解析】 √4=2 是整数,属于有理数; 27 是分数,属于有理数;0.201 是循环小数,属于有理数;∴ 无理数有:√3,π5,0.1010010001⋯ 共 3 个. 【知识点】无理数9. 【答案】A【解析】由定义可知:当 a ≥b 时,a ★b =√ab ,b ★a =√ab ;当 a <b 时,a ★b =√ba ,b ★a =√ba .①当 a ≥b 时,a ★b =b ★a ,当 a <b 时,a ★b =b ★a , ∴ ①正确;②当 a ≥b 时,(a ★b )(b ★a )=√ab ⋅√ab =√a 2b 2=ab , 则 (a ★b )(b ★a ) 不一定等于 1,当 a <b 时,(a ★b )(b ★a )=√b a⋅√b a=√b 2a2=ba,则 (a ★b )(b ★a ) 不一定等于 1, ∴ ②错误;③当 a ≥b 时,a ★b +1a ★b =√ab +√ab=√a b +√ba , 若 a =16,b =4,则 a ★b +1a ★b =2+12>2, 当 a <b 时,a ★b +1a ★b =√ba √ba=√b a +√ab ,若 a =4,b =16,则 a ★b +1a ★b =2+12>2, ∴ ③错误.【知识点】二次根式的混合运算10. 【答案】C【知识点】实数的大小比较二、填空题11. 【答案】 b <c <a【解析】因为 a =(−34)−2=1(−34)2=169,b =(−π+14)0=1,c =0.8−1=10.81=10.8=54,1<54<169,所以 a ,b ,c 的大小关系是 b <c <a . 【知识点】实数的大小比较12. 【答案】21【解析】n −1=2,2m −1=34−3m , ∴n =3,m =7 . 【知识点】同类二次根式13. 【答案】14【知识点】二次根式的概念14. 【答案】 4√6【解析】 ∵x 1=√3+√2,x 2=√3−√2,∴x12−x22=(x1−x2)(x1+x2)=(√3+√2−√3+√2)(√3+√2+√3−√2)=2√2×2√3=4√6.【知识点】二次根式的混合运算15. 【答案】√a【知识点】二次根式的概念16. 【答案】<;<;<【知识点】平方根的估算、实数的大小比较17. 【答案】3【解析】方法一:∵3<√3+√5<4,∴[√3+√5]的值为3.故答案为:3.方法二:√3≈1.732,√5≈2.236,∴[√3+√5]≈3.968,∴[√3+√5]=3.【知识点】平方根的估算三、解答题18. 【答案】(1) 原式=√3−1+√3−2√3−1+3=1.(2) ∵a=−12−√32,b=−12+√32,∴a2−ab+b2 =(a+b)2−3ab=(−12−√32−12+√32)2−3×(−12−√32)(−12+√32)=1−3×(14−34)=1+32=52.【知识点】二次根式的混合运算19. 【答案】36的平方根是±6,算术平方根是6;1100的平方根是±110,算术平方根是110;0的平方根和算术平方根都是0;1的平方根是±1,算术平方根是1;−1是负数,没有平方根.【知识点】算术平方根的运算、平方根的运算、算术平方根的概念,性质及运算20. 【答案】(1)√18+√32+√27 =3√2+4√2+3√3 =7√2+3√3.(2)√48÷√3−√12×√12+√24=√483−√122+√24=4−√6+2√6=4+√6.【知识点】二次根式的加减、二次根式的混合运算21. 【答案】原式=3−2+5−2√5+1 =7−2√5.【知识点】二次根式的混合运算22. 【答案】∵4x2+y2−4x−6y+10=0,4x2−4x+1+y2−6y+9=0,(2x−1)2+(y−3)2=0,∴x=12,y=3,原式=23x√9x+y2√xy3−x2√1x+5x√yx=2x√x+√xy−x√x+5√xy=x√x+6√xy.当x=12,y=3时,原式=12×√12+6√32=√24+3√6.【知识点】二次根式的混合运算23. 【答案】因为x=12(√5+√3),y=12(√5−√3),所以x−y=√3,xy=12,所以原式=x2−2xy+y2+xy=(x−y)2+xy=3+12=312.【知识点】二次根式的混合运算24. 【答案】310√2【知识点】二次根式的除法25. 【答案】原式=√2(2√3−3)(2√3+3)−√3(√5−√8)⋅√5(√5+√8) =3√2+3√15.【知识点】二次根式的混合运算。
专题基础知识回顾一实数一、单元知识网络:二、考试目标要求:了解有理数、无理数、实数的概念;会比较实数的大小,知道实数与数轴上的点一一对应,会用科学记数法表示有理数;理解相反数和绝对值的概念及意义.进一步,对上述知识理解程度的评价既可以用纯粹数学语言、符号的方式呈现试题,也可以建立在应用知识解决问题的基础之上,即将考查的知识、方法融于不同的情境之中,通过解决问题而考查学生对相应知识、方法的理解情况.了解乘方与开方的概念,并理解这两种运算之间的关系.了解平方根、算术平方根、立方根的概念,了解整数指数幂的意义和基本性质.具体目标:1.有理数(1)理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小.(2)借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母).(3)理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主).(4)理解有理数的运算律,并能运用运算律简化运算.(5)能运用有理数的运算解决简单的问题.(6)能对含有较大数字的信息作出合理的解释和推断.2.实数(1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根.(2)了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.(3)了解无理数和实数的概念,知道实数与数轴上的点—一对应.(4)能用有理数估计一个无理数的大致范围.(5)了解近似数与有效数字的概念.在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值.三、知识考点梳理知识点一、实数的分类1.按定义分类:2.按性质符号分类:注:0既不是正数也不是负数.3.有理数:整数和分数统称为有理数或者“形如 (m,n是整数n≠0)”的数叫有理数.4.无理数:无限不循环小数叫无理数.5.实数:有理数和无理数统称为实数.知识点二、实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于0.a、b互为相反数 a+b=0.2.绝对值(1)代数意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.可用式子表示为:(2)几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离.距离是一个非负数,所以绝对值的几何意义本身就揭示了绝对值的本质,即绝对值是一个非负数.用式子表示:若a是实数,则|a|≥0.3.倒数(1)实数的倒数是;0没有倒数;(2)乘积是1的两个数互为倒数.a、b互为倒数 .4.平方根(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a≥0)的平方根记作.(2)一个正数a的正的平方根,叫做a的算术平方根.a(a≥0)的算术平方根记作.5.立方根如果x3=a,那么x叫做a的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根仍是零.知识点三、实数与数轴数轴定义:规定了原点,正方向和单位长度的直线叫做数轴,数轴的三要素缺一不可.每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都表示一个实数.知识点四、实数大小的比较1.对于数轴上的任意两个点,靠右边的点所表示的数较大.2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数;绝对值大的反而小.3.对于实数a、b,若a-b>0 a>b;a-b=0 a=b;a-b<0 a<b.5.无理数的比较大小:利用平方转化为有理数:如果 a>b>0,a2>b2 a>b ;或利用倒数转化:如比较与 .知识点五、实数的运算1.加法同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加,仍得这个数.2.减法减去一个数等于加上这个数的相反数.3.乘法几个非零实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数有奇数个时,积为负.几个数相乘,有一个因数为0,积就为0.4.除法除以一个数,等于乘上这个数的倒数.两个数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数都得0.5.乘方与开方(1)an所表示的意义是n个a相乘,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数.(2)正数和0可以开平方,负数不能开平方;正数、负数和0都可以开立方.(3)零指数与负指数6.实数的六种运算关系加法与减法互为逆运算;乘法与除法互为逆运算;乘方与开方互为逆运算.7.实数运算顺序加和减是一级运算,乘和除是二级运算,乘方和开方是三级运算.这三级运算的顺序是三、二、一.如果有括号,先算括号内的;如果没有括号,同一级运算中要从左至右依次运算.8.实数的运算律加法交换律:a+b=b+a乘法交换律:ab=ba知识点六、有效数字和科学记数法1.近似数:一个近似数,四舍五入到那一位,就说这个近似数精确到哪一位.2.有效数字:一个近似数,从左边第一个不是0的数字起,到精确到的数位为止,所有的数字,都叫做这个近似数的有效数字.3.科学记数法:把一个数用 (1≤<10,n为整数)的形式记数的方法叫科学记数法.四、规律方法指导1.数形结合思想实数与数轴上的点一一对应,绝对值的几何意义等,数轴在很多时候可以帮助我们更直观地分析题目,从而找到解决问题的突破口.2.分类讨论思想(算术)平方根,绝对值的化简都需要有分类讨论的思想,考虑问题要全面,做到既不重复又不遗漏.3.从实际问题中抽象出数学模型以现实生活为背景的题目,我们要抓住问题的实质,明确该用哪一个知识点来解决问题,然后有的放矢.4.注意观察、分析、总结对于寻找规律的题目,仔细观察变化的量之间的关系,尝试用数学式子表示规律.对于阅读两量大的题目,经常是把规律用语言加以叙述,仔细阅读,找到关键的字、词、句,从而找到思路. 经典例题精析考点一、实数概念及分类1. (2010上海)下列实数中,是无理数的为()思路点拨:考查无理数的概念.2.下列实数、sin60°、、、3.14159、、、中无理数有( )个总结升华:对实数进行分类不能只看表面形式,应先化简,再根据结果去判断.举一反三:【变式1】把下列各数填入相应的集合里:(1)自然数集合:{ …}(2)整数集合:{ …}(3)分数集合:{ …}(4)无理数集合:{ …}答案:(1)自然数集合:(2)整数集合:(3)分数集合:(4)无理数集合:【答案】b,603,6n+3考点二、数轴、倒数、相反数、绝对值4.(2010湖南益阳)数轴上的点a到原点的距离是6,则点a表示的数为()思路点拨: 数轴上的点a到原点的距离是6的点有两个,原点的左边、右边各有一个。
实数知识点1 无理数1.下列四个实数中是无理数的是( )A .2.5B .103C .πD .1.414 2.下列各数中,不是无理数的是( )A .7B .0.5C .2πD .0.151151115…511(两个之间依次多个)3.有下列说法:①带根号的数是无理数;•②不带根号的数一定是有理数;③负数的平方根有两个且互为相反数;④是17的平方根,其中正确的有( )A .0个B .1个C .2个D .3个知识点2 实数及其分类4.有理数和 统称实数.5.下列说法正确的是( )A .正实数,0和负实数统称实数B .整数和分数,0统称有理数C .正无理数和负无理数统称无理数D .无限小数就是无理数知识点3 实数大小比较6.-53、、、-2π四个数中,最大的数是( )A .-53B .C .D .-2π7.比较大小163 8.在数轴表示下列各数,并把它们按从小到大的顺序排列,用“>”连接: -•3.0,-2,25,0,3.14 知识点4 实数与数轴9.和数轴上的点一一对应的是( )A .整数B .有理数C .无理数D .实数10的点表示的数是_________.知识点5 实数与绝对值、相反数、倒数关系11.23-的相反数地 ,绝对值是 .12.-5的相反数是 ,绝对值是 ,没有倒数的实数是 . 学科能力迁移 13.【易错题】实数227,2-,21+, 3π,|3|-中,无理数的个数是( ) A .2个 B .3个 C .4个 D .5个14.【易错题】 414、226、15三个数的大小关系是( )A .41415226<<B .22615414<<C .41422615<<D .22641415<<15.【新情境题】实数a 在数轴上的位置如图1所示,则a ,a -,1a,2a 的大小关系是( )A .21a a a a <-<< B .21a a a a-<<< C . 21a a a a -<<< D . 21a a a a <<<- 16.【多变题】满足大于π-而小于π的整数有( )A .3个B .4个C .6个D .7个17.【开放题】若2a a =-,则实数a 在数轴上的对应点一定在( )A .原点左侧B .原点右侧C .原点或原点左侧D .原点或原点右侧课标能力提升 18.【趣味题】已知a 是13的整数部分,b 是13的小数部分,计算a-b 的值.19.【学科内综合题】某公路规定汽车行驶速度不得超过70千米/时,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是16v df =,其中v 表示车速(单位:千米/时),d 表示刹车后车轮滑过的距离(单位:米),f 表示摩擦因数.经测量,20d =米, 1.2f =,请你帮助判断一下,肇事汽车当时的速度是否超出了规定的速度.20.【开放题】 阅读下面的文字,解答问题.大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小明用2-1来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,•将这个数减去其整数部分,差就是小数部分.请解答:已知:10+3=x+y,其中x 是整数,且0<y<1,求x-y 的相反数.21.【探究题】如图3是三个周长相同的长方形,用不同的组合方法,它们的面积就会不一样,请分别计算它们的面积和对角线,并根据计算结果观察一下对角线和面积之间有什么关系?22.【学科内综合题】座钟的摆针摆动一个来回所需的时间称为一个周期,其计算公式为gl 2T =,其中T 表示周期(单位:秒)l 表示摆长(单位:米)g =9.8米/秒2,假如一台座钟的摆长为0.5米,它每摆动一个来回发出一次滴答声,那么在1分内该座钟大约发出了多少次滴答声?品味中考典题23.(2007年广东中山)在三个数0.5,3,13-中,最大的数是()A.0.5B.C.13-D.不能确定24.(2007是.参考答案1.C2.B3.B4.无理数.5.A6.B7.<,>,>,=8.23.002514.3>->->>• 9.D10.11.2-2-12.055,, 13.B14.A15.D16.D17.C18. 点拨:∵,∴a=3,,a-b=3-)19.肇事汽车当时已经超速.20. -12.21.按不同的方式组合,对角线短的面积反而大.22.42次23.A24.2。
北师大版中考数学总复习第1课时实数的有关概念【知识梳理】1.实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数. 有理数和无理数统称为实数.2.数轴:规定了原点、正方向和单位长度的直线叫数轴.实数和数轴上的点一一对应.3.绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数.a的相反数是-a0的相反数是0.5.有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.6.科学记数法:把一个数写成a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法. 如:407000=4.07×105,0.000043=4.3×10-5.7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小.8.数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂.9.平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数x就叫做a的平方根(也叫做二次方根).一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.10.开平方:求一个数a的平方根的运算,叫做开平方.11.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0.12.立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0.13.开立方:求一个数a的立方根的运算叫做开立方.【思想方法】数形结合,分类讨论【例题精讲】例1.下列运算正确的是()A.33--=B.3)31(1-=-C3=±D3=-例)A.B C.2-D.2例3.2的平方根是()A.4 B C.D.例4.《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A .107.2610⨯ 元B .972.610⨯ 元C .110.72610⨯ 元D .117.2610⨯元例5.实数a b ,在数轴上对应点的位置如图所示, 则必有( )A .0a b +>B .0a b -<C .0ab >D .0ab< 例6.(改编题)有一个运算程序,可以使:a ⊕b = n (n 为常数)时,得(a +1)⊕b = n +2, a ⊕(b +1)= n -3现在已知1⊕1 = 4,那么2009⊕2009 = . 【当堂检测】1.计算312⎛⎫- ⎪⎝⎭的结果是( )A .16B .16-C .18D .18-2.2-的倒数是( ) A .12-B .12C .2D .2-3.下列各式中,正确的是( )A .3152<<B .4153<<C .5154<<D .161514<< 4.已知实数a在数轴上的位置如图所示,则化简|1|a -的结果为(A .1B .1-C .12a -D .21a -5.2-的相反数是( ) A .2B .2-C .12D .12-6.-5的相反数是____,-12的绝对值是=_____.7.写出一个有理数和一个无理数,使它们都是小于-1的数 . 8.如果2()13⨯-=,则“”内应填的实数是( )A . 32B .23C .23-D .32-第4题图a 0 例5图第2课时实数的运算【知识梳理】1.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数.2.有理数减法法则:减去一个数,等于加上这个数的相反数.3.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘,积仍为0.4.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除;0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数.5.有理数的混合运算法则:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.6.有理数的运算律:加法交换律:a+b=b+a(a b、为任意有理数)加法结合律:(a+b)+c=a+(b+c)(a, b,c为任意有理数)【思想方法】数形结合,分类讨论【例题精讲】例1.某校认真落实苏州市教育局出台的“三项规定”,校园生活丰富多彩.星期二下午4 点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学其有____________名.例2.下表是5个城市的国际标准时间(单位:时)那么北京时间2006年6月17日上午9时应是( )A.伦敦时间2006年6月17日凌晨1时.B.纽约时间2006年6月17日晚上22时.C.多伦多时间2006年6月16日晚上20时.D.汉城时间2006年6月17日上午8时.例3.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,……,按照这样的规律排列下去,则第9个图形由__________个圆组成.-4-5例2图……思考与收获例4.下列运算正确的是( ) A .523=+B .623=⨯C .13)13(2-=- D .353522-=-例5.计算: (1) 911)1(8302+-+--+-π(2)0(tan 45π--+º(3)102)21()13(2-+--;(4)2008011(1)()3π--+-+【当堂检测】1.下列运算正确的是( )A .a 4×a 2=a 6B .22532a b a b -=C .325()a a -= D .2336(3)9ab a b =2.某市2008年第一季度财政收入为76.41亿元,用科学记数法(结果保留两个有效数字)表示为( )A .81041⨯元B .9101.4⨯元C .9102.4⨯元D .8107.41⨯元3.估计68的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间 4.如图,数轴上点P 表示的数可能是( ) AB .C . 3.2-D .5.计算:(1)02200960cos 16)21()1(-+--- (2))1112-⎛⎫- ⎪⎝⎭第4题图第3课时 整式与分解因式【知识梳理】1.即n m n m a a a +=⋅(m 、n 为正整数)底数不变,指数相减,即n m n m a a a -=÷(a≠0,m 、n 为正整数,m>n )乘方法则:幂的乘方,底数不变,指数相乘,即nnnb a ab =)((n 为正整数)零指数:10=a (a≠0);⑤负整数指数:n n aa 1=-(a≠0,n 为正整数); 2.整式的乘除法:(1)几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除. (2)单项式乘以多项式,用单项式乘以多项式的每一个项.(3)多项式乘以多项式,用一个多_项式的每一项分别乘以另一个多项式的每一项. (4)多项式除以单项式,将多项式的每一项分别除以这个单项式.(5)平方差公式:两个数的和与这两个数的差的积等于这两个数的平方, 即22))((b a b a b a -=-+;(6)它们的积的2倍,即2222)(b ab a b a +±=±3.式.4.分解因式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,式法.⑵运用公式法:公式22()()a b a b a b -=+- ; 2222()a ab b a b ±+=±5先提取公团式,然后再考虑是否能用公式法分解. 6.分解因式时常见的思维误区:⑴ 提公因式时,其公团式应找字母指数最低的,而不是以首项为准. ⑵ 提取公因式时,若有一项被全部提出,括号内的项“ 1”易漏掉. (3) 分解不彻底,如保留中括号形式,还能继续分解等【例题精讲】 【例1】下列计算正确的是( )A. a +2a=3a 2B. 3a -2a=aC. a 2•a 3=a 6 D.6a 2÷2a 2=3a 2【例2】(2008年茂名)任意给定一个非零数,按下列程序计算,最后输出的结果是( )A .mB .mC .m +1D .m -1【例3】若2320a a --=,则2526a a +-= . 【例4】下列因式分解错误的是( )A.22()()x y x y x y-=+-B.2269(3)x x x++=+C.2()x xy x x y+=+D.222()x y x y+=+【例5】如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n个“广”字中的棋子个数是________【例6】给出三个多项式:21212x x+-,21412x x++,2122x x-.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.【当堂检测】1.分解因式:39a a-=,_____________223=---xxx2.对于任意两个实数对(a,b)和(c,d),规定:当且仅当a=c且b=d时,(a,b)=(c,d).定义运算“⊗”:(a,b)⊗(c,d)=(ac-bd,ad+bc).若(1,2)⊗(p,q)=(5,0),则p=,q=.3. 已知a=1.6⨯109,b=4⨯103,则a2÷2b=( )A. 2⨯107B. 4⨯1014C.3.2⨯105D. 3.2⨯1014.4.先化简,再求值:22()()(2)3a b a b a b a++-+-,其中2332a b=-=,.5.先化简,再求值:22()()()2a b a b a b a+-++-,其中133a b==-,.思考与收获第4课时 分式与分式方程【知识梳理】1. 分式概念:若A 、B 表示两个整式,且B 中含有字母,则代数式BA2.分式的基本性质:(1)基本性质:(2)约分:(3)通分: 3.分式运算4.分式方程的意义,会把分式方程转化为一元一次方程.5.了解分式方程产生增根的原因,会判断所求得的根是否是分式方程的增根. 【思想方法】1.类比(分式类比分数)、转化(分式化为整式)2.检验【例题精讲】1.化简:2222111x x x x x x-+-÷-+2.先化简,再求值: 22224242x x x x x x --⎛⎫÷-- ⎪-+⎝⎭,其中2x =3.先化简11112-÷-+x xx )(,然后请你给x 选取一个合适值,4.解下列方程(1)013522=--+xx x x (2)41622222-=-+-+-x x x x x5.一列列车自2004年全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 千米,则根据题意所列方程正确的是( )A. B.C.D.【当堂检测】1.当99a =时,分式211a a --的值是.2.当x 时,分式112--x x有意义;当x 时,该式的值为0.3.计算22()ab ab的结果为 .4. .若分式方程xxk x --=+-2321有增根,则k 为( ) A. 2 B.1 C. 3 D.-25.若分式32-x 有意义,则x 满足的条件是:( ) A .0≠x B .3≥x C .3≠x D .3≤x6.已知x =2008,y =2009,求x yx 4y 5x y x 4xy5x y 2xy x 2222-+-+÷-++的值7.先化简,再求值:4xx 16x )44x x 1x 2x x 2x (2222+-÷+----+,其中22+=x8.解分式方程. (1)22011xx x -=+- (2)x 2)3(x 22x x -=--;(3)11322xx x -=--- (4)11-x 1x 1x 22=+-- 思考与收获第5课时二次根式【知识梳理】1.二次根式:(1)定义:____________________________________叫做二次根式.2.二次根式的化简:3.最简二次根式应满足的条件:(1)被开方数中不含有能开得尽的因数或因式.(2)根号内不含分母(3)分母上没有根号4几个二次根式就叫做同类二次根式.5.二次根式的乘法、除法公式:(1)a b=ab a0b0⋅≥≥(,)(2)a a=a0b0bb≥(,)6..二次根式运算注意事项:(1化简不正确;④合并出错.(2来简化计算,运算结果一定写成最简二次根式或整式.【思想方法】非负性的应用【例题精讲】【例1】要使式子1xx+有意义,x的取值范围是()A.1x≠B.0x≠C.10x x>-≠且D.10x x≠≥-且【例2】估计132202⨯+的运算结果应在().A.6到7之间B.7到8之间C.8到9之间D.9到10之间【例3】若实数x y,满足22(3)0x y++-=,则xy的值是.【例4】如图,A,B,C,D四张卡片上分别写有523π7-,,,任取两张卡片.A B C D(1)请列举出所有可能的结果(用字母A,B,C,D表示);(2)求取到的两个数都是无理数的概率.思考与收获【例5】计算:(1)103130tan 3)14.3(27-+︒---)(π(2)101(1)527232-⎛⎫π-+-+-- ⎪⎝⎭.【例6】先化简,再求值:)1()1112(2-⨯+--a a a ,其中33-=a .【当堂检测】1.计算:(1)01232tan 60(12)+--+-+. (2)cos45°·(-21)-2-(22-3)0+|-32|+121- (3)026312()cos 304sin 6022++-+.2.如图,实数a 、b 在数轴上的位置,化简222()a b a b -思考与收获第6课时 一元一次方程及二元一次方程(组)【知识梳理】1的概念及解法,利用方程解决生活中的实际问题. 2.等式的基本性质及用等式的性质解方程:等式的基本性质是解方程的依据,在使用时要注意使性质成立的条件 . 3.灵活运用代入法、加减法解二元一次方程组.4.用方程解决实际问题:关键是找到“等量关系”助图表等,在得到方程的解后,要检验它是否符合实际意义. 【思想方法】方程思想和转化思想【例题精讲】例1. (1)解方程.x x+--=21152156(2)解二元一次方程组 ⎩⎨⎧=+=+27271523y x y x 解:例2.已知x =-2是关于x 的方程()x m x m -=-284的解,求m 的值. 方法1 方法2例3.下列方程组中,是二元一次方程组的是( )A. B. C. D. 例4.在 中,用x 的代数式表示y ,则y=______________. 例5.已知a 、b 、c 满足⎩⎨⎧=+-=-+02052c b a c b a ,则a :b :c= .例6 .某电厂规定该厂家属区的每户居民如果一个月的用电量不超过 A 度,那么这个月这户只需交 10 元用电费,如果超过 A 度,则这个月除了仍要交 10 用电费外,超过部分还要按每度 0.5 元交费. ①该厂某户居民 2 月份用电 90 度,超过了规定的 A 度,则超过部分应该交电费多少元(用 A 表示)? .②右表是这户居民 3 月、4 月的用电情况和交费情况:根据右表数据,求电厂规定A 度为 .⎪⎩⎪⎨⎧=+=+65115y x y x ⎩⎨⎧-=+=+2102y x y x ⎩⎨⎧==+158xy y x ⎩⎨⎧=+=31y x x 032=-+y x【当堂检测】1.方程x -=52的解是___ ___.2.一种书包经两次降价10%,现在售价a 元,则原售价为_______元. 3.若关于x 的方程x k =-153的解是x =-3,则k =_________. 4.若⎩⎨⎧-==11y x ,⎩⎨⎧==22y x ,⎩⎨⎧==c y x 3都是方程ax+by+2=0的解,则c=____.5.解下列方程(组):(1)()x x -=--3252; (2)....x x +=-0713715023; (3)⎩⎨⎧=+=+832152y x y x ; (4)x x-+=-21141356.当x =-2时,代数式x bx +-22的值是12,求当x =27.应用方程解下列问题:初一(4付9元,则多了5元,后来组长收了每人8元,自己多付了2板价值多少?8.甲、乙两人同时解方程组8(1)5 (2)mx ny mx ny +=-⎧⎨-=⎩由于甲看错了方程①中的m ,到的解是42x y =⎧⎨=⎩,乙看错了方程中②的n ,得到的解是25x y =⎧⎨=⎩,试求正确,m n的值.第7课时 一元二次方程【知识梳理】1. 一元二次方程的概念及一般形式:ax 2+bx +c =0 (a ≠0)2. 一元二次方程的解法:①直接开平方法②配方法③公式法④因式分解法 3.求根公式:当b 2-4ac≥0时,一元二次方程ax 2+bx +c =0 (a ≠0)的两根为 4.根的判别式: 当b 2-4ac >0时,方程有 实数根.当b 2-4ac=0时, 方程有 实数根. 当b 2-4ac <0时,方程 实数根.【思想方法】1. 常用解题方法——换元法2. 常用思想方法——转化思想,从特殊到一般的思想,分类讨论的思想 【例题精讲】 例1.选用合适的方法解下列方程:(1) (x-15)2-225=0; (2) 3x 2-4x -1=0(用公式法);(3) 4x 2-8x +1=0(用配方法); (4)x 2+22x=0例2 .已知一元二次方程0437122=-+++-m m mx x m )(有一个根为零,求m 的值.例3.用22cm 长的铁丝,折成一个面积是30㎝2的矩形,求这个矩形的长和宽又问:能否折成面积是32㎝2的矩形呢?为什么?例4.已知关于x 的方程x 2―(2k+1)x+4(k -0.5)=0(1) 求证:不论k 取什么实数值,这个方程总有实数根;(2) 若等腰三角形ABC 的一边长为a=4,另两边的长b .c 个根,求△ABC 的周长.aac b b x 242-±-=【当堂检测】 一、填空1.下列是关于x 的一元二次方程的有_______ ①02x 3x12=-+ ②01x 2=+③)3x 4)(1x ()1x 2(2--=- ④06x 5x k 22=++ ⑤021x x 2432=--⑥0x 22x 32=-+2.一元二次方程3x 2=2x 的解是 .3.一元二次方程(m-2)x 2+3x+m 2-4=0有一解为0,则m 的值是 . 4.已知m 是方程x 2-x-2=0的一个根,那么代数式m 2-m = . 5.一元二次方程ax 2+bx+c=0有一根-2,则bc a 4+的值为 .6.关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根, 则k是__________.7.如果关于的一元二次方程的两根分别为3和4是 . 二、选择题:8.对于任意的实数x,代数式x 2-5x +10的值是一个( ) A.非负数 B.正数 C.整数 D.不能确定的数 9.已知(1-m 2-n 2)(m 2+n 2)=-6,则m 2+n 2的值是( ) A.3 B.3或-2 C.2或-3 D. 210.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) (A )x 2+4=0 (B )4x 2-4x +1=0(C )x 2+x +3=0(D )x 2+2x -1=0 11.下面是李刚同学在测验中解答的填空题,其中答对的是( ) A .若x 2=4,则x=2 B .方程x(2x-1)=2x-1的解为x=1 C .方程x 2+2x+2=0实数根为0个 D .方程x 2-2x-1=012.若等腰三角形底边长为8,腰长是方程x 2-9x+20=0的一个根,则这个三角形的周长是( ) A.16 B.18 C.16或18 D.21 三、解下方程:(1)(x+5)(x-5)=7 (2)x(x-1)=3-3x (3)x 2-4x-4=0(4)x 2+x-1=0 (6)(2y-1)2 -2(2y-1)-3=0第8课时 方程的应用(一)【知识梳理】1. 方程(组)的应用;2. 列方程(组)解应用题的一般步骤;3. 实际问题中对根的检验非常重要. 【注意点】分式方程的检验,实际意义的检验.【例题精讲】例1. 足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0队打了14场,负5场,共得19分,那么这个队胜了( ) A .4场 B .5场 C .6场 D .13场例2. 某班共有学生49人.人数的一半.若设该班男生人数为x ,女生人数为y 算出x 、y 的是( )A .⎩⎨⎧x –y= 49y=2(x+1) B .⎩⎨⎧x+y= 49y=2(x+1) C .⎩⎨⎧x –y= 49y=2(x –1) D .⎩⎨⎧x+y= 49y=2(x –1)例3. 张老师和李老师同时从学校出发,步行15李老师每小时多走1千米?设李老师每小时走x 千米,依题意得到的方程是( )1515115151..12121515115151..1212A B x x x x C D x x x x -=-=++-=-=--例4.用一张信笺,教务处每发出一封信都用3封,•但余下50张信笺,而教务处用掉所有的信笺但余下50个信封,的信笺数为x 张,•信封个数分别为y 个,则可列方程组 . 例5. 团体购买公园门票票价如下: 100别购票,两团共计应付门票费1392元,门票费1080元.(1)请你判断乙团的人数是否也少于50人. (2)求甲、乙两旅行团各有多少人?【当堂检测】1. 某市处理污水,需要铺设一条长为1000m 的管道,为了尽量减少施工对交通所造成的影响,实际施工时,每天比原计划多铺设10米,结果提前5天完成任务.原计划每天铺设管道xm ,则可得方程 .2. “鸡兔同笼”是我国民间流传的诗歌形式的数学题, “头笼中露,看来脚有100只,几多鸡儿几多兔?”解决此问题,设鸡为x y 只,所列方程组正确的是( ) ⎩⎨⎧=+=+100236.y x y x A 3636..2410022100x y x y B C x y x y +=+=⎧⎧⎨⎨+=+=⎩⎩⎩⎨⎧=+=+1002436..y x y x D 3.为满足用水量不断增长的需求,某市最近新建甲、乙、•厂的日供水量共计11.8万m 3,•其中乙水厂的日供水量是甲水厂日供水量的3丙水厂的日供水量比甲水厂日供水量的一半还多1万m 3. (1)求这三个水厂的日供水量各是多少万立方米?(2)在修建甲水厂的输水管道的工程中要运走600t 土石,运输公司派出A B•型两种载重汽车,A 型汽车6辆,B 型汽车4辆,分别运5或者A 型汽车3辆,B 型汽车6辆,分别运5次,也可把土石运完,那么每辆型汽车,每辆B 载)4. 2009年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到远的郊区进行抢修.维修工骑摩托车先走,15min 结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的1.5车的速度.5. 某体育彩票经售商计划用45000•元从省体彩中心购进彩票20扎,每扎1000已知体彩中心有A 、B 、C 三种不同价格的彩费,进价分别是A•种彩票每张元,B 种彩票每张2元,C 种彩票每张2.5元.(1)若经销商同时购进两种不同型号的彩票20扎,用去45000票方案;(2)若销售A 型彩票一张获手续费0.2元,B 型彩票一张获手续费0.3元,C 彩票一张获手续费0.5最多,你选择哪种进票方案?(3)若经销商准备用45000元同时购进A 、B 、C 三种彩票20方案.第9课时 方程的应用(二)【知识梳理】1.一元二次方程的应用;2. 列方程解应用题的一般步骤;3. 问题中方程的解要符合实际情况.【例题精讲】 例1. 一个两位数的十位数字与个位数字和是7,把这个两位数加上45后,•结果恰好成为数字对调后组成的两位数,则这个两位数是( ) A .16 B .25 C .34 D .61例2. 如图,在宽为20米、长为30米的矩形地面上修 建两条同样宽的道路,余下部分作为耕地.若耕地面积 需要551米2,则修建的路宽应为( ) A .1米 B .1.5米 C .2米 D .2.5米 例3. 为执行“两免一补”政策,某地区2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( )A.225003600x = B.22500(1)3600x +=C.22500(1%)3600x += D.22500(1)2500(1)3600x x +++= 例4. 某地出租车的收费标准是:起步价为7元,超过3千米以后,每增加1千米,•加收2.4元.某人乘这种出租车从甲地到乙地共付车费19元,•设此人从甲地到乙地经过的路程为x 千米,那么x 的最大值是( )A .11B .8C .7D .5例5. 已知某工厂计划经过两年的时间,•把某种产品从现在的年产量100万台提高到121万台,那么每年平均增长的百分数约是________.按此年平均增长率,预计第4年该工厂的年产量应为_____万台.例6. 某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个.为了实现平均每月10000•元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?例7. 幼儿园有玩具若干份分给小朋友,如果每人分3件,那么还余59件.•如果每人分5件,那么最后一个人不少于3件但不足5件,试求这个幼儿园有多少件玩具,有多少个小朋友.【当堂检测】1. 某印刷厂1•月份印刷了书籍60•万册,•第一季度共印刷了200万册,问2、3月份平均每月的增长率是多少?2. 为了营造人与自然和谐共处的生态环境,某市近年加快实施城乡绿化一体化工程,创建国家城市绿化一体化城市.某校甲,乙两班师生前往郊区参加植树活动.已知甲班每天比乙班少种10棵树,甲班种150棵树所用的天数比乙班种120棵树所用的天数多2天,求甲,乙两班每天各植树多少棵?3. A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3 cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s 的速度向D移动.⑴ P、Q两点从出发开始到几秒时四边形PBCQ的面积为33 cm2?⑵ P、Q两点从出发开始到几秒时,点P和点Q的距离是10 cm?4. 甲、乙两班学生到集市上购买苹果,苹果的价格如下表所示.甲班分两次共购买苹果70kg(第二次多于第一次),共付出189元,而乙班则一次购买苹果70kg.(1)乙班比甲班少付出多少元?(2)甲班第一次,第二次分别购买苹果多少千克?购苹果数不超过30kg 30kg以下但不超过50kg50kg以上每千克价格3元 2.5元2元第10课时 一元一次不等式(组)【知识梳理】1.一元一次不等式(组)的概念;2.不等式的基本性质;3.不等式(组)的解集和解法. 【思想方法】1.不等式的解和解集是两个不同的概念;2.解集在数轴上的表示方法.【例题精讲】 例1.如图所示,O 是原点,实数a 、b 、c 在数轴上对应的点分别为A 、B 、C ,则下列结论错误的是( ) A. 0b a >-B. 0ab <C. 0b a <+D. 例2. 不等式112x ->的解集是( )A.12x >- B.2x >- C.2x <-D.12x <-例3. 把不等式组21123x x +>-⎧⎨+⎩≤的解集表示在数轴上,下列选项正确的是( )A .B .C .D .例4. 不等式组221x x -⎧⎨-<⎩≤的整数解共有( )A .3个B .4个C .5个D .6个例5. 小明和爸爸妈妈三人玩跷跷板,三人的体重一共为150kg ,爸爸坐在跷跷板的一端,小明体重只有妈妈一半,小明和妈妈一同坐在跷跷板的另一端,这时爸爸那端仍然着地,那么小明的体重应小于( ) A. 49kg B. 50kg C. 24kg D. 25kg 例6.若关于x 的不等式x -m ≥-1的解集如图所示,则m 等于( ) A .0 B .1 C .2D .3例7.解不等式组:(1)21113x xx +<⎧⎪⎨-≥⎪⎩ (2)⎪⎩⎪⎨⎧+<+->+)6(3)4(4,5351x x x x4321B A O C)c a (b >-1 01- 10 1- 1 0 1- 1 0 1-第12课时 一次函数图象和性质【知识梳理】1.正比例函数的一般形式是y=kx(k≠0),一次函数的一般形式是y=kx+b(k≠0). 2. 一次函数y kx b =+的图象是经过(kb-,0)和(0,b )两点的一条直线. 3. 一次函数y kx b =+的图象与性质【思想方法】数形结合【例题精讲】 例1. 已知一次函数物图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上; (3)求此函数与x 轴、y 轴围成的三角形的面积.例2. 已知一次函数y=(3a+2)x -(4-b),求字母a 、b 为何值时: (1)y 随x 的增大而增大; (2)图象不经过第一象限;(3)图象经过原点; (4)图象平行于直线y=-4x+3; (5)图象与y 轴交点在x 轴下方.例3. 如图,直线l 1 、l 2相交于点A ,l 1与x 轴的交点坐标为(-1,0),l 2与y 轴的交点坐标为(0,-2),结合图象解答下列问题: (1)求出直线l 2表示的一次函数表达式;(2)当x 为何值时,l 1 、l 2表示的两个一次函数的函数值都大于0?k 、b 的符号k >0,b >0k >0,b <0k <0,b >0k <0,b <0图像的大致位置经过象限 第 象限 第 象限第 象限第 象限 性质y 随x 的增大 而y 随x 的增大而而y 随x 的增大 而y 随x 的增大 而xyO 32y x a=+1y kx b=+yxOBA例4.如图,反比例函数xy2=的图像与一次函数bkxy+=的图像交于点A(m,2),点B(-2, n ),一次函数图像与y轴的交点为C.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOC的面积.【当堂检测】1.直线y=2x+8与x轴和y轴的交点的坐标分别是_______、_______;2.一次函数1y kx b=+与2y x a=+的图象如图,则下列结论:①0k<;②0a>;③当3x<时,12y y<中,正确的个数是()A.0 B.1 C.2 D.33.一次函数(1)5y m x=++,y值随x增大而减小,则m的取值范围是()A.1m>-B.1m<-C.1m=-D.1m<4.一次函数23y x=-的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.已知函数y kx b=+的图象如图,则2y kx b=+的图象可能是()6.已知整数x满足-5≤x≤5,y1=x+1,y2=-2x+4对任意一个x,m都取y1,y2中的较小值,则m的最大值是()A.1B.2C.24D.-97.如图,点A的坐标为(-1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为( )A.(0,0)B.(22,22-)C.(-21,-21) D.(-22,-22)第2题图第5题图第13课时 一次函数的应用【例题精讲】例题1.某地区的电力资源丰富,并且得到了较好的开发.该地区一家供电公司为了鼓励居民用电,采用分段计费的方法来计算电费.月用电量x (度)与相应电费y (元)之间的函数图像如图所示.⑴月用电量为100度时,应交电费 元; ⑵ 当x≥100时,求y 与x 之间的函数关系式; ⑶ 月用电量为260度时,应交电费多少元?例题2. 在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km),图中的折线分别表示S 1、S 2与t 之间的函数关系.(1)甲、乙两地之间的距离为 km ,乙、丙两地之间的距离为 km ; (2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少? (3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出t 的取值范围.例题3.某加油站五月份营销一种油品的销售利润y (万元)与销售量x (万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题: (1)求销售量x 为多少时,销售利润为4万元; (2)分别求出线段AB 与BC 所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在O A 、AB 、BC 三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)2·4·6· 8· S(km) 2 0 t(h) A B1日:有库存6万升,成本价4元/升,售价5元/升. 13日:售价调整为5.5元/升.15日:进油4万升,成本价4.5元/升.31日:本月共销售10万升.图(1) 2 O 5 x A B C P D 图(2)第1题图 例题4.奥林玩具厂安排甲、乙两车间分别加工1000只同一型号的奥运会吉祥物,每名工人每天加工的吉祥物个数相等且保持不变,由于生产需要,其中一个车间推迟两天开始加工.开始时,甲车间有10名工人,乙车间有12名工人,图中线段OB 和折线段ACB 分别表示两车间的加工情况.依据图中提供信息,完成下列各题:(1)图中线段OB 反映的是________车间加工情况;(2)甲车间加工多少天后,两车间加工的吉祥物数相同? (3)根据折线段ACB 反映的加工情况, 请你提出一个问题,并给出解答.【当堂检测】 1.如图(1),在直角梯形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图(2)所示,则△BCD 的面积是( )A .3B .4C .5D .6 2.如图,在中学生耐力测试比赛中,甲、乙两学生测试的路程s (米)与时间t (秒)之间的函数关系的图象分别为折线OABC 和线段OD ,下列说法正确的是( ) A .乙比甲先到终点B .乙测试的速度随时间增加而增大C .比赛到29.4秒时,两人出发后第一次相遇D .比赛全程甲测试速度始终比乙测试速度快 3.小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( ) A .12分钟 B .15分钟C .25分钟D .27分钟4.在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x (h)时,汽车与甲地的距离为y (km),y 与x 的函数关系如图所示.根据图像信息,解答下列问题: (1)这辆汽车的往、返速度是否相同?请说明理由;(2)求返程中y 与x 之间的函数表达式; (3)求这辆汽车从甲地出发4h 时与甲地的距离.2 B x (天) AC18 20 O 960 1000 y (只) 第2题图 第3题图 第4题图。
第二章 实数易错点剖析易错点一 对实数分类方法不清晰【例1】 在−π ,227,0,3−4,5.⋅6,−2.5656656665⋯ (相邻两个5之间6的个数逐次加1)中,无理数有( ).A. 3个B. 4个C. 5个D. 6个(1)实数分类可以按正负分,也可以按整数、分数分,具体方法需牢记.(2)实数范围内,所有的分数都是指的有理数,同时无限循环小数也属于分数,即也是有理数;但要记住不能说所有带分数线的数都是分数,如:23.跟踪练习1. 下列各数:3.14159,−27,0,−π ,−17,其中有理数有( ).A. 1个B. 2个C. 3个D. 4个2. 在0,227,−1,−π2,0.101001⋯ (相邻两个1之间0的个数逐次加1)中,无理数的个数是( ).A. 1B. 2C. 3D. 4易错点二 不能够熟练掌握实数比较大小的方法【例2】 比较大小:52 33(填“> ”“=”或“< ”).实数大小比较的常用方法:(1)根据性质比较:正数>0> 负数;(2)数轴法:数轴上的两个数比较大小,右边的数总比左边的数大;(3)差量法:对于任意两个实数a ,b ,①当a−b >0时,a >b ;②当a−b =0时,a =b ;③当a−b <0时,a <b ;(4)平方法:若要比较任意两个实数a ,b 的大小,可以先比较它们的平方,由平方倒推a ,b 本身的大小;(5)近似值法:对于实数中含有二次根式部分时,可以直接根据二次根式部分的近似值估算两个实数间的大小.跟踪练习3. 下列实数中,最小的数是().A. −2B. −3C. 1D. 34. 实数a,b在数轴上的位置如图所示,下列各式正确的是().A. a>0B. b<0C. a>bD. |a|>|b|易错点三二次根式的化简要彻底【例3】计算:12−27+613.二次根式的化简结果中被开方数不应有能开得尽方的因数和分母,也就是二次根式化简的结果是最简二次根式或者整式.跟踪练习5. 计算:(1)232−18−12;(2)35+4135−75115;(3)128−0.5−412+250.重难点突破重难点一实数的相关概念熟练掌握实数的有关概念:有理数、无理数、相反数、绝对值、数轴、平方根、算术平方根、立方根、乘方,实数涉及的概念较多,且均属于基础知识,往往稍不注意就容易出错,像相反数、倒数、绝对值的意义、概念就容易混淆出错,此部分知识主要在选择题中考查,很少在填空题或者解答题中出现.提醒:多注意0和π的特殊性以及平方根和算术平方根的概念理解.1. 实数−2的相反数是().A. −2B. 2C. −12D. 122. 下列各数是无理数的是().A. 0B. 2C. −13D. 3.33. 25的平方根是 .4. 无理数5的倒数是().A. −5B. −55C. −5 D. 555. 16的算术平方根的相反数是().A. 2B. −2C. 4D. −46. 下列说法中,正确的是().A. 16的平方根是4B. 任何实数都有立方根C. 若一个数的绝对值是它本身,则这个数是正数D. 算术平方根等于本身的数只有17. 一只蚂蚁位于数轴的原点,现在向右爬了4个单位长度到了点A,则点A所表示的数是().A. 4B. −4C. ±4D. ±8重难点二实数的混合运算实数的运算包括加、减、乘、除、乘方、开方等,其中减法可以转化为加法运算,除法可以转化为乘法运算;同时要掌握好实数的有关概念、性质,灵活地运用各种运算律,关键还要把握好符号关;实数的运算顺序:先算乘方、开方,再算乘除,最后算加减;如果有括号,就先算括号内的;同级运算,按照从左到右的顺序进行,能用运算律的可用运算律简化计算.提醒:注意零指数幂和负整数指数幂的运算,还有绝对值的化简及乘方运(a≠0);特别地:算有括号和无括号的区别,公式:a0=1(a≠0);a−p=1a p(a≠0).a−1=1a.8. 计算:3−8−|2−5|+(1−3)0+4×529. 计算:4+|−2|−(−2024)0+(12)−1.10. 计算:−(−2)+(π−3.14)0−|1−3|+(−13)−1.11. 计算:|−1|+(−2)2−(π−1)0+(13)−1−4.12. 计算:|−5|+2−2−(π−2024)0.重难点三利用实数性质及二次根式化简求值实数及其相关概念:有理数、无理数、相反数、绝对值、数轴、平方根、算术平方根、立方根、乘方.实数是牵连概念最多的一个考点,需要我们准确掌握各种概念的定义及其考察方向.二次根式的性质:①(a)2=a(a≥0);②a2 =a(a≥0);③a2=|a|(a取全体实数).做这类习题需先根据实数的性质得出结论,或先对二次根式进行化简,再代入求值,注意书写格式.13. 实数a,b在数轴上对应点A,B的位置如图,则化简|a+b|−a2−3(b−a)3的结果为 .14. 实数a,b,c在数轴上的位置如图所示.化简:a2−|a−b|+(c−a)2+|b+c|.15. 实数a,b在数轴上的位置如图所示,化简:a2+(−b)2−|a−3|−|3−b|+ |a−b|.16. 先化简,再求值:x (6−x )+(x +5)(x−5),其中x =6−2.17. 已知a =13−2,b =13+2.(1) 求a +b 的值;解:a =13−2=3+2(3−2)(3+2)=3+2,b =13+2=3−2(3+2)(3−2)=3−2.(2) 求a 2−3ab +b 2的值.第二章 实数易错点剖析易错点一 对实数分类方法不清晰跟踪练习1.C 2.B(1)实数分类可以按正负分,也可以按整数、分数分,具体方法需牢记.(2)实数范围内,所有的分数都是指的有理数,同时无限循环小数也属于分数,即也是有理数;但要记住不能说所有带分数线的数都.是分数,如:23【例1】 A易错点二不能够熟练掌握实数比较大小的方法跟踪练习3.B4.D实数大小比较的常用方法:(1)根据性质比较:正数>0>负数;(2)数轴法:数轴上的两个数比较大小,右边的数总比左边的数大;(3)差量法:对于任意两个实数a,b,①当a−b>0时,a>b;②当a−b=0时,a=b;③当a−b<0时,a<b;(4)平方法:若要比较任意两个实数a,b的大小,可以先比较它们的平方,由平方倒推a,b本身的大小;(5)近似值法:对于实数中含有二次根式部分时,可以直接根据二次根式部分的近似值估算两个实数间的大小.【例2】>易错点三二次根式的化简要彻底跟踪练习5.(1)解:232−18−12=82−32−22=922.(2)35+4135−75115=155+1215−515=36155.(3)128−0.5−412+250=12×22−22−322+2×52=2−22+102=92.二次根式的化简结果中被开方数不应有能开得尽方的因数和分母,也就是二次根式化简的结果是最简二次根式或者整式.【例3】解:原式=23−33+6×33=23−33+23=3.重难点突破重难点一实数的相关概念1.B2.B3.±54.D5.B6.B7.A重难点二实数的混合运算8.解:3−8−|2−5|+(1−3)0+4×52=−2−(5−2)+1+25=−2−5+2+1+25=5+1.9.解:4+|−2|−(−2024)0+(12)−1=2+2−1+2=5.10.解:−(−2)+(π−3.14)0−|1−3|+(−13)−1=2+1−(3−1)+(−3)=2+1−3+1−3=1−3.11.解:|−1|+(−2)2−(π−1)0+(13)−1−4=1+4−1+3−2=5.12.解:|−5|+2−2−(π−2024)0−1=5+14=4+14.=174重难点三利用实数性质及二次根式化简求值13.−a−2b14.解:根据数轴可得c<b<0<a,∴a−b>0,c−a<0,b+c<0,∴a2−|a−b|+(c−a)2+|b+c|=a−(a−b)−(c−a)−(b+c)=a−a+b−c+a−b−c=a−2c.15.解:由数轴可知a<0,b>2,∴a−b<0,a−3<0,3−b<0,∴a2+(−b)2−|a−3|−|3−b|+|a−b|=|a|+|−b|−[−(a−3)]−[−(3−b)]+[−(a−b)]=−a+b+a−3+3−b+b−a=b−a.16.解:原式=6x−x2+x2−5=6x−5,当x=6−2时,原式=6×(6−2)−5=6−23−5=1−23.17.(1)解:a=13−2=3+2(3−2)(3+2)=3+2,b=13+2=3−2(3+2)(3−2)=3−2.17.(1)a+b=3+2+3−2=23.(2)∵ab=(3+2)(3−2)=3−2=1,∴a2−3ab+b2=(a+b)2−5ab=(23)2−5=12−5=7.。
一、选择题1.计算132252⨯+⨯的结果估计在( ) A .10到11之间 B .9到10之间C .8到9之间D .7到8之间 2.将尺寸如图的4块完全相同的长方形薄木块(厚度忽略不计)进行拼摆,恰好可以不重叠地摆放在如图的甲、乙两个方框内.已知小木块的宽为2,图甲中阴影部分面积为19,则图乙中AD 的长为( )A .2192+B .194+C .2194+D .192+ 3.如图,长方形ABCD 中,43,4AB BC ==,点E 是DC 边上的动点,现将BCE 沿直线BE 折叠,使点C 落在点F 处,则点D 到点F 的最短距离为( )A .5B .4C .3D .24.下列选项中,属于无理数的是( )A .πB .227-C 4D .05.下列各数中,介于6和7之间的数是( ) A 72+ B 45 C 472 D 356.下列运算中正确的是( )A 623=B .233363+=C 826=D .221)3-= 7.计算))202020203232⨯的结果为( ) A .-1B .0C .1D .±1 8.已知||3a =,216b =,且0a b +<,则代数式-a b 的值为( ) A .-1或-7 B .1或-7 C .1或7 D .±1或7±9.下列数中,比3大的实数是( ) A .﹣5 B .0 C .3 D .210.已知三角形的三边长a 、b 、c 满足2(2)a -+ 3b -+|c -7|=0,则三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .不能确定 11.下列说法正确的是( ) A .4的平方根是2B .16的平方根是±4C .-36的算术平方根是6D .25的平方根是±512.已知x =5+2,则代数式x 2﹣x ﹣2的值为( )A .9+55B .9+35C .5+55D .5+35二、填空题13.实数a 、b 在数轴上所对应的点如图所示,则|3﹣b |+|a +3|+2a 的值_____.14.若202120212a b -++=,其中a ,b 均为整数,则符合题意的有序数对(),a b 的组数是______.15.计算:23-=______ ;364=______.16.如图,设AB 是已知线段,经过点B 作BD AB ⊥,使12BD AB =,连接DA ,在DA 上截取DE DB =;在AB 上截取AC AE =.点C 就是线段AB 的黄金分割点.已知线段AB 的长为80cm ,则线段AC 的长为____cm .17.如图,已知OA OB =,若点A 对应的数是a ,则a 与52-的大小关系是a ____52-.18.如图,已知圆柱体底面圆的半径为a π,高为2,AB CD 、分别是两底面的直径,,AD BC 是母线.若一只蚂蚁从A 点出发,从侧面爬行到C 点,则蚂蚁爬行的最短路线的长度是_____.(结果保留根式)19.若2(1)10a b -++=,则20132014a b +=___________. 20.有一列数3,6,3,23,15,,则第100个数是_______.三、解答题21.化简求值:21a,21b =+,求1a b b a ++的值. 22.计算:(1)8a 6÷2a 2﹣4a 3•3a ﹣(4a 2)2;(2)(312﹣21483+)÷23. 23.(1)计算:①27123+;②(23+32)(23 -32).(2)解方程:①4(x -1)2-9 =0;②8x 3+125=0.24.(1)计算:(23)(23)123+-+÷;(2)解方程组:1327x y x y +=-⎧⎨-=⎩. 25.计算:(1)316132722581------ .(2)2433(32)()x x x x x x ⋅---÷-(). 26.(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.例如222÷÷,记作2③,读作“2的圈3次方”;再例如(3)(3)(3)(3)-÷-÷-÷-,记作()3-④,读作“3-的圈4次方”;一般地,把n a a a a a ÷÷÷⋅⋅⋅÷个(0a ≠,n 为大于等于2的整数)记作,读作“a 的圈n 次方”.(初步探究)(1)直接写出计算结果:7=③_______________,14⎛⎫-= ⎪⎝⎭⑤__________; (2)关于除方,下列说法错误的是____________;A .任何非零数的圈2次方都等于1;B .对于任何大于等于2的整数c ,;C .89=⑨⑧;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?除方211112222222222⎛⎫→=÷÷÷=⨯⨯⨯=→ ⎪⎝⎭④乘方幂的形式 (1)仿照上面的算式,将下列运算结果直接写成幂的形式:(5)-=⑥___________;12⎛⎫= ⎪⎝⎭⑨___________; (2)将一个非零有理数a 的圈n 次方写成幂的形式为____________;(3)将(m 为大于等于2的整数)写成幂的形式为_________.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】先根据二次根式的乘法计算得到原式为41010的范围,即可得出答案.【详解】解:原式1322516104102=⨯⨯== ∵3104<<,∴74108<<,故选:D .【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.解析:C【分析】设木块的长为x ,结合图形知阴影部分的边长为x-2,根据其面积为19得出(x-2)2=19,利用平方根的定义求出符合题意的x 的值,由AD=2x 可得答案.【详解】解:设木块的长为x ,根据题意,知:(x-2)2=19, 则219x -=±,∴219x =+或2192x =-<(舍去)则22194BC x ==+,故选:C .【点睛】本题主要考查算术平方根,解题的关键是结合图形得出木块长、宽与阴影部分面积间的关系.3.B解析:B【分析】连接DB ,DF ,根据三角形三边关系可得DF+BF >DB ,得到当F 在线段DB 上时,点D 到点F 的距离最短,根据勾股定理计算即可.【详解】解:连接DB ,DF ,在△FDB 中,DF+BF >DB ,由折叠的性质可知,FB=CB=4,∴当F 在线段DB 上时,点D 到点F 的距离最短,在Rt △DCB 中,228BD DC BC +=,此时DF=8-4=4,故选:B .【点睛】本题考查的是翻转变换的性质,勾股定理,三角形三边关系.翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解析:A【分析】根据无理数是无限不循环小数,可得答案.【详解】解:A.π是无理数; B.227-是分数,属于有理数;是整数,属于有理数;D.0是整数,属于有理数.故选:A .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式. 5.B解析:B【分析】根据夹逼法逐项判断即得答案.【详解】解:A 、47<<425∴<<,故本选项不符合题意;B 、∵<<67∴<<,故本选项符合题意;C 、36<425∴<<,故本选项不符合题意;D 、25<<56∴<<,故本选项不符合题意.故选:B .【点睛】本题考查了无理数的估算,属于常考题型,掌握夹逼法解答的方法是关键.6.A解析:A【分析】根据二次根式的除法法则对A 进行判断;根据二次根式的加减法对B 、C 进行判断;利用二次根式的乘法法则对D 进行判断.【详解】A =B 、=C ==D 、221)11=-=,原计算错误,不符合题意;故选:A .【点睛】本题考查了二次根式的加减乘除运算,解题的关键是熟悉二次根式的四则运算方法. 7.C解析:C【分析】利用二次根式的运算法则进行计算,即可得出结论.【详解】解:))2020202022⨯ 202022)⎡⎤⎦⎣=2020222⎡⎤=-⎣⎦ 2020(1)=-1=.故选:C .【点睛】本题考查了二次根式的运算,熟练掌握二次根式的运算法则,并能结合乘法公式进行简便运算是解答此题的关键.8.C解析:C【分析】分别求出a 与b 的值,再利用0a b +<这一条件判断出a 、b 的值,进而分情况讨论即可解题.【详解】 解 ||3a =,216b =,3,4a b ∴=±=±,0a b +<,3,4a b ∴==-或3,4a b =-=-,7a b ∴-=或1,故选C .【点睛】本题考查了去绝对值和求平方根,正确的确定a 、b 的值是解答本题的关键.9.C解析:C【详解】1.732≈ ,A,B,D 选项都比1.732小,只有故选C.10.C解析:C【分析】根据非负数的性质可知a ,b ,c 的值,再由勾股定理的逆定理即可判断三角形为直角三角形.【详解】解:()220a c -+-=∴ 0a =,30b -= , 0c =∴a =,3b = ,c =又∵ 222279a c b +=+==∴该三角形为直角三角形故选C .【点睛】本题考查了非负数的性质及勾股定理的逆定理,解题的关键是解出a ,b ,c 的值,并正确运用勾股定理的逆定理.11.D解析:D【分析】 根据平方根和算术平方根的定义判断即可.【详解】解:A. 4的平方根是±2,故错误,不符合题意;±2,故错误,不符合题意;C. -36没有算术平方根,故错误,不符合题意;D. 25的平方根是±5,故正确,符合题意;故选:D .【点睛】本题考查了平方根和算术平方根的概念,解题关键是熟悉相关概念,准确进行判断. 12.D解析:D【分析】把已知条件变形得到x 2=4x+1,利用降次的方法得到原式=3x-1,然后把 x 的值代入计算即可.【详解】∵x,∴x﹣2∴(x ﹣2)2=5,即x 2﹣4x +4=5,∴x 2=4x +1,∴x 2﹣x ﹣2=4x +1﹣x ﹣2=3x ﹣1,当x 时,原式=3)﹣1=.故选:D .【点睛】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值,运用整体代入的方法可简化计算.二、填空题13.﹣2a ﹣b 【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案【详解】解:由数轴可得:a <﹣0<b <故|﹣b|+|a+|+=﹣b ﹣(a+)﹣a =﹣b ﹣a ﹣﹣a =﹣2a ﹣b 故答案为:﹣2a ﹣b 【解析:﹣2a ﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【详解】解:由数轴可得:a 0<b ,故﹣b |+|ab ﹣(a )﹣ab ﹣a ﹣a=﹣2a ﹣b .故答案为:﹣2a ﹣b .【点睛】此题主要考查了实数的运算以及实数与数轴,正确化简各式是解题关键.14.5【分析】由绝对值和算术平方根的非负性求出ab 所有的可能值即可得到答案【详解】解:∵且均为整数又∵∴可分为以下几种情况:①解得:;②解得:或;③解得:或;∴符合题意的有序数对共由5组;故答案为:5【 解析:5【分析】由绝对值和算术平方根的非负性,求出a 、b 所有的可能值,即可得到答案.【详解】解:∵20212a -=,且a ,b 均为整数,又∵20210a -≥0≥,∴可分为以下几种情况:①20210a -=2=,解得:2021a =,2017b =-;②20211a -=1=,解得:2020a =或2022a =,2020b =-;③20212a -=0=解得:2019a =或2023a =,2021b =-;∴符合题意的有序数对(),a b 共由5组;故答案为:5.【点睛】本题考查了绝对值的非负性,算术平方根的非负性,解题的关键是掌握非负的性质进行解题.15.-94【分析】分别根据乘方和开方的意义即可求解【详解】解::-9故答案为:-9;4【点睛】本题考查了乘方和开方的意义理解乘方和开方的意义是解题关键注意在计算-32时底数为3解析:-9 4【分析】分别根据乘方和开方的意义即可求解.【详解】解::23-=-94=.故答案为:-9;4.【点睛】本题考查了乘方和开方的意义,理解乘方和开方的意义是解题关键,注意在计算-32时,底数为3.16.【分析】根据通过勾股定理计算得AD ;结合计算得AE 从而得到AC 的值即可得到答案【详解】∵∴∵的长为80cm ∴cm ∴cm ∵∴cm ∴cm ∴cm 故答案为:【点睛】本题考查了勾股定理二次根式线段和与差的知识解析:)401 【分析】 根据BD AB ⊥、12BD AB =,通过勾股定理计算得AD ;结合DE DB =,计算得AE ,从而得到AC 的值,即可得到答案.【详解】∵BD AB ⊥ ∴90ABD ∠= ∵12BD AB =,AB 的长为80cm ∴40BD =cm∴AD ==cm∵DE DB =∴40DE =cm∴)401AE AD DE =-=cm∴)401AC AE ==cm故答案为:)401. 【点睛】本题考查了勾股定理、二次根式、线段和与差的知识;解题的关键是熟练掌握勾股定理和二次根式的性质,从而完成求解. 17.>【分析】根据勾股定理求出OB 长确定点A 表示的数再用估算法比较大小即可【详解】解:由图可知∴则点A 表示的数为∵∴∴故答案为:>【点睛】本题考查了勾股定理实数在数轴上的表示和实数大小的比较熟练的运用勾 解析:>【分析】根据勾股定理求出OB 长,确定点A 表示的数,再用估算法比较大小即可.【详解】解:由图可知,OB = ∴OA OB ==A 表示的数为∵225()2<,∴52<,∴52>-, 故答案为:>.【点睛】 本题考查了勾股定理、实数在数轴上的表示和实数大小的比较,熟练的运用勾股定理求出OB 长,确定A 点表示的数,能够利用算术平方根与被开方数大小之间的关系是解题关键.18.【分析】要求一只蚂蚁从A 点出发从侧面爬行到C 点蚂蚁爬行的最短路线利用在圆柱侧面展开图中线段AC 的长度即为所求【详解】解:圆柱的展开图如下在圆柱侧面展开图中线段AC 的长度即为所求在Rt △ABC 中AB=【分析】要求一只蚂蚁从A 点出发,从侧面爬行到C 点,蚂蚁爬行的最短路线,利用在圆柱侧面展开图中,线段AC 的长度即为所求.【详解】解:圆柱的展开图如下,在圆柱侧面展开图中,线段AC 的长度即为所求,在Rt △ABC 中,AB=π•a π=a ,BC=2,则:2222=+=4AC AB BC a +,所以2+4a 2+4a 2+4a .【点睛】本题以圆柱为载体,考查旋转表面上的最短距离,解题的关键是利用圆柱侧面展开图. 19.2【分析】先根据算术平方根的非负性绝对值的非负性求出ab 的值再代入计算有理数的乘方运算即可得【详解】由算术平方根的非负性绝对值的非负性得:解得则故答案为:2【点睛】本题考查了算术平方根的非负性绝对值 解析:2【分析】先根据算术平方根的非负性、绝对值的非负性求出a 、b 的值,再代入计算有理数的乘方运算即可得.【详解】由算术平方根的非负性、绝对值的非负性得:10a -=,10b +=,解得1a =,1b =-,则()201420132014201311112a b +=+-=+=,故答案为:2.【点睛】本题考查了算术平方根的非负性、绝对值的非负性、有理数的乘方,熟练掌握算术平方根和绝对值的非负性是解题关键. 20.【分析】原来的一列数即为于是可得第n 个数是进而可得答案【详解】解:原来的一列数即为:∴第100个数是故答案为:【点睛】本题考查了数的规律探求属于常考题型熟练掌握二次根式的性质找到规律是解题的关键 解析:103【分析】 3691215,于是可得第n 3n进而可得答案.【详解】,∴第100=.故答案为:【点睛】本题考查了数的规律探求,属于常考题型,熟练掌握二次根式的性质、找到规律是解题的关键.三、解答题21.()2a b abab+-;7【分析】将a、b进行分母有理化,然后求出+a b、ab的值,对代数式变形,采用整体代入的方法求值【详解】∵21a,b=,∴1a==,1b==,∴)()21211ab=+=,11a b+=++=∴1a bb a++221a bab+=+22a b abab++=()2a b abab+-=(2171-==.故1a bb a++的值为7.【点睛】本题考察二次根式的有理化,根据二次根式的乘除法则进行二次根式有理化,代数式求值的问题可以先对代数式进行变形,采用整体代入的方法,可使运算简便22.(1)424a-;(2)14 3【分析】(1)根据整式运算法则运算即可;(2)先把二次根式化为最简二次根式,然后把括号内合并,最后进行二次根式的除法运算.【详解】解:(1)原式=4a4﹣12a4﹣16a4=﹣24a4;(2)原式=(3=143.【点睛】本题考查了整式的运算和二次根式的运算,解题关键是熟练运用法则进行准确计算.23.(1)①5;②6-;(2)52x=或12x=-;②52x=-.【分析】(1)①先把各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算;②根据平方差公式计算即可;(2)①将方程移项,再整理为2x a=的的形式,再根据平方根定义求解即可;②将方程移项,再整理为3x a=根据立方根定义求解即可;【详解】解:(1)解:①原式==5=.②原式1218=-6=-.(2)解:①原方程可化为29(1)4 x-=则312x-=或312x-=-,解得,52x=或12x=-.②原方程可化为31258x =-, 解得,52x =-. 【点睛】 本题考查了平方根、立方根及实数的运算,主要考查学生的运算能力,题目比较好,解题关键是理解平方根、立方根的意义.24.(1)1,(2)12x y =⎧⎨=-⎩【分析】(1)按照二次根式的运算法则计算即可;(2)用加减消元法解方程组即可.【详解】解:(1)=222-+=232-+=1(2)1327x y x y +=-⎧⎨-=⎩①② ①×2+②得,55=x ,1x =,把1x =代入①得,1+y=-1,y=-2,∴方程组的解为:12x y =⎧⎨=-⎩. 【点睛】本题考查了二次根式计算和解二元一次方程组,解题关键是熟练运用二次根式运算法则和加减消元法解方程组.25.(1)4-;(2)2x【分析】(1)先去绝对值号,去根号,再进行合并同类项,加减运算;(2)先进行单项式和多项式的乘除运算,再进行加减运算 .【详解】解:(1)原式=)()413----41312=+-4=-(2)原式=()()23323332x x x x x x ---÷-23323332x x x x =-+-2x =.【点睛】这道题考查的是实数的运算法则和整式的乘除法.熟练掌握整式和实数的运算法则是解题的关键.26.【初步探究】(1)17,64-;(2)C ;【深入思考】(1)415⎛⎫- ⎪⎝⎭,72;(2)21n a -⎛⎫⎪⎝⎭;(3)4m n a +-【分析】初步探究:(1)根据新定义的运算法则进行计算,即可得到答案;(2)根据新定义的运算法则进行判断,即可得到答案;深入思考:(1)由题目中的运算法则转换成幂的形式,即可得到答案;(2)把幂的形式转换为一般形式即可;(3)先把代数式进行化简,然后写成幂的形式即可.【详解】解:【初步探究】(1)177777=÷÷=③;111111()()()()()44444464⎛⎫-=-÷-÷-÷-÷-= ⎪⎭-⎝⑤;故答案为:17;64-;(2)由题意:A 、任何非零数的圈2次方都等于1;正确;B 、对于任何大于等于2的整数c ,;正确;C 、7188888888888=÷÷÷÷÷÷÷÷=⑨,619999999999=÷÷÷÷÷÷÷=⑧,∴89≠⑨⑧,则C 错误;D 、负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;正确;故选:C .【深入思考】(1)4111111(5)(5)()()()()()()555555-=-⨯-⨯-⨯-⨯-⨯-=-⑥;71122222222222⎛⎫=⨯⨯⨯⨯⨯⨯⨯⨯= ⎪⎝⎭⑨; 故答案为:41()5-;72;(2)由(1)可知,根据乘方的运算法则,则将一个非零有理数a 的圈n 次方写成幂的形式为:21n a -⎛⎫= ⎪⎝⎭; 故答案为:21n a -⎛⎫ ⎪⎝⎭;(3)=224m n m n a a a --+-•=; 故答案为:4m n a +-.【点睛】本题考查了新定义的运算法则,幂的乘方,有理数的乘法和除法运算,解题的关键是熟练掌握新定义的运算法则、乘方的运算法则进行解题.。
北师大版八年级上册数学第二章实数含答案一、单选题(共15题,共计45分)1、实数界于哪两个相邻的整数之间( )A.3和4B.5和6C.7和8D.9和102、的算术平方根的平方根是()A. B. C. D.3、下列计算正确的是()A. =-9B. =±5C. =-1D.(-) 2=44、下列说法中正确的是()A. 的平方根是±6B. 的平方根是±2C.|﹣8|的立方根是﹣2D. 的算术平方根是45、估算在()A.5与6之间B.6与7之间C.7与8之间D.8与9之间6、下列各数:、3.1415926、﹣、0、π0、0.1010010001…(相邻两个1之间0的个数逐次加1)、3 、﹣中无理数有()个.A.1B.2C.3D.47、下列叙述中,不正确的是( )A.绝对值最小的实数是零B.算术平方根最小的实数是零C.平方最小的实数是零D.立方根最小的实数是零8、的平方根是()A. B.- C. D.9、设x=,则x的值满足()A.1<x<2B.2<x<3C.3<x<4D.4<x<510、下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4,用式子表示是=±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的有( )A.0个B.1个C.2个D.3个11、下列运算正确的是()A. =2B.|﹣3|=﹣3C. =±2D. =312、下列说法正确的是()A.负数没有立方根B.不带根号的数一定是有理数C.无理数都是无限小数 D.数轴上的每一个点都有一个有理数于它对应13、下列说法中,正确的是( )① ② 一定是正数③无理数一定是无限小数④16.8万精确到十分位⑤(﹣4)2的算术平方根是4.A.①②③B.④⑤C.②④D.③⑤14、下列命题是真命题的是()A.如果一个数的相反数等于这个数本身,那么这个数一定是0B.如果一个数的倒数等于这个数本身,那么这个数一定是1 C.如果一个数的平方等于这个数本身,那么这个数一定是0 D.如果一个数的算术平方根等于这个数本身,那么这个数一定是015、(-5)2的平方根是()A.-5B.5C.±5 D.25二、填空题(共10题,共计30分)16、若一个正数x的平方根是2a+1和4a-13,则a=________,x=________.17、有下列命题:①无理数是无限不循环小数;②平方根与立方根相等的数有1和0;③若a⊥b,b⊥c,则a⊥c;④邻补角是互补的角;⑤无理数包括正无理数、零、负无理数.其中正确的有________个.18、计算: =________.19、已知,,则的值为________.20、计算:(π﹣2015)0﹣(﹣1)2015﹣|﹣3|=________.21、如果a与b互为倒数,c与d互为相反数,那么的值是________.22、新定义运算“*”,规定x*y=x2+y,若﹣1*2=k,则k能否使得一元二次方程x2﹣2kx+9=0有两个相等的实数解________(填“能”或‘否’).23、若5+ 的整数部分是a,则a=________.24、平方等于的数是________,-64的立方根是________25、计算-8的立方根与9的平方根的积是________.三、解答题(共5题,共计25分)26、计算:27、在数轴上表示a、b、c三数点的位置如下图所示,化简:|c|- -|a-b|.28、把下列各数分别填在相应的括号内:,,,,,,,,,,,,,0.1010010001整数;分数;正数;负数;有理数;无理数;29、已知2a﹣1的平方根是±3,3a+b+9的立方根是3,求2(a+b)的平方根.30、已知3既是(x-1)的算术平方根,又是(x-2y+1)的立方根,求x2-y2的平方根.参考答案一、单选题(共15题,共计45分)1、B2、D3、C4、B5、D6、D7、D8、C9、C10、D11、A12、C13、D14、A15、C二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
专题2.22 《实数》全章复习与巩固(知识讲解)【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围.【要点梳理】有理数和无理数统称为实数.1.实数的分类按定义分:实数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数特别说明:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点一一对应.⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。
我们已经学习过的非负数有如下三种形式:(1)任何一个实数的绝对值是非负数,即||≥0;(2)任何一个实数的平方是非负数,即≥0;(3().非负数具有以下性质:(1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0.4.实数的运算:数的相反数是-;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.5.实数的大小的比较:有理数大小的比较法则在实数范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法.【典型例题】类型一、与实数有关的概念1、把下列各数填入相应的大括号里.π,2,﹣12,|,2.3,30%(1)整数集:{…};(2)有理数集:{…};(3)无理数集:{…}.【答案】(1)2,﹣12,2.3,30%π,|【分析】根据有理数与无理数概念,运用实数的分类求解即可.(1)解:∵|22,∵整数集:{2…}故答案为:2(2)解:有理数集:{2,﹣12,2.3,30%…};故答案为:2,﹣12,2.3,30%(3)解:无理数集:{π,|,…};a aa2a≥0a≥a a故答案为:π,|.【点拨】本题考查了实数的分类,解决本题的关键是熟记实数的分类. 【变式】一个数值转换器,如图所示:(1)当输入的x 为9时,输出的y 值是 ;(2)若输入有效的x 值后,始终输不出y 值,请写出所有满足要求的x 的值,并说明你的理由;(3)若输出的y x 值: . 【答案】或1,理由见分析(3)7或49 【分析】(1)根据算术平方根的定义进行计算即可; (2)根据0或1的算术平方根的特殊性得出答案;(3)可以考虑1次运算输出结果,2次运算输出结果,进而得出答案.(1)解:当x =9时,93,而3是有理数,3(2)0或1,理由如下:因为0的算术平方根是0,1的算术平方根是1, 无论进行多少次运算都不可能是无理数; (3)若1次运算就是无理数,则输入的数为7, 若2次运算输出的数是无理数,则输入的数是49, 故答案为:7或49.【点拨】本题考查算术平方根、有理数和无理数,理解算术平方根的定义是正确解答的前提.2、若0,0a ab <<,化简433a b b a ----+【答案】【分析】由0,0a ab <<判断b >0,再判断绝对值里的数的正负,由绝对值的定义去掉绝对值,再计算即可.解:∵0,0a ab <<,∵b >0,∵0,0a b b a ---+>∵a b b a ---((a b b a =-----a b b a =-+++=【点拨】本题考查二次根式的化简,正确的对含绝对值号的代数式的化简是解题的关键.分类的标准应按正实数,负实数,零分类考虑.掌握好分类标准,不断加强分类讨论的意识.【变式】实数a 在数轴上的对应点A 的位置如图所示,b =|a +|2−a |(1)求b 的值;(2)已知b +2的小数部分是m ,8-b 的小数部分是n ,求2m +2n +1的平方根.【答案】2(2)【分析】(1)先判断2<a <3,再判断a <0,2−a <0,再化简绝对值,合并即可;(2)先求解2,8,b b 再求解,m n 的值,再求解2m +2n +1,最后求解平方根即可. (1)解:∵2<a <3∵a ,2−a <0∵b -a +a -2(2)∵b +8-b =8)=10,3104,<<610107,∵m -3,n =10-6=4∵2m +2n +6+8-1=3∵2m +2n +1的平方根为【点拨】本题考查的是实数与数轴,化简绝对值,无理数的小数部分的理解,平方根的含义,掌握以上基础知识是解本题的关键.类型二、二次根式双重非负性3、若a 、b 为实数,且b <222a a -+-+,化简:214422b b a b-++-. 【答案】3【分析】首先由二次根式有意义的条件求得:a =2,b <2,再利用实数的运算法则求解即可求得答案.解:∵20 20aa-≥⎧⎨-≥⎩,解得:a=2,∵b2=2,即b<2,221232bb-=+=+=-.【点拨】本题主要考查的是二次根式的非负性,以及二次根式的化简求值,利用非负性求得a值,以及b的取值范围是解本题的关键.【变式】已知实数,b,c满足3a+(2a b+的值.【答案】4【分析】根据二次根式的非负性求得b的值,然后根据非负数的性质求得,a c的值,最后代入代数式求解即可.解:∵3a+∵5050bb-≥⎧⎨-≥⎩,5b∴=,∴3a+0,3,2a c∴=-=,∴(2a b+()23504=-+-=.【点拨】本题考查了二次根式的非负性,非负数的性质,掌握二次根式的非负性是解题的关键.类型三、与二次根式有关的规律问题4、细心观察图形,认真分析各式,然后解答问题:11OA=;2OA = 1111122S =⨯⨯=;3==OA 2112S ==4==OA 3112S ==; (1)请用含有n (n 为正整数)的等式表示上述变化规律:2nOA =______,n S =______. (2)若一个三角形的面积是 (3)求出22221239S S S S +++⋅⋅⋅+的值.【答案】(1)n 它是第32个三角形;(3)11.25. 【分析】(1)由勾股定理及直角三角形的面积求解;(2)利用(1)的规律代入Sn n 即可; (3)算出第一到第九个三角形的面积后求和即可.(1)解:因为每一个三角形都是直角三角形,由勾股定理可求得:OA 1,OA 2OA 3…,OAn所以OAn 2=n .Sn =12故答案为:n(2)解:当Sn 解之得:n =32,即:说明它是第32个三角形; (3)解:S 12+S 22+S 32+…+S 92 =14+24+…+94=454=11.25.即:S 12+S 22+S 32+…+S 92的值为11.25.【点拨】本题考查了勾股定理以及二次根式的应用,解题的关键是看清楚相邻两个三角形的各个边之间的关系.【变式】观察以下等式:第112=第223=第334== ...........按照以上规律,解决下列问题: (1)写出第7个等式: ;(2)写出你猜想的第n 个等式: (用含n 的等式表示,n 为自然数)(3)【答案】78=;1n n =+;(3)150 【分析】(1)根据所给的等式的形式求解即可; (2)分析所给的等式的形式,总结出规律即可; (3)利用(2)中的规律进行求解即可. (1)解:根据题意得第7个等式为:78==;78==;(2)解:第112;第223=;第334==; 由以上等式可以猜想第n 个等式是:1nn +;1nn =+;(3)……=1234923450⨯⨯⨯…… =150. 【点拨】本题主要考查数字的变化规律、二次根式性质和运算法则,解答的关键是由所给的等式总结出存在的规律.类型四、二次根式化简、求值5、计算:(1)⎛ ⎝ (2) )21+【答案】4+【分析】(1)先把各二次根式化为最简二次根式,去括号后再合并即可; (2)先利用平方差公式及完全平方公式进行计算,然后再合并即可.(1)解:原式=⎛ ⎝⎭=(2)解:原式=2221-++=3221-++ =4+【点拨】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,然后进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.【变式】计算:(1) (2) (1112π-⎛⎫- ⎪⎝⎭【答案】(1)10-2 【分析】(1)根据二次根式的运算法则进行计算即可; (2)根据运算法则进行计算即可.(1)解:===46=+-10=-(2)解:(2)原式112=+2=【点拨】本题考查二次根式的计算,实数的计算,熟练掌握各运算法则是解题的关键.6、已知21x =+,21y =-,求2y xx y++的值. 【答案】8【分析】根据x y ,求出x y +和xy 的值,然后对原式进行通分转化为x y +和xy 的形式.解:∵1x =,1y =∵x y +=1xy =,22282()2y x x y xy x x y y xy x y ++===++=+ 【点拨】此题考查了二次根式的加减乘除运算,涉及了完全平方公式的应用,解题的关键是掌握二次根式的有关运算法则以及完全平方公式.【变式】(124x =.(2)已知x =y =22x xy y -+值.【答案】(1) (2)11 【分析】(1)根据二次根式的性质化简,然后代入即可求出答案.(2)先由x 与y 的值计算出x ﹣y 和xy 的值,再代入原式=x 2﹣2xy +y 2+xy =(x ﹣y )2+xy 计算可得.解:(1)原式==,当4x =时,原式6=(2)∵x =y =∵x y -231xy ==-=-,原式=x 2﹣2xy +y 2+xy =(x ﹣y )2+xy=(2﹣1 =12﹣1 =11.【点拨】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则及完全平方公式、平方差公式.类型四、二次根式大小比较7、请比较52和113的大小.【分析】先将两数通分,然后将分子中根号外的数字平方后移到根号内,通过比较被开方数的大小得出结论.解:,又∴.【点拨】本题主要考查了实数大小的比较,二次根式的性质.将两个无理数适当变形后,通过比较被开方数的大小进行解答是解题的关键.【分析】再进行作差运算,10>即可.=;解:1=1)1=,1,>,10【点拨】本题考查了无理数的比较大小,以及二次根式的分母有理化,解题的关键是将进行分母有理化,再进行作差运算比较大小.8、(1)观察各式:0.030.1732,3 1.732,30017.32≈≈≈...发现规律:被开方数的小数点每向右移动_________位,其算术平方根的小数点向______移动______位;(2 2.236≈_________________;(37.746≈≈的值.【答案】(1)2;右;1(2)0.2236;22.36(3)15.492,0.7347【分析】(1)观察分析已知式子中被开方数与算术平方根的小数点从小到位数,总结归纳出规律即可;(2)根据(1)发现的规律计算即可;(3=解:(1)0.1732≈17.32≈ 1.732≈,∵发现规律:被开方数的小数点每向右移动2位,其算术平方根的小数点向右移动1位;故答案为:2,右,1;(2) 2.236≈,≈,0.2236≈,22.36故答案为:0.2236,22.36;(3)7.746≈,27.74615.492=⨯=,2.449≈30.24490.7347==≈⨯=【点拨】本题考查数字型规律,算术平方根,总结归纳出规律是解题的关键.【变式】阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J .Nplcr ,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr ,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若x a N =(0a >且1x ≠),那么x 叫做以a 为底N 的对数,记作log a x N =,比如指数式4216=可以转化为对数式24log 16=,对数式52log 25=,可以转化为指数式2525=.我们根据对数的定义可得到对数的一个性质:log ()log log a a a M N M N ⋅=+(0a >,1a ≠,0M >,0N >),理由如下:设log a M m =,log a N n =,则m M a =,n N a =,∵m n m n M N a a a +⋅=⋅=,由对数的定义得log ()a m n M N +=⋅又∵log log a a m n M N +=+∵log ()log log a a a M N M N ⋅=+根据阅读材料,解决以下问题:(1)将指数式4381=转化为对数式________;(2)求证:log log log a a a M M N N=-(0a >,1a ≠,0M >,0N >) (3)拓展运用:计算666log 9log 8log 2+-=________.【答案】(1)34log 81=;(2)详见分析;(3)2.【分析】(1)根据对数式的定义转化即可;(2)先设log a M m =,log a N n =,根据对数的定义可表示为指数式为:m M a =,n N a =,计算M N的结果,类比所给材料的证明过程可得结论; (3)根据公式:log ()log log a a a M N M N ⋅=+和log log log M M N N ααα=-的逆用,计算可得结论.解:(1)34log 81=(或3log 814=),故答案为34log 81=;(2)证明:设log a M m =,log a N n =,则m M a =,n N a =, ∵mm n n M a a N a-==,由对数的定义得log a M m n N -=, 又∵log log a a m n M N -=-, ∵log log log a a a M M N N=-; (3)666log 9log 8log 2+-66log (982)log 362=⨯÷==.故答案为2.【点拨】本题是新定义试题,主要考查幂的运算性质、新定义对数与指数之间的关系,解题的关键是明确新定义,理解对数的运算法则,明白指数与对数之间的相互转化关系.。
北师大版八年级上册数学第二章《实数》单元测试卷(含答案)一、选择题(每题3分,共30分)1.下列各数中,是无理数的是()A.3.141 5 B. 4 C.227D.62.在-4,-2,0,4这四个数中,最小的数是() A.4 B.0 C.- 2 D.-43.【中考·黄石】若式子x-1x-2在实数范围内有意义,则x的取值范围是()A.x≥1且x≠2 B.x≤1 C.x>1且x≠2 D.x<1 4.下列二次根式中,是最简二次根式的是()A.15B.10 C.50 D.0.55.已知a-3+|b-4|=0,则ab的平方根是()A.32B.±32C.±34D.346.【2020·重庆】下列计算中,正确的是()A.2+3= 5 B.2+2=2 2 C.2×3= 6 D.23-2=3 7.实数a,b在数轴上的对应点的位置如图所示,下列式子成立的是()A.a>b B.|a|<|b| C.a+b>0 D.a b<0(第7题) (第8题)8.【教材P39议一议变式】小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A 作AB⊥OA,使AB=3(如图).以O为圆心,OB长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于()A.1和2之间B.2和3之间C.3和4之间D.4和5之间9.【教材P15习题T6变式】已知a=3+22,b=3-22,则a2b-ab2的值为() A.1 B.17 C.4 2 D.-42 10.【教材P11习题T12变式】如图,长方形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为()A.2B.2C.2 2 D.6二、填空题(每题3分,共24分)11.实数-2的相反数是________,绝对值是________.12.计算:3-8=________.13.一个正数的平方根分别是x+1和x-5,则x=__________.14.【教材P34习题T2(1)改编】比较大小:10-13________23(填“>”“<”或“=”).15.【2020·青海】对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b =a +b a -b ,如:3⊕2=3+23-2=5,那么12⊕4=________. 16.【教材P 11习题T 12变式】若利用计算器求得 6.619≈2.573,66.19≈8.136,则估计6 619的算术平方根是________.17.如图,在△ABC 中,若AB =AC =6,BC =4,D 是BC 的中点,则AD 的长为________.(第17题) (第18题)18.已知a ,b ,c 在数轴上对应点的位置如图所示,化简a 2-(a +b )2+(c -a )2+(b +c )2的结果是________.三、解答题(19题16分,其余每题10分,共66分)19.计算下列各题:(1)(-5)2+(π-3)0+|7-4|; (2)⎝ ⎛⎭⎪⎫-12-1-214-3(-1)2 023;(3)(6-215)×3-612;(4)48÷3-215×30+(22+3)2.20.已知5是2a-3的算术平方根,1-2a-b的立方根为-4.(1)求a和b的值;(2)求3b-2a-2的平方根.21.一个正方体的表面积是2 400 cm2.(1)求这个正方体的体积;(2)若该正方体的表面积变为原来的一半,则体积变为原来的多少?22.已知7+5和7-5的小数部分分别为a,b,试求代数式ab-a+4b-3的值.23.拦河坝的横断面是梯形,如图,其上底是8 m,下底是32 m,高是 3 m.(1)求横断面的面积;(2)若用300 m3的土,可修多长的拦河坝?24.【教材P48习题T4拓展】先阅读材料,再回答问题.已知x=3-1,求x2+2x-1的值.计算此题时,若将x=3-1直接代入,则运算非常麻烦.仔细观察代数式,发现由x=3-1得x+1=3,所以(x +1)2=3.整理,得x2+2x=2,再代入求值会非常简便.解答过程如下:解:由x=3-1,得x+1=3,所以(x+1)2=3.整理,得x2+2x=2,所以x2+2x-1=2-1=1.请仿照上述方法解答下面的题目:已知x=5+2,求6-2x2+8x的值.参考答案一、1.D2.D3.A4.B5.B6.C7.D8.C9.C10.B二、11.2;212.-213.214.>15.216.81.3617.4218.-a点拨:原式=|a|-|a+b|+(c-a)+|b+c|=-a+(a+b)+(c-a)-(b +c)=-a+a+b+c-a-b-c=-a.三、19.解:(1)原式=5+1+4-7=10-7;(2)原式=-2-94-3-1=-2-32+1=-52;(3)原式=18-245-6×22=32-65-32=-65;(4)原式=16-26+11+46=15+26.20.解:(1)因为5是2a -3的算术平方根,1-2a -b 的立方根为-4,所以2a -3=25,1-2a -b =-64.所以a =14,b =37.(2)由(1)知a =14,b =37,所以3b -2a -2=3×37-2×14-2=81.所以3b -2a -2的平方根为±81=±9.21.解:(1)设这个正方体的棱长为a cm(a >0).由题意得6a 2=2 400,所以a =20.则体积为203=8 000(cm 3).(2)若该正方体的表面积变为原来的一半,则有6a 2=1 200.所以a =102.所以体积为(102)3=2 0002(cm 3). 因为2 00028 000=24,所以体积变为原来的24.22.解:因为5的整数部分为2,所以7+5=9+a ,7-5=4+b , 即a =-2+5,b =3-5.所以ab -a +4b -3=(-2+5)(3-5)-(-2+5)+4(3-5)-3=-11+55+2-5+12-45-3=0.23.解:(1)S=12(8+32)×3=12(22+42)×3=12×62×3=36(m2).答:横断面的面积为3 6 m2.(2)3003 6=1006=100 66×6=100 66=50 63(m).答:可修5063m长的拦河坝.24.解:由x=5+2得x-2=5,所以(x-2)2=5.整理,得x2-4x=1.所以6-2x2+8x=6-2(x2-4x)=6-2×1=4.。