一次函数中考试题分类
- 格式:pdf
- 大小:206.45 KB
- 文档页数:7
一次函数一、正比例函数的概念一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做正比例系数.二、一次函数1.一次函数的定义一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做x的一次函数.特别地,当一次函数y=kx+b中的b=0时,y=kx(k是常数,k≠0).这时,y叫做x的正比例函数.2.一次函数的一般形式一次函数的一般形式为y=kx+b,其中k,b为常数,k≠0.一次函数的一般形式的结构特征:(1)k≠0,(2)x的次数是1;(3)常数b可以为任意实数.3.注意(1)正比例函数是一次函数,但一次函数不一定是正比例函数.(2)一般情况下,一次函数的自变量的取值范围是全体实数.(3)判断一个函数是不是一次函数,就是判断它是否能化成y=kx+b(k≠0)的形式.三、一次函数的图象及性质1.正比例函数的图象特征与性质正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线.k的符号函数图象图象的位置性质k>0 图象经过第一、三象限y随x的增大而增大k <0 图象经过第二、四象限y随x的增大而减小2.一次函数的图象特征与性质(1)一次函数的图象(2)一次函数的性质函数字母取值图象经过的象限函数性质y=kx+b (k≠0) k>0,b>0 一、二、三y随x的增大而增大k>0,b<0一、三、四y=kx+b (k≠0) k<0,b>0 一、二、四y随x的增大而减小k<0,b<0 二、三、四3.k,b的符号与直线y=kx+b(k≠0)的关系在直线y=kx+b(k≠0)中,令y=0,则x=-bk,即直线y=kx+b与x轴交于(–bk,0).①当–bk>0时,即k,b异号时,直线与x轴交于正半轴.②当–bk=0,即b=0时,直线经过原点.③当–bk<0,即k,b同号时,直线与x轴交于负半轴.4.两直线y=k1x+b1(k1≠0)与y=k2x+b2(k2≠0)的位置关系:①当k1=k2,b1≠b2,两直线平行;②当k1=k2,b1=b2,两直线重合;③当k1≠k2,b1=b2,两直线交于y轴上一点;④当k1·k2=–1时,两直线垂直.四、待定系数法1.定义:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而得出函数解析式的方法叫做待定系数法.2.待定系数法求正比例函数解析式的一般步骤(1)设含有待定系数的函数解析式为y=kx(k≠0).(2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k的一元一次方程.(3)解方程,求出待定系数k.(4)将求得的待定系数k的值代入解析式.3.待定系数法求一次函数解析式的一般步骤(1)设出含有待定系数k、b的函数解析式y=kx+b.(2)把两个已知条件(自变量与函数的对应值)代入解析式,得到关于系数k,b的二元一次方程组.(3)解二元一次方程组,求出k,b.(4)将求得的k,b的值代入解析式.五、一次函数与正比例函数的区别与联系—正比例函数一次函数区别一般形式y=kx+b(k是常数,且k≠0)y=kx+b(k,b是常数,且k≠0)图象经过原点的一条直线一条直线k,b符号的作用k的符号决定其增减性,同时决定直线所经过的象限k的符号决定其增减性;b的符号决定直线与y轴的交点位置;k,b的符号共同决定直线经过的象限求解析式的条件只需要一对x,y的对应值或一个点的坐标需要两对x,y的对应值或两个点的坐标联系比例函数是特殊的一次函数.②正比例函数图象与一次函数图象的画法一样,都是过两点画直线,但画一次函数的图象需取两个不同的点,而画正比例函数的图象只要取一个不同于原点的点即可.③一次函数y=kx+b(k≠0)的图象可以看作是正比例函数y=kx(k≠0)的图象沿y轴向上(b>0)或向下(b<0)平移|b|个单位长度得到的.由此可知直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)平行.④一次函数与正比例函数有着共同的性质:a.当k>0时,y的值随x值的增大而增大;b.当k<0时,y的值随x值的增大而减小.六、一次函数与方程(组)、不等式1.一次函数与一元一次方程任何一个一元一次方程都可以转化为kx+b=0(k,b为常数,且k≠0)的形式.从函数的角度来看,解这个方程就是寻求自变量为何值时函数值为0;从函数图象的角度考虑,解这个方程就是确定直线y=kx+b与x轴的交点的横坐标.2.一次函数与一元一次不等式任何一个一元一次不等式都能写成ax+b>0(或ax+b<0)(a,b为常数,且a≠0)的形式.从函数的角度看,解一元一次不等式就是寻求使一次函数y=ax+b(a≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=ax+b(a≠0)在x轴上(或下)方部分的点的横坐标满足的条件.3.一次函数与二元一次方程组一般地,二元一次方程mx+ny=p(m,n,p是常数,且m≠0,n≠0)都能写成y=ax+b(a,b为常数,且a≠0)的形式.因此,一个二元一次方程对应一个一次函数,又因为一个一次函数对应一条直线,所以一个二元一次方程也对应一条直线.进一步可知,一个二元一次方程对应两个一次函数,因而也对应两条直线.从数的角度看,解二元一次方程组相当于考虑自变量为何值时,两个函数的值相等,以及这两个函数值是何值;从形的角度看,解二元一次方程组相当于确定两条直线的交点坐标,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.七、一次函数图象与图形面积解决这类问题的关键是根据一次函数解析式求出一次函数图象与坐标轴的交点的坐标,或两条直线的交点坐标,进而将点的坐标转化成三角形的边长,或者三角形的高.如果围成的三角形没有边在坐标轴上或者与坐标轴平行,可以采用“割”或“补”的方法.八、一次函数的实际应用1.主要题型: (1)求相应的一次函数表2.用一次函数解决实际问题的一般步骤为(1)设定实际问题中的自变量与因变量的取值范围;(4)利用函数性质解决问题3.方案最值问题:对于求方案问题,通常涉及两个相关量事物的取值范围,再根据另一个事物所要满4.方法技巧求最值的本质为求最优方案,解法有两种(2)直接利用所求值与其变量之间满足的若为分段函数,则应分类讨论,先计算出每显然,第(2)种方法更简单快捷.经典例1.若一次函数22y x =+的图象经过点【答案】8【分析】将点(3,)m 代入一次函数的解析式【解析】解:由题意知,将点(3,)m 代入一即:232=⨯+m ,解得:8m =.故答案【点睛】本题考查了一次函数的图像和性质2.有一个装有水的容器,如图所示.容器中,水面高度以每秒0.2cm 的速度匀速增加关系是( )A .正比例函数关系B .一次函数关系【答案】B【分析】设水面高度为,hcm 注水时间为【详解】解:设水面高度为,hcm 注水时间所以容器内的水面高度与对应的注水时间满【点睛】本题考查的是列函数关系式,判断函数表达式;(2)结合一次函数图象求相关量、求步骤为:变量;(2)通过列方程(组)与待定系数法求一次函数关决问题;(5)检验所求解是否符合实际意义;(6)关量,解题方法为根据题中所要满足的关系式,通过所要满足的条件,即可确定出有多少种方案. 两种:(1)可将所有求得的方案的值计算出来,再进满足的一次函数关系式求解,由一次函数的增减性可算出每个分段函数的取值,再进行比较. 经典例题 一次函数和正比例函数的定义过点(3,)m ,则m =_________. 解析式中即可求出m 的值.代入一次函数22y x =+的解析式中, 故答案为:8.和性质,点在图像上,则将点的坐标代入解析式中即容器内的水面高度是10cm ,现向容器内注水,并同速增加,则容器注满水之前,容器内的水面高度与对关系C .二次函数关系D .反比例函数关系间为t 分钟,根据题意写出h 与t 的函数关系式,从而水时间为t 分钟,则由题意得:0.210,h t =+ 时间满足的函数关系是一次函数关系,故选B . 判断两个变量之间的函数关系,掌握以上知识是解求实际问题的最值等. 函数关系式;(3)确定自变量)答. 通过列不等式,求解出某一个再进行比较;减性可直接确定最优方案及最值;定义式中即可.并同时开始计时,在注水过程度与对应的注水时间满足的函数关系从而可得答案.识是解题的关键.1.已知函数1(2)2(2)x x y x x-+<⎧⎪=⎨-≥⎪⎩,当函数值A .﹣2 B .﹣23【答案】A【分析】根据分段函数的解析式分别计算【解析】解:若x <2,当y =3时,﹣x 若x ≥2,当y =3时,﹣2x=3,解得:x=﹣【点睛】本题考查了反比例函数的性质、键.2.下列函数关系式:(1)y =﹣x ;(2A .1 B .2【答案】B【分析】根据一次函数的定义条件进行逐一【详解】解:(1)y =﹣x 是正比例函数 (2)y =x ﹣1符合一次函数的定义,故正(4)y =x 2属于二次函数,故错误.综上所【点睛】本题主要考查了一次函数的定义b 为常数,k≠0,自变量次数为1.经典1.若m <﹣2,则一次函数()y m x =++A . B .【答案】D【分析】由m <﹣2得出m+1<0,1﹣【解析】解:∵m <﹣2,∴m +1<0,1函数值为3时,自变量x 的值为( )C .﹣2或﹣23D .﹣2或﹣32计算,即可得出结论. +1=3,解得:x =﹣2; ﹣23,不合题意舍去;∴x =﹣2,故选:A .、一次函数的图象上点的坐标特征;根据分段函数)y =x ﹣1;(3)y =1x;(4)y =x 2,其中一次函数C .3D .4行逐一分析即可.函数,是特殊的一次函数,故正确; 故正确;(3)y =1x属于反比例函数,故错误; 综上所述,一次函数的个数是2个.故选:B .定义.本题主要考查了一次函数的定义,一次函数经典例题 一次函数的图象及性质 11m -的图象可能是( )C .D .m >0,进而利用一次函数的性质解答即可. ﹣m >0,段函数进行分段求解是解题的关次函数的个数是( ) 函数y=kx+b 的定义条件是:k 、所以一次函数()11y m x m =++-的图象【点睛】本题考查的是一次函数的图像与性影响是解题的关键 .2.对于一次函数2y x =+,下列说法不正A .图象经过点()1,3 C .图象不经过第四象限 【答案】D【分析】根据一次函数的图像与性质即可求【解析】A.图象经过点()1,3,正确;C.图象经过第一、二、三象限,故错误;【点睛】此题主要考查一次函数的图像与性1.在平面直角坐标系中,已知函数y A . B .【答案】A【分析】求得解析式即可判断.【解析】解:∵函数y =ax +a (a ≠0)的图∴直线交y 轴的正半轴,且过点(1,2,【点睛】此题考查一次函数表达式及图像的2.已知一次函数3y kx =+的图象经过点A .()1,2- B .()1,2-【答案】B【分析】先根据一次函数的增减性判断出【解析】∵一次函数3y kx =+的函数值A .当x=-1,y=2时,-k+3=2,解得选项符合题意;C .当x=2,y=3时,2k+3的图象经过一,二,四象限,故选:D . 像与性质,不等式的基本性质,掌握一次函数y kx +法不正确的是( ) B .图象与x 轴交于点()2,0- D .当2x >时,4y <即可求解.B.图象与x 轴交于点()2,0-,正确 ; D.当2x >时,y >4,故错误;故选D . 像与性质,解题的关键是熟知一次函数的性质特点=ax +a (a ≠0)的图象过点P (1,2),则该函数的 C . D .的图象过点P (1,2),∴2=a +a ,解得a =1,∴),故选:A . 图像的相关知识.经过点A ,且y 随x 的增大而减小,则点A 的坐标可以C .()2,3D .()3,4断出k 的符号,再将各项坐标代入解析式进行逐一判数值y 随x 的增大而减小,∴k ﹤0,k=1﹥0,此选项不符合题意;B .当x=1,y=-2时,2k+3=3,解得k=0,此选项不符合题意;D .当x=3b =中的,k b 对函数图像的特点.函数的图象可能是( )∴y =x +1, 标可以是( ) 逐一判断即可. ,k+3=-2,解得k=-5﹤0,此,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意,故选:B . 【点睛】本题考查了一次函数的性质、待定系数法,熟练掌握一次函数图象上点的坐标特征是解答的关键.经典例题 用待定系数法确定一次函数的解析式1. 小红在练习仰卧起坐,本月1日至4日的成绩与日期具有如下关系:日期x (日) 1 2 3 4成绩y (个) 4043 4649小红的仰卧起坐成绩y 与日期x 之间近似为一次函数关系,则该函数表达式为__________. 【答案】y =3x +37.【分析】利用待定系数法即可求出该函数表达式. 【解析】解:设该函数表达式为y =kx +b ,根据题意得:40243k b k b +⎧⎨+⎩==,解得337k b ⎧⎨⎩==,∴该函数表达式为y =3x +37.故答案为:y =3x +37.【点睛】本题考查了一次函数的应用,会利用待定系数法求出一次函数的解析式是解题的关键.2.将函数y =2x 的图象向上平移3个单位,则平移后的函数解析式是( ) A .y =2x +3 B .y =2x ﹣3C .y =2(x +3)D .y =2(x ﹣3)【答案】A【分析】直接利用一次函数“上加下减”的平移规律即可得出答案.【解析】解:∵将函数y =2x 的图象向上平移3个单位,∴所得图象的函数表达式为:y =2x +3.故选:A . 【点睛】本题考查一次函数图象与几何变换,正确记忆“左加右减,上加下减”的平移规律是解题关键.1.我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x (厘米)时,秤钩所挂物重为y (斤),则y 是x 的一次函数.下表中为若干次称重时所记录的一些数据. x (厘米) 1 2 4 7 1112 y (斤)0.751.001.502.753.253.50(1)在上表x ,y 的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?【答案】(1)x =7,y =2.75这组数据错误斤.【分析】(1)利用描点法画出图形即可判断【解析】解:(1)观察图象可知:x =7(2)设y =kx +b ,把x =1,y =0.75,x 解得1412k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴1142y x =+, 当x 答:秤杆上秤砣到秤纽的水平距离为【点睛】此题考查画一次函数的图象的方法解此题的关键.2.把直线y =2x ﹣1向左平移1个单位长度【答案】y =2x +3【分析】直接利用一次函数的平移规律进而【解析】解:把直线y =2x ﹣1向左平移再向上平移2个单位长度,得到y =2x 【点睛】本题考查了一次函数的平移,熟练经典1.在平面直角坐标系xOy 中,对于横、纵坐据错误;(2)秤杆上秤砣到秤纽的水平距离为16厘米可判断.(2)设函数关系式为y =kx +b ,利用待定系,y =2.75这组数据错误.=2,y =1代入可得0.7521k b k b +=⎧⎨+=⎩,=16时,y =4.5,16厘米时,秤钩所挂物重是4.5斤.的方法,待定系数法求一次函数的解析式,一次函数位长度,再向上平移2个单位长度,则平移后所得直律进而得出答案.平移1个单位长度,得到y =2(x +1)﹣1=2x +1, +3.故答案为:y =2x +3. 熟练掌握是解题的关键.经典例题一次函数与一元一次方程 纵坐标相等的点称为“好点”.下列函数的图象中厘米时,秤钩所挂物重是4.5待定系数法解决问题即可. 次函数的实际应用,正确计算是所得直线的解析式为_____. 象中不存在...“好点”的是( )A .y x =-B .2y x =+C .2y x=D .22y x x =-【答案】B【分析】根据“好点”的定义判断出“好点”即是直线y=x 上的点,再各函数中令y=x ,对应方程无解即不存在“好点”. 【解析】解:根据“好点”的定义,好点即为直线y=x 上的点,令各函数中y=x , A 、x=-x ,解得:x=0,即“好点”为(0,0),故选项不符合; B 、2x x =+,无解,即该函数图像中不存在“好点”,故选项符合;C 、2x x=,解得:x =x =是原方程的解,即“好点”)和(,),故选项不符合;D 、22x x x =-,解得:x=0或3,即“好点”为(0,0)和(3,3),故选项不符合; 故选B.【点睛】本题考查了函数图像上的点的坐标,涉及到解分式方程,一元二次方程,以及一元一次方程,解题的关键是理解“好点”的定义.2.在平面直角坐标系中,O 为坐标原点.若直线y =x +3分别与x 轴、直线y =﹣2x 交于点A 、B ,则△AOB 的面积为( ) A .2 B .3C .4D .6【答案】B【分析】根据方程或方程组得到A (﹣3,0),B (﹣1,2),根据三角形的面积公式即可得到结论. 【解析】解:在y =x +3中,令y =0,得x =﹣3,解32y x y x =+⎧⎨=-⎩得,12x y =-⎧⎨=⎩,∴A (﹣3,0),B (﹣1,2),∴△AOB 的面积=12⨯3×2=3,故选:B . 【点睛】本题考查了两直线与坐标轴围成图形的面积,求出交点坐标是解题的关键.1.已知在平面直角坐标系xOy 中,直线y =2x +2和直线y =23x +2分别交x 轴于点A 和点B .则下列直线中,与x 轴的交点不在线段AB 上的直线是( )A .y =x +2B .y x +2C .y =4x +2D .y +2 【答案】C【分析】分别求出点A 、B 坐标,再根据各选项解析式求出与x 轴交点坐标,判断即可. 【解析】解:∵直线y =2x +2和直线y =23x +2分别交x 轴于点A 和点B .∴A (﹣1,0),B (﹣3,0) A. y =x +2与x 轴的交点为(﹣2,0);故直线y =x +2与x 轴的交点在线段AB 上;B. y x +2与x ,0);故直线y x +2与x 轴的交点在线段AB 上;C.y=4x+2与x轴的交点为(﹣12,D.yx+2与x【点睛】本题考查了求直线与坐标轴的交点2.如图,直线542y x=+与x轴、y轴分则点1A的坐标是_____.【答案】(4,125)【分析】首先根据直线AB来求出点A案.【解析】解:在542y x=+中,令∴A(8-5,0),B(0,4),由旋转可得∴∠ABO=∠A1BO1,∠BO1A1=∠AOB=90∴∠OBO1=90°,∴O1B∥x轴,∴点A横坐标为O1B=OB=4,故点A1的坐标是【点睛】本题主要考查了旋转的性质以及一关键.经典例1.如图,直线y=kx+b(k、b是常数k≠00);故直线y=4x+2与x轴的交点不在线段AB上,0);故直线y+2与x轴的交点在线段的交点,注意求直线与x轴交点坐标,即把y=0代入轴分别交于A、B两点,把AOBV绕点B逆时针旋转和点B的坐标,A1的横坐标等于OB,而纵坐标等x=0得,y=4,令y=0,得5042x=+,解得x=-5可得△AOB ≌△A1O1B,∠ABA1=90°,OB=90°,OA=O1A1=85,OB=O1B=4,1的纵坐标为OB-OA的长,即为48-5=125;标是(4,125),故答案为:(4,125).以及一次函数与坐标轴的交点问题,利用基本性质结经典例题一次函数与一元一次不等式)与直线y=2交于点A(4,2),则关于x的不等式上;在线段AB上;故选:C代入函数解析式.针旋转90°后得到11AO BV,坐标等于OB-OA,即可得出答8,性质结合图形进行推理是解题的等式kx+b<2的解集为_____.【答案】x <4【分析】结合函数图象,写出直线y =+【解析】解:∵直线y =kx +b 与直线y ∴关于x 的不等式kx +b <2的解集为:【点睛】本题考查的是利用函数图像解不等2.一次函数y kx b =+的图象如图所示,A .k 0<B .1b =-C .【答案】B【分析】根据一次函数的图象与性质判断即【解析】由图象知,k ﹥0,且y 随x 的增大图象与y 轴负半轴的交点坐标为(0,-1当x ﹥2时,图象位于x 轴的上方,则有【点睛】本题考查一次函数的图象与性质1.如图,直线(0)y kx b k =+<经过点A .1x ≤B .1x ≥ 【答案】A 【分析】将(1,1)P 代入(y kx b k =+【解析】解:由题意将(1,1)P 代入y =+整理kx b x +≥得,()10k x b -+≥,∴【点睛】本题考查了一次函数的图像和性质kx b 在直线y =2下方所对应的自变量的范围即可=2交于点A (4,2),∴x <4时,y <2,x <4.故答案为:x <4.解不等式,理解函数图像上的点的纵坐标的大小对图,则下列结论正确的是( )y 随x 的增大而减小 D .当2x >时,kx b +<判断即可.的增大而增大,故A 、C 选项错误; 1),所以b=﹣1,B 选项正确;则有y ﹥0即+kx b ﹥0,D 选项错误,故选:B . 性质,利用数形结合法熟练掌握一次函数的图象与性过点(1,1)P ,当kx b x +≥时,则x 的取值范围为(C .1x < D .1x >0)<,可得1k b -=-,再将kx b x +≥变形整理,得(0)kx b k <,可得1k b +=,即1k b -=-,∴0bx b -+≥,由图像可知0b >,∴10x -≤和性质,解题关键在于灵活应用待定系数法和不等式围即可.小对图像的影响是解题的关键.0x象与性质是解答本题的关键. ( )得0bx b -+≥,求解即可.,∴1x ≤,故选:A .不等式的性质.1.某公司新产品上市30天全部售完,图销售利润与上市时间之间的关系,则最大日【答案】1800【解析】【分析】从图1和图2中可知,当t=30润=销售量×每件产品销售利润即可求解【详解】由图1知,当天数t=30时,市场从图2知,当天数t=30时,每件产品销售所以当天数t=30时,市场的日销售利润最【点睛】本题考查一次函数的实际应用,利用数形结合法理解题目已知信息是解答的2.小华端午节从家里出发,沿笔直道路匀路线匀速回家装载货物,然后按原路原速返从商店出发开始所用时间为t (分钟),图中线段AB 表示小华和商店的距离1y (列问题:(1)填空:妈妈骑车的速度是__________经典例题 一次函数的应用图1表示产品的市场日销售量与上市时间之间的关最大日销售利润是__________元.时,日销售量达到最大,每件产品的销售利润也达求解.市场日销售量达到最大60件;品销售利润达到最大30元,利润最大,最大利润为60×30=1800元,故答案为:,也考查了学生的观察能力、理解能力和解决实际解答的关键.道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮原速返回商店,小华到达商店比妈妈返回商店早5图1表示两人之间的距离s (米)与时间t (分钟(米)与时间t (分钟)的函数关系的图象的一部分______米/分钟,妈妈在家装载货物所用时间是_____间的关系,图2表示单件产品的润也达到最大,所以由日销售利:1800决实际问题的能力,仔细审题,时骑三轮车从商店出发,沿相同分钟.在此过程中,设妈妈分钟)的函数关系的图象;图2一部分,请根据所给信息解答下__________分钟,点M的坐标是___________;(2)直接写出妈妈和商店的距离2y (米(3)求t 为何值时,两人相距360米.【答案】(1)120,5,()20,1200;(2钟)时,两人相距360米.【分析】(1)先求出小华步行的速度,然后达商店比妈妈返回商店早5分钟,即可求出求出M 的坐标;(2)分①当0≤t <15时,②当15≤t <(3)由题意知,小华速度为60米/分钟种情况讨论即可.【解析】解:(1)由题意可得:小华步行的妈妈骑车的速度为:1800601010-⨯∵小华到达商店比妈妈返回商店早5分钟∴装货时间为:35-15×2=5(分钟),即妈妈由题意和图像可得妈妈在M 点时开始返回此时纵坐标为:20×60=1200(米),∴点(2)①当0≤t <15时y 2=120t ,②当将(20,1800),(35,0),代入得1800⎧⎨⎩∴此段的解析式为y 2=-120x+4200,综上其函数图象如图,米)与时间t (分钟)的函数关系式,并在图2中画.)2120(015)1800(1520)1204200(2035)t t y t t t ≤<⎧⎪=≤<⎨⎪-+≤≤⎩,见解析;(然后即可求出妈妈骑车的速度;先求出妈妈回家用可求出装货时间;根据题意和图像可得妈妈在M 点时20时,③当20≤t≤35时三段求出解析式即可,根据解分钟,妈妈速度为120米/分钟,分①相遇前,②相遇后步行的速度为:180030=60(米/分钟), =120(米/分钟);妈妈回家用的时间为:1800120=15分钟,∴可知妈妈在35分钟时返回商店, 即妈妈在家装载货物的时间为5分钟;始返回商店,∴M 点的横坐标为:15+5=20(分钟),点M 的坐标为()20,1200;故答案为:120,5,15≤t <20时y 2=1800,③当20≤t≤35时,设此段函数解20035k b k b =+=+,解得1204200k b =-⎧⎨=⎩, 综上:2120(015)1800(1520)1204200(2035)t t y t t t ≤<⎧⎪=≤<⎨⎪-+≤≤⎩;;中画出其函数图象; ;3)当t 为8,12或32(分回家用的时间,然后根据小华到点时开始返回商店,然后即可根据解析式画图即可;相遇后,③在小华到达以后三(分钟), ),()20,1200;函数解析式为y 2=kx+b ,(3)由题意知,小华速度为60米/分钟①相遇前,依题意有6012036018t t ++②相遇后,依题意有6012036018t t +-③依题意,当20t =分钟时,妈妈从家里出此时小华距商店为180********-⨯=即30t =分钟时,小华到达商店,而此时妈妈距离商店为1800101206-⨯∴()120536018002t -+=⨯,解得∴当t 为8,12或32(分钟)时,两人相距【点睛】本题考查了一次函数的实际应用1.新龟兔赛跑的故事:龟兔从同一地点同遥领先,就躺在路边呼呼大睡起来.当它一S 1、S 2分别表示乌龟和兔子赛跑的路程,A . B .【答案】C【分析】分别分析乌龟和兔子随时间变化它【解析】对于乌龟,其运动过程可分为两段可排除B ,D 选项 对于兔子,其运动过程开始跑得快,所以路程增加快;中间睡觉时【点睛】本题考查了函数图象的性质进行简别作为点的横、纵坐标,那么坐标平面内由2.某种机器工作前先将空油箱加满,然后中,油箱里的油量y (单位:L )与时间(1)机器每分钟加油量为_____L ,机器(2)求机器工作时y 关于x的函数解析式分钟,妈妈速度为120米/分钟, 01800=,解得8t =(分钟); 01800=,解得12t =(分钟); 家里出发开始追赶小华,(米),只需10分钟,20600=(米)360>(米), 32t =(分钟),人相距360米.应用,由图像获取正确的信息是解题关键.地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲当它一觉醒来,发现乌龟已经超过它,于是奋力直追,t 为赛跑时间,则下列图象中与故事情节相吻合的 C . D .变化它们的路程变化情况,即直线的斜率的变化.为两段:从起点到终点乌龟没有停歇,其路程不断增动过程可分为三段:据此可排除A 选项睡觉时路程不变;醒来时追赶乌龟路程增加快.故选进行简单的合情推理,对于一个函数,如果把自变量面内由这些点组成的图形就是这个函数的图象.然后停止加油立即开始工作,当停止工作时,油箱中与时间x (单位:min )之间的关系如图所示.机器工作的过程中每分钟耗油量为_____L .解析式,并写出自变量x的取值范围.骄傲自满的兔子觉得自己遥力直追,最后同时到达终点.用吻合的是( ).问题便可解答.不断增加;最后同时到达终点,故选:C自变量与函数的每一对对应值分油箱中油量为5L.在整个过程(3)直接写出油箱中油量为油箱容积的一半时x 的值.【答案】(1)3,0.5;(2)1352y x =-+,1060x ≤≤;(3)5或40. 【分析】(1)根据10min 加油量为30L 即可得;根据60min 时剩余油量为5L 即可得;(2)根据函数图象,直接利用待定系数法即可得;(3)先求出机器加油过程中的y 关于x 的函数解析式,再求出15y =时,两个函数对应的x 的值即可.【解析】(1)由函数图象得:机器每分钟加油量为303()10L = 机器工作的过程中每分钟耗油量为3050.5()6010L -=- 故答案为:3,0.5;(2)由函数图象得:当10min x =时,机器油箱加满,并开始工作;当60min x =时,机器停止工作则自变量x 的取值范围为1060x ≤≤,且机器工作时的函数图象经过点(10,30),(60,5)设机器工作时y 关于x 的函数解析式y kx b =+ 将点(10,30),(60,5)代入得:1030605k b k b +=⎧⎨+=⎩ 解得1235k b ⎧=-⎪⎨⎪=⎩ 则机器工作时y 关于x 的函数解析式1352y x =-+;(3)设机器加油过程中的y 关于x 的函数解析式y ax =将点(10,30)代入得:1030a = 解得3a = 则机器加油过程中的y 关于x 的函数解析式3y x =油箱中油量为油箱容积的一半时,有以下两种情况: ①在机器加油过程中:当30152y ==时,315x =,解得5x = ②在机器工作过程中:当30152y ==时,135152x -+=,解得40x = 综上,油箱中油量为油箱容积的一半时x 的值为5或40. 【点睛】本题考查了函数图象、利用待定系数法求一次函数和正比例函数的解析式等知识点,从函数图象中正确获取信息是解题关键.经典例题 一次函数与几何图形综合1.如图,直线AM 的解析式为1y x =+与x 轴交于点M ,与y 轴交于点A ,以OA 为边作正方形ABCO ,点B 坐标为()1,1.过点B 作1EO MA ⊥交MA 于点E ,交x 轴于点1O ,过点1O 作x 轴的垂线交MA 于点1A 以11O A 为边作正方形1111O A B C ,点1B 的坐标为()5,3.过点1B 作12E O MA ⊥交MA 于1E ,交x 轴于点2O ,过点2O 作x 轴的垂线交MA 于点2A ,以22O A 为边作正方形2222O A B C ,L ,则点2020B 的坐标______.。
;2023年湖南省中考数学真题分类汇编:一次函数、二次函数一、选择题1.(2023·长沙)下列一次函数中,y随x的增大而减小的函数是( )A.y=2x+1B.y=x―4C.y=2x D.y=―x+1 2.(2023·邵阳)已知P1(x1,y1),P2(x2,y2)是抛物线y=a x2+4ax+3(a是常数,a≠0)上的点,现有以下四个结论:①该抛物线的对称轴是直线x=―2;②点(0,3)在抛物线上;③若x1>x2>―2,则y1>y2;④若y1=y2,则x1+x2=―2其中,正确结论的个数为( )A.1个B.2个C.3个D.4个3.(2023·株洲)如图所示,直线l为二次函数y=a x2+bx+c(a≠0)的图像的对称轴,则下列说法正确的是( )A.b恒大于0B.a,b同号C.a,b异号D.以上说法都不对4.(2023·衡阳)已知m>n>0,若关于x的方程x2+2x―3―m=0的解为x1,x2(x1<x2).关于x的方程x2+2x―3―n=0的解为x3,x4(x3<x4).则下列结论正确的是( )A.x3<x1<x2<x4B.x1<x3<x4<x2C.x1<x2<x3<x4D.x3<x4<x1<x2二、填空题5.(2023·郴州)在一次函数y=(k―2)x+3中,y随x的增大而增大,则k的值可以是 (任写一个符合条件的数即可).6.(2023·郴州)抛物线y=x2―6x+c与x轴只有一个交点,则c= .三、综合题7.(2023·常德)如图,二次函数的图象与x轴交于A(―1,0),B(5,0)两点,与y轴交于点C,顶点为D.O为坐标原点,tan∠ACO=1.5(1)求二次函数的表达式;(2)求四边形ACDB的面积;(3)P是抛物线上的一点,且在第一象限内,若∠ACO=∠PBC,求P点的坐标.8.(2023·株洲)某花店每天购进16支某种花,然后出售.如果当天售不完,那么剩下的这种花进行作废处理、该花店记录了10天该种花的日需求量n(n为正整数,单位:支),统计如下表:日需求量n131415161718天数112411(1)求该花店在这10天中出现该种花作废处理情形的天数;(2)当n<16时,日利润y(单位:元)关于n的函数表达式为:y=10n―80;当n≥16时,日利润为80元.①当n=14时,间该花店这天的利润为多少元?②求该花店这10天中日利润为70元的日需求量的频率.9.(2023·张家界)如图,在平面直角坐标系中,已知二次函数y=a x2+bx+c的图象与x轴交于点A(―2,0)和点B(6,0)两点,与y轴交于点C(0,6).点D为线段BC上的一动点.(1)求二次函数的表达式;(2)如图1,求△AOD周长的最小值;(3)如图2,过动点D作DP∥AC交抛物线第一象限部分于点P,连接PA,PB,记△PAD与△PBD的面积和为S,当S取得最大值时,求点P的坐标,并求出此时S的最大值.10.(2023·郴州)已知抛物线y=a x2+bx+4与x轴相交于点A(1,0),B(4,0),与y轴相交于点C.(1)求抛物线的表达式;的值;(2)如图1,点P是抛物线的对称轴l上的一个动点,当△PAC的周长最小时,求PAPC?若存在,求出点Q的坐(3)如图2,取线段OC的中点D,在抛物线上是否存在点Q,使tan∠QDB=12标;若不存在,请说明理由.11.(2023·邵阳)如图,在平面直角坐标系中,抛物线y=a x2+x+c经过点A(―2,0)和点B(4,0),且与直线l:y=―x―1交于D、E两点(点D在点E的右侧),点M为直线l上的一动点,设点M的横坐标为t.(1)求抛物线的解析式.(2)过点M作x轴的垂线,与拋物线交于点N.若0<t<4,求△NED面积的最大值.(3)抛物线与y轴交于点C,点R为平面直角坐标系上一点,若以B、C、M、R为顶点的四边形是菱形,请求出所有满足条件的点R的坐标.12.(2023·株洲)已知二次函数y=a x2+bx+c(a>0).(1)若a=1,c=―1,且该二次函数的图象过点(2,0),求b的值;(2)如图所示,在平面直角坐标系Oxy中,该二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<0<x 2,点D 在⊙O 上且在第二象限内,点E 在x 轴正半轴上,连接DE ,且线段DE 交y 轴正半轴于点F ,∠DOF =∠DEO ,OF =32DF .①求证:DO EO =23.②当点E 在线段OB 上,且BE =1.⊙O 的半径长为线段OA 的长度的2倍,若4ac =―a 2―b 2,求2a +b 的值.13.(2023·岳阳)已知抛物线Q 1:y =―x 2+bx +c 与x 轴交于A(―3,0),B 两点,交y 轴于点C(0,3).(1)请求出抛物线Q 1的表达式.(2)如图1,在y 轴上有一点D(0,―1),点E 在抛物线Q 1上,点F 为坐标平面内一点,是否存在点E ,F 使得四边形DAEF 为正方形?若存在,请求出点E ,F 的坐标;若不存在,请说明理由.(3)如图2,将抛物线Q 1向右平移2个单位,得到抛物线Q 2,抛物线Q 2的顶点为K ,与x 轴正半轴交于点H ,抛物线Q 1上是否存在点P ,使得∠CPK =∠CHK ?若存在,请求出点P 的坐标;若不存在,请说明理由.14.(2023·衡阳)如图,已知抛物线y =a x 2―2ax +3与x 轴交于点A(―1,0)和点B ,与y 轴交于点C ,连接AC ,过B 、C 两点作直线.(1)求a的值.(2)将直线BC向下平移m(m>0)个单位长度,交抛物线于B′、C′两点.在直线B′C′上方的抛物线上是否存在定点D,无论m取何值时,都是点D到直线B′C′的距离最大,若存在,请求出点D的坐标;若不存在,请说明理由.(3)抛物线上是否存在点P,使∠PBC+∠ACO=45°,若存在,请求出直线BP的解析式;若不存在,请说明理由.15.(2023·怀化)如图一所示,在平面直角坐标系中,抛物线y=a x2+bx―8与x轴交于A(―4,0)、B(2,0)两点,与y轴交于点C.(1)求抛物线的函数表达式及顶点坐标;(2)点P为第三象限内抛物线上一点,作直线AC,连接PA、PC,求△PAC面积的最大值及此时点P的坐标;交抛物线于点M、N,求证:无论k为何值,平行于x轴的直线l2:y=―(3)设直线l1:y=kx+k―35437上总存在一点E,使得∠MEN为直角.4答案解析部分1.【答案】D2.【答案】B3.【答案】C4.【答案】B5.【答案】3(答案不唯一)6.【答案】97.【答案】(1)解:∵二次函数的图象与x 轴交于A(―1,0),B(5,0)两点.∴设二次函数的表达式为y =a(x +1)(x ―5)∵AO =1,tan ∠ACO =15,∴OC =5,即C 的坐标为(0,5)则5=a(0+1)(0―5),得a =―1∴二次函数的表达式为y =―(x +1)(x ―5);(2)解:y =―(x +1)(x ―5)=―(x ―2)2+9∴顶点的坐标为(2,9)过D 作DN ⊥AB 于N ,作DM ⊥OC 于M ,四边形ACDB 的面积=S △AOC +S 矩形OMDN ―S △CDM +S △DNB=12×1×5+2×9―12×2×(9―5)+12×(5―2)×9=30;(3)解:如图,P 是抛物线上的一点,且在第一象限,当∠ACO =∠PBC 时,连接PB ,过C 作CE ⊥BC 交BP 于E ,过E 作EF ⊥OC 于F ,∵OC =OB =5,则△OCB 为等腰直角三角形,∠OCB =45°.由勾股定理得:CB =52,∵∠ACO =∠PBC ,∴tan ∠ACO =tan ∠PBC ,即15=CE CB =CE 52,∴CE =2由CH ⊥BC ,得∠BCE =90°,∴∠ECF =180°―∠BCE ―∠OCB =180°―90°―45°=45°.∴△EFC 是等腰直角三角形∴FC =FE =1∴E 的坐标为(1,6)所以过B 、E 的直线的解析式为y =―32x +152令y =―32x +152y =―(x +1)(x ―5)解得x =5y =0,或x =12y =274所以BE 直线与抛物线的两个交点为B(5,0),P(12,274)即所求P 的坐标为P(12,274)8.【答案】(1)解:当n <16时,该种花需要进行作废处理,则该种花作废处理情形的天数共有:1+1+2=4(天);(2)解:①当n <16时,日利润y 关于n 的函数表达式为y =10n ―80,当n =14时,y =10×14―80=60(元);②当n <16时,日利润y 关于n 的函数表达式为y =10n ―80;当n≥16时,日利润为80元,80>70,当y=70时,70=10n―80解得:n=15,由表可知n=15的天数为2天,则该花店这10天中日利润为70元的日需求量的频率为2.9.【答案】(1)解:由题意可知,设抛物线的表达式为y=a(x+2)(x―6),将(0,6)代入上式得:6=a(0+2)(0―6),a=―1 2所以抛物线的表达式为y=―12x2+2x+6;(2)解:作点O关于直线BC的对称点E,连接EC、EB,∵B(6,0),C(0,6),∠BOC=90°,∴OB=OC=6,∵O、E关于直线BC对称,∴四边形OBEC为正方形,∴E(6,6),连接AE,交BC于点D,由对称性|DE|=|DO|,此时|DO|+|DA|有最小值为AE的长,AE=AB2+BE2=82+62=10∵△AOD的周长为DA+DO+AO,AO=2,DA+DO的最小值为10,∴△AOD的周长的最小值为10+2=12;(3)解:由已知点A(―2,0),B(6,0),C(0,6),设直线BC的表达式为y=kx+b,将B(6,0),C(0,6)代入y=kx+b中,6k+b=0b=0,解得k=―1b=6,∴直线 BC 的表达式为 y =―x +6 ,同理可得:直线 AC 的表达式为 y =3x +6 ,∵PD ∥AC ,∴设直线 PD 表达式为 y =3x +a ,由(1)设 P(m ,―12m 2+2m +6) ,代入直线 PD 的表达式得: a =―12m 2―m +6 ,∴直线 PD 的表达式为: y =3x ―12m 2―m +6 ,由 y =―x +6y =3x ―12m 2―m +6 ,得 x =18m 2+14m y =―18m 2―14m +6 ,∴D(18m 2+14m ,―18m 2―14m +6) ,∵P ,D 都在第一象限,∴S =S △PAD +S △PBD =S △PAB ―S △DAB=12|AB|[(―12m 2+2m +6)―(―18m 2―14m +6)]=12×8(―38m 2+94m)=―32m 2+9m =―32(m 2―6m)=―32(m ―3)2+272,∴当 m =3 时,此时P 点为 (3,152) .S 最大值=272.10.【答案】(1)解:∵抛物线y =a x 2+bx +4与x 轴相交于点A(1,0),B(4,0),∴a +b +4=016a +4b +4=0,解得:a =1b =―5,∴y =x 2―5x +4;(2)解:∵y =x 2―5x +4,当x =0时,y =4,∴C(0,4),抛物线的对称轴为直线x =52∵△PAC 的周长等于PA +PC +AC ,AC 为定长,∴当PA +PC 的值最小时,△PAC 的周长最小,∵A ,B 关于对称轴对称,∴PA +PC =PB +PC ≥BC ,当P ,B ,C 三点共线时,PA +PC 的值最小,为BC 的长,此时点P 为直线BC 与对称轴的交点,设直线BC 的解析式为:y =mx +n ,则:4m +n =0n =4,解得:m =―1n =4,∴y =―x +4,当x =52时,y =―52+4=32,∴P(52,32),∵A(1,0),C(0,4),∴PA =(52―1)2+(32)2=322,PC =(52)2+(4―32)2=522,∴PA PC =35;(3)解:存在,∵D 为OC 的中点,∴D(0,2),∴OD =2,∵B(4,0),∴OB =4,在Rt △BOD 中,tan ∠OBD =OD OB =12,∵tan ∠QDB =12=tan ∠OBD ,∴∠QDB =∠OBD ,①当Q 点在D 点上方时:过点D 作DQ ∥OB ,交抛物线与点Q ,则:∠QDB =∠OBD ,此时Q 点纵坐标为2,设Q 点横坐标为t ,则:t 2―5t +4=2,解得:t =5±172,∴Q(5+172,2)或Q(5―172,2);②当点Q 在D 点下方时:设DQ 与x 轴交于点E ,则:DE =BE ,设E(p ,0),则:D E 2=O E 2+O D 2=p 2+4,B E 2=(4―p)2,∴p 2+4=(4―p)2,解得:p =32,∴E(32,0),设DE 的解析式为:y =kx +q ,=2+q =0,解得:q =2k =―43,∴y =―43x +2,联立y =―43x +2y =x 2―5x +4,解得:x =3y =―2或x =23y =109,∴Q(3,―2)或Q(23,109);综上:Q(5+172,2)或Q(5―172,2)或Q(3,―2)或Q(23,109).11.【答案】(1)解:∵抛物线y =a x 2+x +c 经过点A(―2,0)和点B(4,0),∴4a ―2+c =016a +4+c =0,解得:a =―12c =4,∴抛物线解析式为:y =―12x 2+x +4;(2)解:∵抛物线y =―12x 2+x +4与直线l :y =―x ―1交于D 、E 两点,(点D 在点E 的右侧)联立y =―12x 2+x +4y =―x ―1,解得:x =2+14y =―3―14或x =2―14y =―3+14,∴D(2+14,―14―3),E(2―14,14―3),∴x D ―x E =(2+14)―(2―14)=214,∵点M 为直线l 上的一动点,设点M 的横坐标为t .则M(t ,―t ―1),N(t ,―12t 2+t +4),∴MN =―12t 2+t +4―(―t ―1)=―12t 2+2t +5=―12(t ―2)2+7,当t =2时,MN 取得最大值为7,∵S △END =12(x D ―x E )×MN ,∴当MN 取得最大值时,S △END 最大,∴S △END =12×214×7=714,∴△NED 面积的最大值714;(3)解:∵抛物线与y 轴交于点C ,∴y =―12x 2+x +4,当x =0时,y =4,即C(0,4),∵B(4,0),M(t ,―t ―1)∴BC =42+42=42,B M 2=(4―t)2+(―t ―1)2=2t 2―6t +17,C M 2=t 2+(t +5)2=2t 2+10t +25,①当BC 为对角线时,MB =CM ,∴2t 2―6t +17=2t 2+10t +25,解得:t =―12,∴M(―12,―12),∵BC ,MR 的中点重合,∴R x ―12=4R y ―12=4,解得:R x =92R y =92,∴R(92,92),②当BC 为边时,当四边形BMRC 为菱形,BM =BC∴2t 2―6t +17=(42)2,解得:t =3―392或t =3+392,∴―t ―1=―3―392―1=―5+392或―t ―1=―3+392―1=―5―392,∴M(3―392,―5+392)或M(3+392,―39―52),由CM ,BR 的中点重合,∴R x +4=3―392+0R y +0=―5+392+4或R x +4=3+392+0R y +0=―5―392+4,解得:R x =―5―392R y =3+392或R x =―5+392R y =3―392,∴R(―5―392,3+392)或R(―5+392,3―392),当BC =MC 时;如图所示,即四边形CMRB 是菱形,点R 的坐标即为四边形BMRC 为菱形时,M 的坐标,∴R 点为R(3―392,―5+392)或R(3+392,―39―52),综上所述,R 点为R(3―392,―5+392)或R(3+392,―39―52)或R(―5―392,3+392)或R(―5+392,3―392)或R(92,92).12.【答案】(1)解:∵a =1,c =―1,∴二次函数解析式为y =x 2+bx ―1,∵该二次函数的图象过点(2,0),∴4+4b―1=0解得:b=―32;(2)解:①∵∠DOF=∠DEO,∠ODF=∠EDO,∴△DOF∽△DEO∴DF DO =OF EO∴DO EO =OF DF∵OF=32DF∴DO EO =2 3;②∵该二次函数的图象与x轴交于点A(x1,0),B(x2,0),且x1<0<x2,∴OA=―x1,OB=x2,∵BE=1.∴OE=x2―1,∵⊙O的半径长为线段OA的长度的2倍∴OD=―2x1,∵DO EO =2 3,∴―2x1x2―1=23,∴3x1+x2―1=0,即x2=1―3x1①,∵该二次函数的图象与x轴交于点A(x1,0),B(x2,0),∴x1,x2是方程a x2+bx+c=0的两个根,∴x1+x2=―b a,∵4ac=―a2―b2,a≠0,∴4·ca+1+(ba)2=0,即4(x1x2)+1+(x1+x2)2=0②,①代入②,即4x1(1―3x1)+1+(x1+1―3x1)2=0,即4x1―12x21+1+1+4x21―4x1=0,整理得―8x21=―2,∴x21=14,解得:x 1=―12(正值舍去)∴x 2=1―(―32)=52,∴抛物线的对称轴为直线x =―b 2a =x 1+x 22=―12+522=1,∴b =―2a ,∴2a +b =0.13.【答案】(1)解:∵抛物线Q 1:y =―x 2+bx +c 与x 轴交于A(―3,0),两点,交y 轴于点C(0,3), ∴把A(―3,0),C(0,3)代入Q 1:y =―x 2+bx +c ,得,―9―3b +c =0c =3,解得,b =―2c =3,∴抛物线的解析式为:y =―x 2―2x +3;(2)解:假设存在这样的正方形DAEF ,如图,过点E 作ER ⊥x 于点R ,过点F 作FI ⊥y 轴于点I ,∴∠AER +∠EAR =90°,∵四边形DAEF 是正方形,∴AE =AD ,∠EAD =90°,∴∠EAR +∠DAR =90°,∴∠AER =∠DAO ,又∠ERA =∠AOD =90°,∴△AER≅△DAO ,∴AR =DO ,ER =AO ,∵A(―3,0),D(0,―1),∴OA =3,OD =1,∴AR =1,ER =3,∴OR =OA ―AR =3―1=2,∴E(―2,3);同理可证明:△FID≅△DOA,∴FI=DO=1,DI=AO=3,∴IO=DI―DO=3―1=2,∴F(1,2);(3)解:∵y=―x2―2x+3=―(x+1)2+4,∴抛物线的顶点坐标为(―1,4),对称轴为直线x=―1,令y=0,则―x2―2x+3=0,解得,x1=―3,x2=1,∴B(1,0),∴将抛物线的图象右平移2个单位后,则有:K(―1,4),对称轴为直线x=―1+2=1,H(1+2,0),即H(3,0),∴点B在平移后的抛物线的对称轴上,∴HB=HO―OB=3―1=2,KB=4,∴KH=KB2+HB2=42+22=25,CB=CO2+BO2=32+12=10;CH=CO2+HO2=32,设直线CH的解析式为y=kx+b,把(3,0),(0,3)代入得,3k+b=0b=3,解得,k=―1 b=3,∴直线CH的解析式为y=―x+3,当x=1时,y=―1+3=2,∴S(1,2),此时KS=4―2=2,∴CS=(0―1)2+(3―2)2=2,∴HS=CH―CS=32―2=22,又KH CH =2510=2;KSCS=22=2;HSBS=222=2,∴KH CH =KSCS=HSBS=2,∴△KSH∼△CSB,∴∠CBK=∠CHK,所以,当点P与点B重合时,即点P的坐标为(1,0),则有∠CPK=∠CHK.14.【答案】(1)解:抛物线y=a x2―2ax+3与x轴交于点A(―1,0),得a +2a +3=0,解得:a =―1;(2)解:存在D (―12,154),理由如下:设B ′C ′与y 轴交于点G ,由(1)中结论a =―1,得抛物线的解析式为y =―x 2+2x +3,当y =0时,x 1=―1,x 2=3,即A (―1,0),B (3,0),C (0,3),OB =OC ,∠BOC =90°,即△BOC 是等腰直角三角形,∴∠BCO =45°,∵B ′C ′∥BC ,∴∠BCO =∠B ′GO =45°,设D (t ,―t 2+2t +3),过点D 作DE ∥y 轴交B ′C ′于点E ,作DF ⊥B ′C ′于点F ,∴∠DEF =∠B ′GO =45°,即△DEF 是等腰直角三角形,设直线BC 的解析式为y =kx +b ,代入B (3,0),C (0,3),得3k +b =0b =3,解得k =―1b =3,故直线BC 的解析式为y =―x +3,将直线BC 向下平移m(m >0)个单位长度,得直线B ′C ′的解析式为y =―x +3―m ,∴E (t ,―t +3―m ),DE =―t 2+2t +3―(―t +3―m )=―t 2+3t +m =―(t ―32)2+94+m ,当t =32时,DE 有最大值94+m ,此时DF =22DE 也有最大值,D (32,154);(3)解:存在P (―23,119)或P (2,3),理由如下:当点P 在直线BC 下方时,在y 轴上取点H (0,1),作直线BH 交抛物线于(异于点B )点P ,由(2)中结论,得∠OBC=45°,∴OH=OA=1,OB=OC,∠BOH=∠COA=90°,∴△BOH≌△COA(SAS),∴∠OBH=∠AOC,∴∠PBC+∠ACO=∠PBC+∠OBH=∠OBC=45°,设直线BP的解析式为y=k1x+b1,代入点B(3,0),H(0,1),得3k1+b1=0b1=1,解得k1=―13b1=1,故设直线BP的解析式为y=―13x+1,联立y=―13x+1y=―x2+2x+3,解得x1=3y1=0(舍)x2=―23y2=119,故P(―23,119);当点P在直线BC上方时,如图,在x轴上取点I,连接CI,过点P作BP∥CI抛物线于点P,∠PBC=∠BCI,OI=OA=1,OC=OC,∠COI=∠COA=90°,∴△COI≌△COA(SAS),∴∠OCI=∠AOC,∴∠PBC+∠ACO=∠BCI+∠OCI=∠OCB=45°,设直线CI的解析式为y=k2x+b2,代入点I(1,0),C(0,3),得k2+b2=0b2=3,解得k2=―3b2=3,故设直线CI的解析式为y=―3x+3,BP∥CI,且过点B(3,0),故设直线BP的解析式为y=―3x+9,联立y=―3x+9y=―x2+2x+3,解得x1=2y1=3,x2=3y2=0(舍),故P(2,3),综上所述:P(―23,119)或P(2,3)15.【答案】(1)解:将A(―4,0)、B(2,0)代入y=a x2+bx―8,得16a―4b―8=04a+2b―8=0,解得:a=1 b=2,∴抛物线解析式为:y=x2+2x―8,∴对称轴为x=―b2a=―1∴当x=―1时,y=(―1)2+2×(―1)―8=―9∴顶点坐标为(-1,-9);(2)解:如图所示,过点P作PD⊥x轴于点D,交AC于点E,由y=x2+2x―8,令x=0,解得:y=―8,∴C(0,―8),设直线AC的解析式为y=kx―8,将点A(―4,0)代入得,―4k―8=0,解得:k=―2,∴直线AC的解析式为y=―2x―8,设P(m,m2+2m―8),则E(m,―2m―8),∴PE=―2m―8―(m2+2m―8)=―m 2―4m=―(m +2)2+4,当m =―2时,PE 的最大值为4∵S △PAC =12PE ×OA =12×4×PE =2PE ∴当PE 取得最大值时,△PAC 面积取得最大值∴△PAC 面积的最大值为2×4=8,此时m =―2,m 2+2m ―8=4―4―8=―8∴P(―2,―8)(3)解:设M(x 1,y 1)、N(x 2,y 2),MN 的中点坐标为Q(x 1+x 22,y 1+y 22), 联立y =kx +k ―354y =x 2+2x ―8,消去y ,整理得:x 2+(2―k)x ―k +34=0, ∴x 1+x 2=k ―2,x 1x 2=―k +34,∴x 1+x 22=k 2―1,∴y 1+y 22=12k(x 1+x 2)+k ―354=12k(k ―2)+k ―354=12k 2―354,∴Q(12k ―1,12k 2―354),设Q 点到l 2的距离为QE ,则QE =12k 2―354―(―374)=12k 2+12,∵M(x 1,y 1)、N(x 2,y 2),∴y 1+y 2=k 2―352,y 1―y 2=x 21―x 22+2(x 1―x 2)=(x 1―x 2)(x 1+x 2+2)=k(x 1―x 2)∴M N 2=(x 1―x 2)2+(y 1―y 2)2=(x 1―x 2)2+k 2(x 1―x 2)2=(x 1―x 2)2(1+k 2)=[(x 1+x 2)2―4x 1x 2](1+k 2)=[(k ―2)2+4k ―3](k 2+1)=(k 2+1)(k 2+1)=(k 2+1)2∴MN =k 2+1,∴12MN =QE∴QM =QN =QE ,∴E 点总在⊙Q 上,MN 为直径,且⊙Q 与l 2:y =―374相切,∴∠MEN 为直角.∴无论k 为何值,平行于x 轴的直线l 2:y =―374上总存在一点E ,使得∠MEN 为直角.。
中考数学一次函数试题分类汇编一、选择题1、已知一次函数(1)y a x b =-+的图象如图1所示,那么a 的取值范围是( )A A .1a >B .1a <C .0a >D .0a <2、如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( )BA .0k >,0b >B .0k >,0b <C .0k <,0b >D .0k <,0b <3、如图2,一次函数图象经过点A ,且与正比例函数y x =-的 图象交于点B ,则该一次函数的表达式为( )B A .2y x =-+ B .2y x =+C .2y x =-D .2y x =--4、将直线y =2x 向右平移2个单位所得的直线的解析式是( )。
C A 、y =2x +2 B 、y =2x -2 C 、y =2(x -2) D 、y =2(x +2)5、如图,是一次函数y=kx+b 与反比例函数y=2x的图像,则关于x 的方程kx+b=2x的解为( )C (A)x l =1,x 2=2 (B)x l =-2,x 2=-1 (C)x l =1,x 2=-2 (D)x l =2,x 2=-16、已知一次函数y kx b =+的图象如图(6)所示,当1x <时,y 的取值范围是( )CA.20y -<< B.40y -<<C.2y <-D.4y <-7、一次函数1y kx b =+与2y x a =+的图象如图,则下列结论①0k <;②0a >;③当3x <时,12y y <中,正确的个数是( )B A .0B .1C .2D .3二、填空题1、若正比例函数kx y =(k ≠0)经过点(1-,2),则该正比例函数的解析式为=y ___________。
x 2-2、随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量3(g /m )y 与大气压强xyO32y x a =+1y kx b =+第7题图1Oxy图(6)2-4 xy Oxy A B1- y x =-2图2(kPa)x 成正比例函数关系.当36(kPa)x =时,3108(g /m )y =,请写出y 与x 的函数关系式3y x =3、如图,一次函数y ax b =+的图象经过A 、B 两点,则关于x 的不等式0ax b +<的解集是 . x <24、抛物线()2226y x =--的顶点为C ,已知3y kx =-+的图象经过点C ,则这个一次函数图象与两坐标轴所围成的三角形面积为 。
中考数学复习《一次函数》经典题型及测试题(含答案)命题点分类集训命题点1 一次函数的图象与性质【命题规律】1.考查内容:①一次函数所在象限;②一次函数(含正比例函数)解析式的确定;③一次函数的增减性与其系数之间的关系;④一次函数与方程(组)的关系;⑤一次函数与不等式的关系;⑥一次函数图象平移;⑦一次函数与几何图形结合.2.三大题型均有考查,但解答题的设题一般多与反比例函数结合(试题详见反比例函数).【命题预测】一次函数的图象与性质是命题的焦点与趋势,值得关注. 1. 一次函数y =-2x +3的图象不经过的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 1. C2.在直角坐标系中,点M ,N 在同一个正比例函数图象上的是( ) A. M (2,-3),N (-4,6) B. M (-2,3),N (4,6) C. M (-2,-3),N (4,-6) D. M (2,3),N (-4,6) 2. A3.若关于x 的一元二次方程x 2-2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的图象可能是( )3. B4.如图,直线y =ax +b 过点A (0,2)和点B (-3,0),则方程ax +b =0的解是( ) A. x =2 B. x =0 C. x =-1 D. x =-34. D 【解析】方程ax +b =0的解就是一元一次函数y =ax +b 的图象与x 轴交点的横坐标,即x =-3.5.设点A (a ,b )是正比例函数y =-32x 图象上的任意一点,则下列等式一定成立的是( )A.2a +3b =0B.2a -3b =0C.3a -2b =0D.3a +2b =05. D 【解析】把点A (a ,b )代入y =-32x ,得b =-32a ,即2b =-3a ,∴3a +2b =0.6.关于直线l :y =kx +k (k ≠0),下列说法不正确...的是( ) A. 点(0,k )在l 上 B. l 经过定点(-1,0)C. 当k >0,y 随x 的增大而增大D. l 经过第一、二、三象限6. D 【解析】逐项分析如下:选项 逐项分析正误 A点(0,k )在直线l 上,是直线与y 轴的交点√B 当x =-1时,函数值y =-k +k =0,所以直线l 经过定点(-1,0)√ C当k >0时,y 随x 的增大而增大√D直线l 经过第一、二、三象限仅仅当k 是正数时成立,当k 是负数时,函数图象经过二、三、四象限×7.一次函数y =43x -b 与y =43x -1的图象之间的距离等于3,则b 的值为( )A. -2或4B. 2或-4C. 4或-6D. -4或67. D 【解析】∵直线y =43x -1 与x 轴的交点A 的坐标为(34 ,0),与y 轴的交点C 的坐标为(0,-1),∴OA =34,OC =1,直线y =43x -b 与直线y =43x -1的距离为3,可分为两种情况:(1)如解图①,点B 的坐标为(0,-b ),则OB =-b ,BC =-b +1,易证△OAC ∽△DBC ,则OA DB =ACBC ,即343=12+(34)2-b +1,解得b =-4;(2)如解图②,点F 的坐标为(0,-b ),则CF =b -1,易证△OAC ∽△ECF ,则OA EC =ACCF ,即343=12+(34)2b -1,解得b =6,故b =-4或6.8.将直线y =2x +1向下平移3个单位长度后所得直线的解析式是____________.8. y =2x -2 【解析】根据直线的平移规律:上加下减,可得到平移后的解析式为y =2x +1-3=2x -2. 9.若函数y =(m -1)x |m |是正比例函数,则该函数的图象经过第________象限. 9. 二、四 【解析】∵函数y =(m -1)x |m|是正比例函数,则⎩⎪⎨⎪⎧|m|=1m -1≠0,∴m =-1.则这个正比例函数为y =-2x ,其图象经过第二、四象限.10.若一次函数y =-2x +b (b 为常数)的图象经过第二、三、四象限,则b 的值可以是________(写出一个即可).10. -1(答案不唯一,满足b <0即可) 【解析】∵一次函数y =-2x +b 的图象经过第二、三、四象限,∴b <0,故b 的值可以是-1.11.已知一次函数y =kx +2k +3的图象与y 轴的交点在y 轴的正半轴上,且函数值y 随x 的增大而减小,则k 所能取到的整数值为________.11. -1 【解析】∵一次函数图象与y 轴的交点在y 轴的正半轴上,∴2k +3>0,∴k>-1.5;又∵函数值y 随x 的增大而减小,∴k<0,则-1.5<k<0,∵k 取整数,∴k =-1.12.如图,过点A (2,0)的两条直线l 1,l 2分别交y 轴于点B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB =13. (1)求点B 的坐标;(2)若△ABC 的面积为4,求直线l 2的解析式. 12. 解:(1)∵点A 的坐标为(2,0),∴AO =2.在Rt △AOB 中,OA 2+OB 2=AB 2,即22+OB 2=(13)2, ∴OB =3, ∴B(0,3).(2)∵S △ABC =12BC·OA ,即4=12BC ×2,∴BC =4,∴OC =BC -OB =4-3=1, ∴C(0,-1).设直线l 2的解析式为y =kx +b(k ≠0), ∵直线l 2经过点A(2,0),C(0,-1),∴⎩⎪⎨⎪⎧0=2k +b -1=b, 解得⎩⎪⎨⎪⎧k =12b =-1.∴直线l 2的解析式为y =12x -1.命题点2 一次函数的实际应用【命题规律】1.考查内容:①结合一次函数图象分析实际问题;②结合表格考查一次函数的实际应用;③以阶梯费用问题为背景,考查分段函数;④根据文字中的变量列一次函数解决实际问题;⑤与方程不等式综合的一次函数实际问题.2.主要以解答题形式出题,设问以两问为主.【命题预测】一次函数的实际应用是全国命题趋势之一,一次函数图象分析题和一次函数与方程综合题是重点.13.为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S (米)与所用的时间t (秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第________秒.13. 120 【解析】从函数图象可知,小茜是正比例函数图象,小静是分段函数图象,小静第二段函数图象与小茜的函数图象的交点的横坐标便是她们第一次相遇的时间.可求出小茜的函数解析式为S =4t ,设小静第二段函数图象的解析式为S =kt +b ,把(60,360)和(150,540)代入得⎩⎪⎨⎪⎧60k +b =360150k +b =540,解得⎩⎪⎨⎪⎧k =2b =240,∴此段函数解析式为S =2t +240,解方程组⎩⎪⎨⎪⎧S =2t +240S =4t ,得⎩⎪⎨⎪⎧t =120S =480,故她们第一次相遇时间为起跑后第120秒.14.昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回.如图,是小明昨天出行的过程中,他距西安的距离y (千米)与他离家的时间x (时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB 所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家? 确定14. (1)【思路分析】利用待定系数法可求出函数解析式,再根据图象出自变量的取值范围.解:设线段AB 所表示的函数关系式为y =kx +b(k ≠0),则根据题意,得⎩⎪⎨⎪⎧b =1922k +b =0,解得⎩⎪⎨⎪⎧k =-96b =192, ∴线段AB 所表示的函数关系式为y =-96x +192(0≤x ≤2).(2)【思路分析】利用待定系数法求出线段CD 的解析式,令y =192,解方程即可求出小明到家的时间.解:由题意可知,下午3点时,x =8,y =112.设线段CD 所表示的函数关系式为y =k′x +b′(k′≠0),则根据题意,得⎩⎪⎨⎪⎧8k′+b′=1126.6k′+b′=0,解得⎩⎪⎨⎪⎧k′=80b′=-528.∴线段CD 的函数关系式为y =80x -528.∴当y =192时,80x -528=192,解得x =9. ∴他当天下午4点到家.15.根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8∶00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11∶30全部排完,游泳池内的水量Q (m 3)和开始排水后的时间t (h)之间的函数图象如图所示,根据图象解答下列问题: (1)暂停排水需要多少时间?排水孔的排水速度是多少? (2)当2≤t ≤3.5时,求Q 关于t 的函数表达式.15. 解:(1)暂停排水时间为30分钟(半小时);排水孔的排水速度为900÷(3.5-0.5)=300 (m 3/h ).(2)由图可知排水 1.5 h 后暂停排水,此时游泳池的水量为900-300×1.5=450 (m 3),设当2≤t ≤3.5时,Q 关于t 的函数表达式为Q =kt +b(k ≠0),把(2,450),(3.5,0)代入得⎩⎨⎧450=2k +b ,0=3.5k +b ,解得⎩⎪⎨⎪⎧b =1050k =-300.∴函数表达式为Q =-300t +1050.16.某校准备组织师生共60人,从南靖乘动车前往厦门参加夏令营活动,动车票价格如下表所示(教师按成人票价购买,学生按学生票价购买):若师生均购买二等座票,则共需1020元.(1)参加活动的教师有________人,学生有________人;(2)由于部分教师需提早前往做准备工作,这部分教师均购买一等座票,而后续前往的教师和学生均购买二等座票.设提早前往的教师有x 人,购买一、二等座票全部费用为y 元. ①求y 关于x 的函数关系式;②若购买一、二等座票全部费用不多于1032元,则提早前往的教师最多只能多少人?16. 解:(1)10,50;【解法提示】设有教师x 人,则有学生(60-x)人, 由题意列方程得: 22x +16(60-x)=1020, 解得x =10, ∴60-x =50(人),∴有教师10人,学生50人. (2)①由题意知:y =26x +22(10-x)+50×16 =26x +220-22x +800 =4x +1020; ②由题意得: 4x +1020≤1032, 解得x ≤3,∴提早前往的教师最多只能3人.中考冲刺集训一、选择题1.已知一次函数y =kx +5和y =k ′x +7,假设k >0且k ′<0,则这两个一次函数图象的交点在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限1. A 【解析】根据题意画出两个函数的图象,大致图象如解图所示,∴这两个一次函数图象的交点在第一象限.2.若k ≠0,b <0,则y =kx +b 的图象可能是( )2. B3.已知一次函数y =kx +b -x 的图象与x 轴的正半轴相交,且函数值y 随自变量x 的增大而增大,则k ,b 的取值情况为( )A. k >1,b <0B. k >1,b >0C. k >0,b >0D. k >0,b <03. A 【解析】原解析式可变形为y =(k -1)x +b ,∵函数值y 随自变量x 的增大而增大,∴k -1>0,∴k >1,∵图象与x 轴正半轴相交,∴b <0,即k >1,b <0.4.如图,一直线与两坐标轴的正半轴分别交于A 、B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( ) A. y =x +5 B. y =x +10 C. y =-x +5 D. y =-x +104. C 【解析】设P (x ,y ),则由题意得2(x +y )=10,∴x +y =5,∴过点P 的直线函数表达式为y =-x +5,故选C.5.若式子k -1+(k -1)0有意义,则一次函数y =(1-k )x +k -1的图象可能是( )5. C 【解析】式子k -1+(k -1)0有意义,则k >1,∴1-k <0,k -1>0,∴一次函数y =(1-k )x +k -1的图象经过第一、二、四象限.结合图象,故选C.6.在坐标平面上,某个一次函数的图象经过(5,0)、(10,-10)两点,则此函数图象还会经过下列哪点( ) A. (17,947) B. (18,958) C. (19,979) D. (110,9910)6. C 【解析】设该一次函数的解析式为y =kx +b (k ≠0),将点(5,0)、(10,-10)代入到y =kx +b 中得,⎩⎪⎨⎪⎧0=5k +b -10=10k +b ,解得⎩⎪⎨⎪⎧k =-2b =10,∴该一次函数的解析式为y =-2x +10.A.y =-2×17+10=957≠947,该点不在直线上;B.y =-2×18+10=934≠958,该点不在直线上;C.y =-2×19+10=979,该点在直线上;D.y =-2×110+10=945≠9910,该点不在直线上.二、填空题7.将正比例函数y =2x 的图象向上平移3个单位,所得的直线不经过第________象限.7. 四 【解析】根据平移规律“上加下减,左加右减”,将直线y =2x 向上平移3个单位,得到的直线解析式为y =2x +3,因为2>0,3>0,所以图象过第一、第二和第三象限,故不经过第四象限. 8.已知二元一次方程组⎩⎪⎨⎪⎧x -y =-5x +2y =-2的解为⎩⎪⎨⎪⎧x =-4y =1,则在同一平面直角坐标系中,直线l 1:y =x +5与直线l 2:y =-12x -1的交点坐标为________.8. (-4,1) 【解析】二元一次方程x -y =-5对应一次函数y =x +5,即直线l 1;二元一次方程x +2y =-2对应一次函数y =-12x -1,即直线l 2.∴原方程组的解即是直线l 1与l 2的交点坐标,∴交点坐标为(-4,1).9.如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于x 的不等式x +b >kx +6的解集是________. 9. x >3 【解析】由题可知,当x =3时,x +b =kx +6,在点P 左边即x <3时,x +b <kx +6,在点P 右边即x >3时,x +b >kx +6,故答案为x >3.10.如图,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0),将△ABC 沿x 轴向右平移,当C 点落在直线y =2x -6上时,线段BC 扫过的区域面积为________.10. 16 【解析】平移后如解图所示.∵点A 、B 的坐标分别为(1,0)、(4,0),∴AB =3,∵∠CAB =90°,BC =5,∴AC =4,∴A ′C ′=4,∵点C′在直线y =2x -6上,∴2x -6=4,解得x =5,即OA′=5,∴CC ′=5-1=4,∴S ▱BCC ′B ′=4×4=16,即线段BC 扫过的面积为16. 三、解答题11.为保障我国海外维和部队官兵的生活,现需通过A 港口、B 港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨.若从甲、乙两仓库运送物资到港口的费用(元/吨)如下表所示.(1)设从甲仓库运送到A 港口的物资为x 吨,求总费用y (元)与x (吨)之间的函数关系式,并写出x 的取值范围;(2)求出最低费用,并说明总费用最低时的调配方案.港口 费用(元/吨)甲库 乙库 A 港 14 20 B 港10811. 解:(1)∵从甲仓库运往A 港口的物资为x 吨, ∴从甲仓库运往B 港口的物资为(80-x)吨, ∴从乙仓库运往A 港口的物资为(100-x)吨,∴乙仓库运往B 港口的物资为70-(100-x)=(x -30)吨, ∴y =14x +10(80-x)+20(100-x)+8(x -30) =-8x +2560,∵80-x ≥0,x -30≥0,100-x ≥0∴30≤x ≤80.(2)由(1)知,y =-8x +2560, ∵k =-8<0,∴y 随x 的增大而减小,∴当x =80时,y 最小,最小值为1920元.此时的调配方案是,将甲仓库所有物资运往A 港口,乙仓库的20吨货物运往A 港口,50吨货物运往B 港口.12.某物流公司引进A 、B 两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A 种机器人于某日0时开始搬运,过了1小时,B 种机器人也开始搬运.如图,线段OG 表示A 种机器人的搬运量y A (千克)与时间x (时)的函数图象,线段EF 表示B 种机器人的搬运量y B (千克)与时间x (时)的函数图象.根据图象提供的信息,解答下列问题: (1)求y B 关于x 的函数解析式;(2)如果A 、B 两种机器人各连续搬运5个小时,那么B 种机器人比A 种机器人多搬运了多少千克?12. 解:(1)设y B 关于x 的解析式为y B =k 1x +b(k 1≠0),把E(1,0)和P(3,180)代入y B =k 1x +b 中,得:⎩⎪⎨⎪⎧k 1+b =03k 1+b =180, 解得⎩⎪⎨⎪⎧k 1=90b =-90,∴y B 关于x 的解析式为y B =90x -90.(2)设y A 关于x 的解析式为y A =k 2x(k 2≠0),由题意得: 180=3k 2,即k 2=60, ∴y A =60x ,当x =5时,y A =5×60=300(千克), 当x =6时,y B =90×6-90=450(千克)450-300=150(千克).答:如果A 、B 两种机器人各连续搬运5小时,那么B 种机器人比A 种机器人多搬运了150千克.13.下图中的折线ABC 表示某汽车的耗油量y (单位:L/km)与速度x (单位:km/h)之间的函数关系(30≤x ≤120).已知线段BC 表示的函数关系中,该汽车的速度每增加1 km/h ,耗油量增加0.002 L/km. (1)当速度为50 km/h 、100 km/h 时,该汽车的耗油量分别为________L/km 、________L/km ; (2)求线段AB 所表示的y 与x 之间的函数表达式; (3)速度是多少时,该汽车的耗油量最低?最低是多少?13. 解:(1)0.13,0.14.【解法提示】x 轴表示速度,从30到60之间为40,50,对应的y 轴汽车耗油的量由0.15到0.12,列表如下:速度(km /h ) 30 40 50 60 耗油量(L /km )0.150.140.130.12∴当速度为50 km /h 时,该汽车耗油量为0.13 L /km ,当速度为100 km /h 时,该汽车耗油量为 0.12+0.002×(100-90)=0.14 L /km .(2)设线段AB 所表示的y 与x 之间的函数表达式为y =kx +b(k ≠0), ∵y =kx +b 的图象过点(30,0.15)与(60,0.12),∴⎩⎪⎨⎪⎧30k +b =0.1560k +b =0.12, 解得⎩⎪⎨⎪⎧k =-0.001b =0.18.∴线段AB 所表示的y 与x 之间的函数表达式为y =-0.001x +0.18. (3)根据题意,得线段BC 所表示的y 与x 之间的函数表达式为y =0.12+0.002(x -90)=0.002x -0.06, 由图象可知,B 是折线ABC 的最低点,也是AB 与BC 的交点,解方程组⎩⎪⎨⎪⎧y =-0.001x +0.18y =0.002x -0.06,得⎩⎪⎨⎪⎧x =80y =0.1. 因此,速度是80km /h 时,该汽车的耗油量最低,最低是0.1 L /km .11。
内蒙古呼伦贝尔市、兴安盟2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.一次函数的应用(共3小题)1.(2023•内蒙古)端午节吃粽子是中华民族的传统习俗.市场上豆沙粽礼盒的进价比肉粽礼盒的进价每盒便宜10元,某商家用2500元购进的肉粽和用2000元购进的豆沙粽盒数相同.(1)求每盒肉粽和每盒豆沙粽的进价;(2)商家计划只购买豆沙粽礼盒销售,经调查了解到有A,B两个厂家可供选择,两个厂家针对价格相同的豆沙粽礼盒给出了不同的优惠方案:A厂家:一律打8折出售.B厂家:若一次性购买礼盒数量超过25盒,超过的部分打7折.该商家计划购买豆沙粽礼盒x盒,设去A厂家购买应付y1元,去B厂家购买应付y2元,其函数图象如图所示:①分别求出y1,y2与x之间的函数关系;②若该商家只在一个厂家购买,怎样买划算?2.(2022•内蒙古)某商店决定购进A、B两种北京冬奥会纪念品.若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品的单价;(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑市场需求,要求购进A 种纪念品的数量不少于B种纪念品数量的6倍,且购进B种纪念品数量不少于20件,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?求出最大利润.3.(2021•兴安盟)移动公司推出A,B,C三种套餐,收费方式如表:套餐月保底费(元)包通话时间(分钟)超时费(元/分钟)A381200.1B C118不限时设月通话时间为x分钟,A套餐,B套餐的收费金额分别为y1元,y2元.其中B套餐的收费金额y2元与通话时间x分钟的函数关系如图所示.(1)结合表格信息,求y1与x的函数关系式,并写出自变量的取值范围;(2)结合图象信息补全表格中B套餐的数据;(3)选择哪种套餐所需费用最少?说明理由.二.二次函数综合题(共3小题)4.(2023•内蒙古)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴的交点分别为A和B(1,0)(点A在点B的左侧),与y轴交于点C(0,3),点P是直线AC上方抛物线上一动点.(1)求抛物线的解析式;(2)如图1,过点P做x轴平行线交AC于点E,过点P做y轴平行线交x轴于点D,求PE+PD的最大值及点P的坐标;(3)如图2,设点M为抛物线对称轴上一动点,当点P,点M运动时,在坐标轴上确定点N,使四边形PMCN为矩形,求出所有符合条件的点N的坐标.5.(2022•内蒙古)如图,抛物线y=ax2+x+c经过B(3,0),D(﹣2,﹣)两点,与x 轴的另一个交点为A,与y轴相交于点C.(1)求抛物线的解析式和点C的坐标;(2)若点M在直线BC上方的抛物线上运动(与点B,C不重合),求使△MBC面积最大时M点的坐标,并求最大面积;(请在图1中探索)(3)设点Q在y轴上,点P在抛物线上,要使以点A,B,P,Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)6.(2021•兴安盟)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于点A(,)和点B(4,m).抛物线与x轴的交点分别为H、K(点H在点K的左侧).点F在线段AB 上运动(不与点A、B重合),过点F作直线FC⊥x轴于点P,交抛物线于点C.(1)求抛物线的解析式;(2)如图1,连接AC,是否存在点F,使△FAC是直角三角形?若存在,求出点F的坐标;若不存在,说明理由;(3)如图2,过点C作CE⊥AB于点E,当△CEF的周长最大时,过点F作任意直线l,把△CEF沿直线l翻折180°,翻折后点C的对应点记为点Q,求出当△CEF的周长最大时,点F的坐标,并直接写出翻折过程中线段KQ的最大值和最小值.三.平行四边形的判定与性质(共1小题)7.(2022•内蒙古)如图,在平行四边形ABCD中,点O是AD的中点,连接BO并延长交CD 的延长线于点E,连接BD,AE.(1)求证:四边形ABDE是平行四边形;(2)若BD=CD,判断四边形ABDE的形状,并说明理由.四.圆心角、弧、弦的关系(共1小题)8.(2021•兴安盟)如图,AB是⊙O的直径,==2,连接AC、CD、AD.CD交AB 于点F,过点B作⊙O的切线BM交AD的延长线于点E.(1)求证:AC=CD;(2)连接OE,若DE=2,求OE的长.五.相似形综合题(共1小题)9.(2023•内蒙古)已知正方形ABCD,E是对角线AC上一点.(1)如图1,连接BE,DE.求证:△ABE≌△ADE;(2)如图2,F是DE延长线上一点,DF交AB于点G,BF⊥BE.判断△FBG的形状并说明理由;(3)在第(2)题的条件下,BE=BF=2.求的值.六.解直角三角形的应用-仰角俯角问题(共2小题)10.(2023•内蒙古)某数学兴趣小组借助无人机测量一条河流的宽度CD.如图所示,一架水平飞行的无人机在A处测得河流左岸C处的俯角为α,无人机沿水平线AF方向继续飞行12米至B处,测得河流右岸D处的俯角为30°,线段AM=24米为无人机距地面的铅直高度,点M,C,D在同一条直线上,其中tanα=2.求河流的宽度CD(结果精确到1米,参考数据:≈1.7).11.(2022•内蒙古)在一次综合实践活动中,某小组对一建筑物进行测量.如图,在山坡坡脚C处测得该建筑物顶端B的仰角为60°,沿山坡向上走20m到达D处,测得建筑物顶端B的仰角为30°.已知山坡坡度i=3:4,即tanθ=,请你帮助该小组计算建筑物的高度AB.(结果精确到0.1m,参考数据:≈1.732)七.频数(率)分布直方图(共2小题)12.(2023•内蒙古)为了激发学生的航天兴趣,某校举行了太空科普知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分为如下5组,A组:75≤x<80,B组:80≤x<85,C组:85≤x<90,D组:90≤x<95,E组:95≤x≤100,并绘制了如图不完整的统计图表.请结合统计图表,解答如下问题:(1)本次调查的样本容量为 ,学生成绩统计表中m= ;(2)所抽取学生成绩的中位数落在 组;(3)求出扇形统计图中“E”所在扇形的圆心角度数;(4)若成绩在90分及以上为优秀,学校共有2000名学生,估计该校成绩优秀的学生有多少名?学生成绩统计表组别成绩x频数A75≤x<8020B80≤x<85mC85≤x<90144D90≤x<9545E95≤x≤100n13.(2021•兴安盟)某校九年级在“停课不停学”期间,为促进学生身体健康,布置了“云健身”任务.为了解学生完成情况,体育教师随机抽取一班与二班各10名学生进行网上视频跳绳测试,他的测试结果与分析过程如下:(1)收集数据:两班学生每分钟跳绳个数分别记录如下(二班一个数据不小心被墨水遮盖):一班:100 94 86 86 84 94 76 69 59 94二班:99 96 82 96 79 65 96 55 96(2)整理、描述数据:根据上面得到的两组数据,分别绘制了频数分布直方图如图;(3)分析数据:两组样本数据的平均数、众数、中位数、方差如表所示:班级平均数众数中位数方差一班①9486147.76二班83.796②215.21根据以上数据填出表格中①、②两处的数据并补全二班的频数分布直方图;(4)得出结论:根据以上信息,判断哪班完成情况较好?说明理由(至少从两个不同角度说明判断的合理性).八.列表法与树状图法(共1小题)14.(2021•兴安盟)一个不透明的口袋中装有四个完全相同的小球,上面分别标有数字﹣2,0.3,,0.(1)从口袋中随机摸出一个小球,求摸出的小球上的数字是分数的概率(直接写出结果);(2)从口袋中一次随机摸出两个小球,摸出的小球上的数字分别记作x、y,请用列表法(或树状图)求点(x,y)在第四象限的概率.内蒙古呼伦贝尔市、兴安盟2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.一次函数的应用(共3小题)1.(2023•内蒙古)端午节吃粽子是中华民族的传统习俗.市场上豆沙粽礼盒的进价比肉粽礼盒的进价每盒便宜10元,某商家用2500元购进的肉粽和用2000元购进的豆沙粽盒数相同.(1)求每盒肉粽和每盒豆沙粽的进价;(2)商家计划只购买豆沙粽礼盒销售,经调查了解到有A,B两个厂家可供选择,两个厂家针对价格相同的豆沙粽礼盒给出了不同的优惠方案:A厂家:一律打8折出售.B厂家:若一次性购买礼盒数量超过25盒,超过的部分打7折.该商家计划购买豆沙粽礼盒x盒,设去A厂家购买应付y1元,去B厂家购买应付y2元,其函数图象如图所示:①分别求出y1,y2与x之间的函数关系;②若该商家只在一个厂家购买,怎样买划算?【答案】(1)50,40元;(2)①y1=32x,y2=;②该商家购买豆沙粽礼盒的数量若少于75盒,从A厂家购买比较划算;若等于75盒,从A和B两个厂家任选一家即可;若超过75盒,从B厂家购买比较划算.【解答】解:(1)设每盒肉粽和每盒豆沙粽的进价分别为x元和y元.根据题意,得,解得.∴每盒肉粽和每盒豆沙粽的进价分别为50元40元.(2)①根据题意,得:y1=0.8×40x=32x;当x≤25时,y2=40x;当x>25时,y2=25×40+0.7×40(x﹣25)=28x+300.综上,y1=32x;y2=.②设y1和y2两函数图象交点的横坐标为x,则32x=28x+300,解得x=75.根据函数图象可知:当x<75时,y1<y2;当x=75时,y1=y2;当x>75时,y2<y1.∴该商家购买豆沙粽礼盒的数量若少于75盒,从A厂家购买比较划算;若等于75盒,从A和B两个厂家任选一家即可;若超过75盒,从B厂家购买比较划算.2.(2022•内蒙古)某商店决定购进A、B两种北京冬奥会纪念品.若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品的单价;(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑市场需求,要求购进A 种纪念品的数量不少于B种纪念品数量的6倍,且购进B种纪念品数量不少于20件,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?求出最大利润.【答案】见试题解答内容【解答】解:(1)设该商店购进A种纪念品每件需a元,购进B种纪念品每件需b元,由题意,得,解得,∴该商店购进A种纪念品每件需50元,购进B种纪念品每件需100元;(2)设该商店购进A种纪念品x个,购进B种纪念品y个,根据题意,得50x+100y=10000,由50x+100y=10000得x=200﹣2y,把x=200﹣2y代入x≥6y,解得y≤25,∵y≥20,∴20≤y≤25且为正整数,∴y可取得的正整数值是20,21,22,23,24,25,与y相对应的x可取得的正整数值是160,158,156,154,152,150,∴共有6种进货方案;(3)设总利润为W元,则W=20x+30y=﹣10y+4000,∵﹣10<0,∴W随y的增大而减小,∴当y=20时,W有最大值,W最大=﹣10×20+4000=3800(元),∴当购进A种纪念品160件,B种纪念品20件时,可获得最大利润,最大利润是3800元.3.(2021•兴安盟)移动公司推出A,B,C三种套餐,收费方式如表:套餐月保底费(元)包通话时间(分钟)超时费(元/分钟)A381200.1B 58 360 0.1 C118不限时设月通话时间为x分钟,A套餐,B套餐的收费金额分别为y1元,y2元.其中B套餐的收费金额y2元与通话时间x分钟的函数关系如图所示.(1)结合表格信息,求y1与x的函数关系式,并写出自变量的取值范围;(2)结合图象信息补全表格中B套餐的数据;(3)选择哪种套餐所需费用最少?说明理由.【答案】(1);(2)58,360,0.1;(3)当0≤x≤320 时,A套餐所需费用最少;当320<x≤960时,B套餐所需费用最少;当x>960 时,C套餐所需费用最少.【解答】解:(1)当0≤x≤120 时,y1=38;当x>120时,y1=38+0.1(x﹣120)=0.1x+26,∴;(2)由图象可知,当月保底费为58元;包通话时间360分钟;超时费:(70﹣58)÷(480﹣360)=0.1(元),故答案为:58,360,0.1;(3)当x>360时,设:y2=kx+b,又∵图象过点(360,58),(480,70)两点,∴,解得,∴y2=0.1x+22;∴;当y1=58,0.1x+26=58,解得x=320,∴当x=320 时,A、B套餐所需费用一样多,都比C套餐花费少;当0≤x<320 时,A套餐所需费用最少.当y2=118时,0.1x+22=118,解得x=960,当x=960 时,B、C套餐所需费用一样多,都比A套餐花费少;当320<x<960时,B套餐所需费用最少.当x>960 时,C套餐所需费用最少,综上所述:当0≤x≤320 时,A套餐所需费用最少;当320<x≤960时,B套餐所需费用最少;当x>960 时,C套餐所需费用最少.二.二次函数综合题(共3小题)4.(2023•内蒙古)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴的交点分别为A和B(1,0)(点A在点B的左侧),与y轴交于点C(0,3),点P是直线AC上方抛物线上一动点.(1)求抛物线的解析式;(2)如图1,过点P做x轴平行线交AC于点E,过点P做y轴平行线交x轴于点D,求PE+PD的最大值及点P的坐标;(3)如图2,设点M为抛物线对称轴上一动点,当点P,点M运动时,在坐标轴上确定点N,使四边形PMCN为矩形,求出所有符合条件的点N的坐标.【答案】(1)y=﹣x2﹣2x+3;(2)PD+PE取最大值,P(﹣,);(3)N点坐标为(0,4).【解答】解:(1)把B(1,0),C(0,3)代入y=﹣x2+bx+c得:,解得,∴抛物线的解析式为y=﹣x2﹣2x+3;(2)在y=﹣x2﹣2x+3中,令y=0得0=﹣x2﹣2x+3,解得x=﹣3或x=1,∴A(﹣3,0),由A(﹣3,0),C(0,3)得直线AC解析式为y=x+3,设P(t,﹣t2﹣2t+3),则D(t,0),E(﹣t2﹣2t,﹣t2﹣2t+3),∴PD+PE=﹣t2﹣2t+3+(﹣t2﹣2t)﹣t=﹣2t2﹣5t+3=﹣2(t+)2+,∵﹣2<0,∴当t=﹣时,PD+PE取最大值,此时P(﹣,);(3)设M(﹣1,m),P(t,﹣t2﹣2t+3),设PC的中点为K(t,﹣t2﹣t+3),∵N点、M点的中点为K,∴N(t+1,﹣t2﹣2t+6﹣m),∵N点在坐标轴上,∴t+1=0或﹣t2﹣2t+6﹣m=0,当t=﹣1时,此时PM∥y轴,∵四边形PMCN是矩形,∴PM⊥MC,∴M(﹣1,3),∴N(0,4);当m=t2+2t﹣6=(t+1)2﹣7时,∵P点在直线AC上方,∴﹣3<t<0,∴﹣7≤m<﹣3,当P点与A点重合时,m=,∴m>,∴此时M点不存在,综上所述:N点坐标为(0,4).5.(2022•内蒙古)如图,抛物线y=ax2+x+c经过B(3,0),D(﹣2,﹣)两点,与x 轴的另一个交点为A,与y轴相交于点C.(1)求抛物线的解析式和点C的坐标;(2)若点M在直线BC上方的抛物线上运动(与点B,C不重合),求使△MBC面积最大时M点的坐标,并求最大面积;(请在图1中探索)(3)设点Q在y轴上,点P在抛物线上,要使以点A,B,P,Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)【答案】(1)y=﹣x2+x+,C(0,);(2)△MBC的面积有最大值,M(,);(3)(2,)或(﹣4,﹣)或(4,﹣).【解答】解:(1)将B(3,0),D(﹣2,﹣)代入y=ax2+x+c,∴,解得,∴y=﹣x2+x+,令x=0,则y=,∴C(0,);(2)作直线BC,过M点作MN∥y轴交BC于点N,设直线BC的解析式为y=kx+b,∴,解得,∴y=﹣x+设M(m,﹣m2+m+),则N(m,﹣m+),∴MN=﹣m2+m,∴S△MBC=•MN•OB=﹣(m﹣)2+,当m=时,△MBC的面积有最大值,此时M(,);(3)令y=0,则﹣x2+x+=0,解得x=3或x=﹣1,∴A(﹣1,0),设Q(0,t),P(m,﹣m2+m+),①当AB为平行四边形的对角线时,m=3﹣1=2,∴P(2,);②当AQ为平行四边形的对角线时,3+m=﹣1,解得m=﹣4,∴P(﹣4,﹣);③当AP为平行四边形的对角线时,m﹣1=3,解得m=4,∴P(4,﹣);综上所述:P点坐标为(2,)或(﹣4,﹣)或(4,﹣).6.(2021•兴安盟)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于点A(,)和点B(4,m).抛物线与x轴的交点分别为H、K(点H在点K的左侧).点F在线段AB 上运动(不与点A、B重合),过点F作直线FC⊥x轴于点P,交抛物线于点C.(1)求抛物线的解析式;(2)如图1,连接AC,是否存在点F,使△FAC是直角三角形?若存在,求出点F的坐标;若不存在,说明理由;(3)如图2,过点C作CE⊥AB于点E,当△CEF的周长最大时,过点F作任意直线l,把△CEF沿直线l翻折180°,翻折后点C的对应点记为点Q,求出当△CEF的周长最大时,点F的坐标,并直接写出翻折过程中线段KQ的最大值和最小值.【答案】(1);(2)存在点F(3,5)或(,);(3)当时,CF最大即△FEC的周长最大,此时F点坐标为,折叠过程中,KQ的最大值为,KQ的最小值为.【解答】解:(1)∵直线y=x+2过点B(4,m),∴m=4+2,解得m=6,∴B(4,6),把点A和B代入抛物线的解析式,得:,解得,∴抛物线的解析式为;(2)存在点F,使△FAC为直角三角形,设F(n,n+2),直线AB与x轴交于M,则M(﹣2,0),直线AB与y轴交于点N,则N(0,2),∵FC∥y轴,∴C(n,2n2﹣8n+6),∵直线y=x+2与x轴的交点为M(﹣2,0),与y轴交点为N(0,2),∴OM=ON=2,∴∠ONM=45°,∵FC∥y轴,∴∠AFC=∠ONM=45°,若△FAC为直角三角形,则分两种情况讨论:(i)若点A为直角顶点,即∠FAC=90°,过点A作AD⊥FC于点D,在Rt△FAC中,∵∠AFC=45°,∴AF=AC,∴DF=DC,∴AD=FC,∵n=,化简得:2n2﹣7n+3=0,解得:n1=3,(与A重合舍去),∴F(3,5),(ii)若点C为直角顶点,即∠FCA=90°,则AC∥x轴,在Rt△FAC中,∵∠AFC=45°,∴AC=CF,∴n=(n+2)﹣(2n2﹣8n+6,化简得:4n2﹣16n+7=0,解得:,(舍去),∴F(,),综上所述:存在点F(3,5)或(,),使△FAC为直角三角形;(3)设F(c,c+2),∵FC∥y轴,∴C(c,2c2﹣8c+6),在Rt△FEC中,∵∠AFC=45∴EF=EC=CF•sin∠AFC=,∴当CF最大时,△FEC的周长最大,∵CF=(c+2)﹣(2c2﹣8c+6)=﹣2c2+9c﹣4=,又∵﹣2<0,∴当时,CF最大即△FEC的周长最大,此时F点坐标为,折叠过程中,当K,F,Q共线,且K和Q在F两侧时,KQ的最大,K和Q在F同侧时,KQ的最小,∵CF=,由(1)知点K的坐标为(3,0),∴KF=,∴KQ的最大值为CF+KF=,KQ的最小值为CF﹣KF=.三.平行四边形的判定与性质(共1小题)7.(2022•内蒙古)如图,在平行四边形ABCD中,点O是AD的中点,连接BO并延长交CD 的延长线于点E,连接BD,AE.(1)求证:四边形ABDE是平行四边形;(2)若BD=CD,判断四边形ABDE的形状,并说明理由.【答案】(1)证明见解析;(2)菱形,理由见解析.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABO=∠DEO,∵点O是边AD的中点,∴AO=DO,在△ABO和△DEO中,,∴△ABO≌△DEO(AAS),∴OB=OE,∴四边形ABDE是平行四边形;(2)解:四边形ABDE是菱形,理由如下:∵四边形ABCD是平行四边形,∴AB=CD,∵BD=CD,∴AB=BD,∵四边形ABDE是平行四边形,∴平行四边形ABDE是菱形.四.圆心角、弧、弦的关系(共1小题)8.(2021•兴安盟)如图,AB是⊙O的直径,==2,连接AC、CD、AD.CD交AB于点F,过点B作⊙O的切线BM交AD的延长线于点E.(1)求证:AC=CD;(2)连接OE,若DE=2,求OE的长.【答案】(1)见解析;(2)2.【解答】证明:(1)∵==2,∴AD=CD,B是CD的中点,∵AB是直径,∴AD=AC,∴AC=CD;(2)如图,连接BD,∵AD=DC=AC,∴∠ADC=∠DAC=60°,∵CD⊥AB,∴∠DAB=∠DAC=30°,∵BM切⊙O于点B,AB是直径,∴BM⊥AB,∵CD⊥AB,∴BM∥CD,∴∠AEB=∠ADC=60°,∵AB是直径,∴∠ADB=90°,在Rt△BDE中,∵∠DBE=90°﹣∠DEB=30°,∴BE=2DE=4,∴BD===2,在Rt△BDA中,∵∠DAB=30°,∴AB=2BD=4,∴OB=AB=2,在Rt△OBE中,OE===2.五.相似形综合题(共1小题)9.(2023•内蒙古)已知正方形ABCD,E是对角线AC上一点.(1)如图1,连接BE,DE.求证:△ABE≌△ADE;(2)如图2,F是DE延长线上一点,DF交AB于点G,BF⊥BE.判断△FBG的形状并说明理由;(3)在第(2)题的条件下,BE=BF=2.求的值.【答案】(1)证明见解答;(2)△FBG是等腰三角形,理由见解答;(3)的值为﹣1.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD=CB=CD,∠ABC=∠ADC=90°,∴∠BAC=∠BCA=∠DAC=∠DCA=45°,在△ABE和△ADE中,,∴△ABE≌△ADE(SAS).(2)解:△FBG是等腰三角形,理由如下:∵△ABE≌△ADE,∴∠ABE=∠ADE,∴∠ABC﹣∠ABE=∠ADC﹣∠ADE,∴∠EBC=∠EDC,∵AB∥CD,∴∠FGB=∠EDC,∴∠FGB=∠EBC,∵BF⊥BE,∴∠FBE=90°,∴∠FBG=∠EBC=90°﹣∠ABE,∴∠FGB=∠FBG,∴BF=GF,∴△FBG是等腰三角形.(3)解:∵BE=BF=2,∠FBE=90°,∴∠F=∠BEF=45°,∴∠BAC=∠F,∴∠AEG=∠AGF﹣∠BAC=∠AGF﹣∠F=∠FBG,∵∠AGE=∠FGB,且∠FGB=∠FBG,∴∠AGE=∠AEG,∴AE=AG,∵EF===2,BF=GF=2,∴GE=EF﹣GF=2﹣2,∵△ABE≌△ADE,∴BE=DE=2,∵AG∥CD,∴△AGE∽△CDE,∴===﹣1,∴=﹣1,∴的值为﹣1.六.解直角三角形的应用-仰角俯角问题(共2小题)10.(2023•内蒙古)某数学兴趣小组借助无人机测量一条河流的宽度CD.如图所示,一架水平飞行的无人机在A处测得河流左岸C处的俯角为α,无人机沿水平线AF方向继续飞行12米至B处,测得河流右岸D处的俯角为30°,线段AM=24米为无人机距地面的铅直高度,点M,C,D在同一条直线上,其中tanα=2.求河流的宽度CD(结果精确到1米,参考数据:≈1.7).【答案】64米.【解答】解:过点B作BE⊥MD于点E.则四边形AMEB是矩形.∴BE=AM=24,ME=AB=12米,∵AF∥MD,∴∠ACM=α.在Rt△AMC中,∠AMC=90°,∴tanα==2,∴=2,∴MC=12米,在Rt△BDE中,∠BED=90°,∠DBE=90°﹣30°=60°,∴tan∠DBE=,∴tan60°==,∴DE=24=72(米),CD=DE﹣CE=DE﹣(MC﹣ME)=72﹣(12﹣12)=84﹣12≈84﹣12×1.7=84﹣20.4=64(米).答:河流的宽度CD约为64米.11.(2022•内蒙古)在一次综合实践活动中,某小组对一建筑物进行测量.如图,在山坡坡脚C处测得该建筑物顶端B的仰角为60°,沿山坡向上走20m到达D处,测得建筑物顶端B的仰角为30°.已知山坡坡度i=3:4,即tanθ=,请你帮助该小组计算建筑物的高度AB.(结果精确到0.1m,参考数据:≈1.732)【答案】建筑物的高度AB约为31.9米.【解答】解:过点D作DE⊥AC,垂足为E,过点D作DF⊥AB,垂足为F,则DE=AF,DF=AE,在Rt△DEC中,tanθ==,设DE=3x米,则CE=4x米,∵DE2+CE2=DC2,∴(3x)2+(4x)2=400,∴x=4或x=﹣4(舍去),∴DE=AF=12米,CE=16米,设BF=y米,∴AB=BF+AF=(12+y)米,在Rt△DBF中,∠BDF=30°,∴DF===y(米),∴AE=DF=y米,∴AC=AE﹣CE=(y﹣16)米,在Rt△ABC中,∠ACB=60°,∴tan60°===,解得:y=6+8,经检验:y=6+8是原方程的根,∴AB=BF+AF=18+8≈31.9(米),∴建筑物的高度AB约为31.9米.七.频数(率)分布直方图(共2小题)12.(2023•内蒙古)为了激发学生的航天兴趣,某校举行了太空科普知识竞赛,竞赛结束后随机抽取了部分学生成绩进行统计,按成绩分为如下5组,A组:75≤x<80,B组:80≤x<85,C组:85≤x<90,D组:90≤x<95,E组:95≤x≤100,并绘制了如图不完整的统计图表.请结合统计图表,解答如下问题:(1)本次调查的样本容量为 400 ,学生成绩统计表中m= 176 ;(2)所抽取学生成绩的中位数落在 C 组;(3)求出扇形统计图中“E”所在扇形的圆心角度数;(4)若成绩在90分及以上为优秀,学校共有2000名学生,估计该校成绩优秀的学生有多少名?学生成绩统计表组别成绩x频数A75≤x<8020B80≤x<85mC85≤x<90144D90≤x<9545E95≤x≤100n【答案】(1)400,176;(2)C;(3)13.5°;(4)300名.【解答】解:(1)本次调查的样本容量为144÷36%=400(人),学生成绩统计表中m=400×44%=176,故答案为:400,176;(2)∵B组的人数为176人,∴所抽取学生成绩的中位数是第200个和第201个成绩的平均数,A,B组的人数和为:20+176=196,C组人数为144,∴所抽取学生成绩的中位数落在C组;故答案为:C;(3)∵n=400﹣20﹣176﹣144﹣45=15,∴360°×=13.5°,答:扇形统计图中“E”所在扇形的圆心角度数13.5°;(4)2000×=300(名).答:估计该校成绩优秀的学生有300名.13.(2021•兴安盟)某校九年级在“停课不停学”期间,为促进学生身体健康,布置了“云健身”任务.为了解学生完成情况,体育教师随机抽取一班与二班各10名学生进行网上视频跳绳测试,他的测试结果与分析过程如下:(1)收集数据:两班学生每分钟跳绳个数分别记录如下(二班一个数据不小心被墨水遮盖):一班:100 94 86 86 84 94 76 69 59 94二班:99 96 82 96 79 65 96 55 96(2)整理、描述数据:根据上面得到的两组数据,分别绘制了频数分布直方图如图;(3)分析数据:两组样本数据的平均数、众数、中位数、方差如表所示:班级平均数众数中位数方差一班①9486147.76二班83.796②215.21根据以上数据填出表格中①、②两处的数据并补全二班的频数分布直方图;(4)得出结论:根据以上信息,判断哪班完成情况较好?说明理由(至少从两个不同角度说明判断的合理性).【答案】(3)84.2,89,补全的二班的频数分布直方图见解答;(4)一班完成情况较好,理由见解答.【解答】解:(3)表格中①对应的数据为:=84.2,由(1)中二班的数据和(2)中二班对应的频数分布直方图可得,表格中②对应的数据是(82+96)÷2=89,由二班的平均数是83.7可得,被墨水遮盖的数据是:83.7×10﹣(99+96+82+96+79+65+96+55+96)=837﹣764=73,则二班60~70对应的频数是1,70~80对应的频数是2,补全的频数分布直方图如图所示;(4)一班完成情况较好,理由:一班的平均数高于二班,说明一班的成绩好于二班;一班的方差小于二班,说明一班的同学成绩波动小,大部分同学都在参加锻炼,故一班的完成情况好.八.列表法与树状图法(共1小题)14.(2021•兴安盟)一个不透明的口袋中装有四个完全相同的小球,上面分别标有数字﹣2,0.3,,0.(1)从口袋中随机摸出一个小球,求摸出的小球上的数字是分数的概率(直接写出结果);(2)从口袋中一次随机摸出两个小球,摸出的小球上的数字分别记作x 、y ,请用列表法(或树状图)求点(x ,y )在第四象限的概率.【答案】(1);(2).【解答】解:(1)P (分数)==;(2)列表得;﹣20.30﹣2(0.3,﹣2)(,﹣2)(0,﹣2)0.3(﹣2,0.3)(,0.3)(0,0.3)(﹣2,)(0.3,)(0,)0(﹣2,0)(0.3,0)(,0)共出现12种等可能结果,其中点在第四象限的有2种(0.3,﹣2)、(0.3,),∴P (第四象限)=.。
ɦ5.3㊀与一次函数有关的综合题㊀能综合运用一次函数以及前面的数㊁式㊁方程㊁不等式知识解决问题.1.(2012 福建漳州)某校为实施国家 营养早餐 工程,食堂用甲㊁乙两种原料配制成某种营养食品,已知这两种原料的维生素C 含量及购买这两种原料的价格如下表:原料维生素C 及价格甲种原料乙种原料维生素C (单位/千克)600400原料价格(元/千克)95现要配制这种营养食品20千克,要求每千克至少含有480单位的维生素C .设购买甲种原料x 千克.(1)至少需要购买甲种原料多少千克?(2)设食堂用于购买这两种原料的总费用为y 元,求y 与x 的函数关系式.并说明购买甲种原料多少千克时,总费用最少?2.(2012 湖北荆门)荆门市是著名的 鱼米之乡 .某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示.(1)请直接写出批发购进乌鱼所需总金额y (元)与进货量x (千克)之间的函数关系式;(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%㊁95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?(第2题)3.(2012 四川攀枝花)煤炭是攀枝花的主要矿产资源之一,煤炭生产企业需要对煤炭运送到用煤单位所产生的费用进行核算并纳入企业生产计划.某煤矿现有1000吨煤炭要全部运往A ㊁B 两厂,通过了解获得A ㊁B 两厂的有关信息如下表(表中运费栏 元/t k m表示:每吨煤炭运送一千米所需的费用):厂别运费(元/t k m )路程(k m )需求量(t)A 0.45200不超过600Ba (a 为常数)150不超过800(1)写出总运费y (元)与运往A 厂的煤炭量x (t)之间的函数关系式,并写出自变量的取值范围;(2)请你运用函数有关知识,为该煤矿设计总运费最少的运送方案,并求出最少的总运费.(可用含a 的代数式表示)4.(2012 黑龙江佳木斯)国务院总理温家宝2011年11月16日主持召开国务院常务会议,会议决定建立青海三江源国家生态保护综合实验区.现要把228吨物资从某地运往青海甲㊁乙两地,用大㊁小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲㊁乙两地的运费如表:㊀车型运往地㊀甲地(元/辆)乙地(元/辆)大货车720800小货车500650(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,前往甲㊁乙两地的总运费为w 元,求出w 与a 的函数关系式;(写出自变量的取值范围)(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费.ɦ5.3㊀与一次函数有关的综合题1.(1)依题意,得600x +400(20-x )ȡ480ˑ20,解得x ȡ8.ʑ㊀至少需要购买甲种原料8千克.(2)根据题意得y =9x +5(20-x ),即y =4x +100,ȵ㊀k =4>0,ʑ㊀y 随x 的增大而增大.ȵ㊀x ȡ8,ʑ㊀当x =8时,y 最小.ʑ㊀购买甲种原料8千克时,总费用最少.2.(1)批发购进乌鱼所需总金额y (元)与进货量x (千克)之间的函数关系式y =26x (20ɤx ɤ40),24x (x >40).{(2)设该经销商购进乌鱼x 千克,则购进草鱼(75-x )千克,所需进货费用为w 元.由题意得x >40,89%(75-x )+95%x ȡ93%ˑ75.{解得x ȡ50.由题意得w =8(75-x )+24x =16x +600.ȵ㊀16>0,ʑ㊀w 的值随x 的增大而增大.ʑ㊀当x =50时,75-x =25,ω最小=1400(元).故该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.3.(1)若运往A 厂x 吨,则运往B 厂为(1000-x )吨.依题意得y =200ˑ0.45x +150ˑa ˑ(1000-x )=90x -150a x +150000a =(90-150a )x +150000a .依题意得x ɤ600,1000-x ɤ800.{解得200ɤx ɤ600.ʑ㊀函数关系式为y =(90-150a )x +150000a (200ɤx ɤ600).(2)当0<a <0.6时,90-150a >0,ʑ㊀当x =200时,y 最小=(90-150a )ˑ200+150000a =120000a +18000.此时,1000-x =1000-200=800.当a >0.6时,90-150a <0,又因为运往A 厂总吨数不超过600吨,ʑ㊀当x =600时,y 最小=(90-150a )ˑ600+150000a =60000a +54000.此时,1000-x =1000-600=400.故当0<a <0.6时,运往A 厂200吨,B 厂800吨时,总运费最低,最低运费120000a +18000元;当a >0.6时,运往A 厂600吨,B 厂400吨时,总运费最低,最低运费60000a +54000元.4.(1)解法一:设大货车用x 辆,小货车用y 辆,根据题意得x +y =18,16x +10y =228.{解得x =8,y =10.{故大货车用8辆,小货车用10辆.解法二:设大货车用x 辆,则小货车用(18-x )辆,根据题意得16x +10(18-x )=228,解得x =8.ʑ㊀18-x =18-8=10(辆).故大货车用8辆,小货车用10辆.(2)w =720a +800(8-a )+500(9-a )+650[10-(9-a )]=70a +11550,ʑ㊀w =70a +11550(0ɤa ɤ8且为整数).(3)16a +10(9-a )ȡ120,解得a ȡ5,又ȵ㊀0ɤa ɤ8,ʑ㊀5ɤa ɤ8且为整数.ȵ㊀w =70a +11550,k =70>0,w 随a 的增大而增大,ʑ㊀当a =5时,w 最小,最小值为w 最小=70ˑ5+11550=11900(元).故使总运费最少的调配方案是:5辆大货车㊁4辆小货车前往甲地;3辆大货车㊁6辆小货车前往乙地.最少运费为11900元.。
中考数学试题分类—次函数与二次函数一.一次函数的图象(共2小题)1.(2020•嘉兴)一次函数y=2x﹣1的图象大致是()A.B.C.D.2.(2019•杭州)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A.B.C.D.二.一次函数的性质(共1小题)3.(2019•杭州)某函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,写出一个满足条件的函数表达式.三.一次函数图象上点的坐标特征(共3小题)4.(2020•杭州)在平面直角坐标系中,已知函数y=ax+a(a≠0)的图象过点P(1,2),则该函数的图象可能是()A.B.C.D.5.(2020•湖州)已知在平面直角坐标系xOy中,直线y=2x+2和直线y=23x+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是()A.y=x+2B.y=√2x+2C.y=4x+2D.y=2√33x+26.(2019•绍兴)若三点(1,4),(2,7),(a,10)在同一直线上,则a的值等于()A.﹣1B.0C.3D.4四.一次函数的应用(共10小题)7.(2019•金华)元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是.8.(2020•宁波)A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米?9.(2020•衢州)2020年5月16日,“钱塘江诗路”航道全线开通.一艘游轮从杭州出发前往衢州,线路如图1所示.当游轮到达建德境内的“七里扬帆”景点时,一艘货轮沿着同样的线路从杭州出发前往衢州.已知游轮的速度为20km/h,游轮行驶的时间记为t(h),两艘轮船距离杭州的路程s(km)关于t(h)的图象如图2所示(游轮在停靠前后的行驶速度不变).(1)写出图2中C点横坐标的实际意义,并求出游轮在“七里扬帆”停靠的时长.(2)若货轮比游轮早36分钟到达衢州.问:①货轮出发后几小时追上游轮?①游轮与货轮何时相距12km?10.(2020•绍兴)我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x(厘米)时,秤钩所挂物重为y(斤),则y是x的一次函数.下表中为若干次称重时所记录的一些数据.x(厘米)12471112y(斤)0.75 1.00 1.50 2.75 3.25 3.50(1)在上表x,y的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?11.(2020•金华)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.12.(2020•温州)某经销商3月份用18000元购进一批T恤衫售完后,4月份用39000元购进一批相同的T 恤衫,数量是3月份的2倍,但每件进价涨了10元.(1)4月份进了这批T恤衫多少件?(2)4月份,经销商将这批T恤衫平均分给甲、乙两家分店销售,每件标价180元.甲店按标价卖出a 件以后,剩余的按标价八折全部售出;乙店同样按标价卖出a件,然后将b件按标价九折售出,再将剩余的按标价七折全部售出,结果利润与甲店相同.①用含a的代数式表示b.①已知乙店按标价售出的数量不超过九折售出的数量,请你求出乙店利润的最大值.13.(2019•绍兴)如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量y(千瓦时)关于已行驶路程x(千米)的函数图象.(1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程.当0≤x≤150时,求1千瓦时的电量汽车能行驶的路程.(2)当150≤x≤200时,求y关于x的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.14.(2019•台州)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=−310x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.15.(2019•宁波)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式.(2)求第一班车从入口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)16.(2019•湖州)某校的甲、乙两位老师同住一小区,该小区与学校相距2400米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校又骑行若干米到达还车点后,立即步行走回学校.已知甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x (分),图1中线段OA 和折线B ﹣C ﹣D 分别表示甲、乙离开小区的路程y (米)与甲步行时间x (分)的函数关系的图象;图2表示甲、乙两人之间的距离s (米)与甲步行时间x (分)的函数关系的图象(不完整).根据图1和图2中所给信息,解答下列问题:(1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)在图2中,画出当25≤x ≤30时s 关于x 的函数的大致图象.(温馨提示:请画在答题卷相对应的图上)五.一次函数综合题(共2小题)17.(2019•温州)如图,在平面直角坐标系中,直线y =−12x +4分别交x 轴、y 轴于点B ,C ,正方形AOCD 的顶点D 在第二象限内,E 是BC 中点,OF ⊥DE 于点F ,连结OE .动点P 在AO 上从点A 向终点O 匀速运动,同时,动点Q 在直线BC 上从某一点Q 1向终点Q 2匀速运动,它们同时到达终点.(1)求点B 的坐标和OE 的长.(2)设点Q 2为(m ,n ),当n n =17tan ∠EOF 时,求点Q 2的坐标.(3)根据(2)的条件,当点P 运动到AO 中点时,点Q 恰好与点C 重合.①延长AD 交直线BC 于点Q 3,当点Q 在线段Q 2Q 3上时,设Q 3Q =s ,AP =t ,求s 关于t 的函数表达式.①当PQ 与△OEF 的一边平行时,求所有满足条件的AP 的长.18.(2019•衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =n +n 3,y =n +n 3那么称点T 是点A ,B 的融合点. 例如:A (﹣1,8),B (4,﹣2),当点T (x ,y )满足x =−1+43=1,y =8+(−2)3=2时,则点T (1,2)是点A ,B 的融合点.(1)已知点A (﹣1,5),B (7,7),C (2,4),请说明其中一个点是另外两个点的融合点.(2)如图,点D (3,0),点E (t ,2t +3)是直线l 上任意一点,点T (x ,y )是点D ,E 的融合点. ①试确定y 与x 的关系式.①若直线ET 交x 轴于点H .当△DTH 为直角三角形时,求点E 的坐标.六.反比例函数的性质(共1小题)19.(2020•杭州)设函数y 1=n n ,y 2=−n n (k >0). (1)当2≤x ≤3时,函数y 1的最大值是a ,函数y 2的最小值是a ﹣4,求a 和k 的值.(2)设m ≠0,且m ≠﹣1,当x =m 时,y 1=p ;当x =m +1时,y 1=q .圆圆说:“p 一定大于q ”.你认为圆圆的说法正确吗?为什么?七.反比例函数系数k 的几何意义(共3小题)20.(2020•温州)点P ,Q ,R 在反比例函数y =n n (常数k >0,x >0)图象上的位置如图所示,分别过这三个点作x 轴、y 轴的平行线.图中所构成的阴影部分面积从左到右依次为S 1,S 2,S 3.若OE =ED =DC ,S 1+S 3=27,则S 2的值为 .21.(2020•湖州)如图,已知在平面直角坐标系xOy 中,Rt △OAB 的直角顶点B 在x 轴的正半轴上,点A在第一象限,反比例函数y =n n (x >0)的图象经过OA 的中点C .交AB 于点D ,连结CD .若△ACD 的面积是2,则k 的值是 .22.(2019•衢州)如图,在平面直角坐标系中,O 为坐标原点,①ABCD 的边AB 在x 轴上,顶点D 在y 轴的正半轴上,点C 在第一象限,将△AOD 沿y 轴翻折,使点A 落在x 轴上的点E 处,点B 恰好为OE 的中点,DE 与BC 交于点F .若y =n n (k ≠0)图象经过点C ,且S △BEF =1,则k 的值为 .八.反比例函数图象上点的坐标特征(共3小题)23.(2020•金华)已知点(﹣2,a),(2,b),(3,c)在函数y=n n(k>0)的图象上,则下列判断正确的是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a24.(2020•衢州)如图,将一把矩形直尺ABCD和一块含30°角的三角板EFG摆放在平面直角坐标系中,AB在x轴上,点G与点A重合,点F在AD上,三角板的直角边EF交BC于点M,反比例函数y=n n(x >0)的图象恰好经过点F,M.若直尺的宽CD=3,三角板的斜边FG=8√3,则k=.25.(2019•绍兴)如图,矩形ABCD的两边分别与坐标轴平行,顶点A,C都在双曲线y=n n(常数k>0,x>0)上,若顶点D的坐标为(5,3),则直线BD的函数表达式是.九.待定系数法求反比例函数解析式(共1小题)26.(2019•舟山)如图,在直角坐标系中,已知点B(4,0),等边三角形OAB的顶点A在反比例函数y=n n的图象上.(1)求反比例函数的表达式.(2)把△OAB向右平移a个单位长度,对应得到△O'A'B'当这个函数图象经过△O'A'B'一边的中点时,求a的值.一十.反比例函数与一次函数的交点问题(共3小题)27.(2020•宁波)如图,经过原点O的直线与反比例函数y=n n(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=nn(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE的面积为56,四边形ABCD 的面积为32,则a ﹣b 的值为 ,n n 的值为 . 28.(2019•宁波)如图,过原点的直线与反比例函数y =n n (k >0)的图象交于A ,B 两点,点A 在第一象限.点C 在x 轴正半轴上,连结AC 交反比例函数图象于点D .AE 为∠BAC 的平分线,过点B 作AE 的垂线,垂足为E ,连结DE .若AC =3DC ,△ADE 的面积为8,则k 的值为 .29.(2019•湖州)如图,已知在平面直角坐标系xOy 中,直线y =12x ﹣1分别交x 轴,y 轴于点A 和点B ,分别交反比例函数y 1=n n (k >0,x >0),y 2=2n n (x <0)的图象于点C 和点D ,过点C 作CE ⊥x 轴于点E ,连结OC ,OD .若△COE 的面积与△DOB 的面积相等,则k 的值是 .一十一.反比例函数的应用(共3小题)30.(2019•温州)验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据如下表,根据表中数据,可得y 关于x 的函数表达式为( )近视眼镜的度数y (度)200 250 400 500 1000 镜片焦距x(米)0.50 0.40 0.25 0.20 0.10 A .y =100n B .y =n 100 C .y =400n D .y =n 40031.(2020•台州)小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1﹣y2)与(y2﹣y3)的大小:y1﹣y2y2﹣y3.32.(2019•杭州)方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.①方方能否在当天11点30分前到达B地?说明理由.参考答案与试题解析一.一次函数的图象(共2小题)1.【解答】解:由题意知,k=2>0,b=﹣1<0时,函数图象经过一、三、四象限.故选:B.2.【解答】解:A、由图可知:直线y1=ax+b,a>0,b>0.∴直线y2=bx+a经过一、二、三象限,故A正确;B、由图可知:直线y1=ax+b,a<0,b>0.∴直线y2=bx+a经过一、四、三象限,故B错误;C 、由图可知:直线y 1=ax +b ,a <0,b >0.∴直线y 2=bx +a 经过一、二、四象限,交点不对,故C 错误; D 、由图可知:直线y 1=ax +b ,a <0,b <0,∴直线y 2=bx +a 经过二、三、四象限,故D 错误.故选:A .二.一次函数的性质(共1小题)3.【解答】解:设该函数的解析式为y =kx +b ,∵函数满足当自变量x =1时,函数值y =0,当自变量x =0时,函数值y =1, ∴{n +n =0n =1 解得:{n =−1n =1, 所以函数的解析式为y =﹣x +1,故答案为:y =﹣x +1(答案不唯一).三.一次函数图象上点的坐标特征(共3小题)4.【解答】解:∵函数y =ax +a (a ≠0)的图象过点P (1,2),∴2=a +a ,解得a =1,∴y =x +1,∴直线交y 轴的正半轴于点(0,1),且过点(1,2),故选:A .5.【解答】解:∵直线y =2x +2和直线y =23x +2分别交x 轴于点A 和点B . ∴A (﹣1,0),B (﹣3,0)A 、y =x +2与x 轴的交点为(﹣2,0);故直线y =x +2与x 轴的交点在线段AB 上;B 、y =√2x +2与x 轴的交点为(−√2,0);故直线y =√2x +2与x 轴的交点在线段AB 上;C 、y =4x +2与x 轴的交点为(−12,0);故直线y =4x +2与x 轴的交点不在线段AB 上;D 、y =2√33x +2与x 轴的交点为(−√3,0);故直线y =2√33x +2与x 轴的交点在线段AB 上; 故选:C .6.【解答】解:设经过(1,4),(2,7)两点的直线解析式为y =kx +b , ∴{4=n +n 7=2n +n ∴{n =3n =1, ∴y =3x +1,将点(a ,10)代入解析式,则a =3;故选:C .四.一次函数的应用(共10小题)7.【解答】解:令150t =240(t ﹣12),解得,t =32,则150t =150×32=4800,∴点P 的坐标为(32,4800),故答案为:(32,4800).8.【解答】解:(1)设函数表达式为y =kx +b (k ≠0),把(1.6,0),(2.6,80)代入y =kx +b ,得{0=1.6n +n 80=2.6n +n , 解得:{n =80n =−128, ∴y 关于x 的函数表达式为y =80x ﹣128;由图可知200﹣80=120(千米),120÷80=1.5(小时),1.6+1.5=3.1(小时),∴x 的取值范围是1.6≤x ≤3.1.∴货车乙在遇到货车甲前,它离开出发地的路程y 关于x 的函数表达式为y =80x ﹣128(1.6≤x ≤3.1);(2)当y =200﹣80=120时,120=80x ﹣128,解得x =3.1,由图可知,甲的速度为801.6=50(千米/小时),货车甲正常到达B 地的时间为200÷50=4(小时),18÷60=0.3(小时),4+1=5(小时),5﹣3.1﹣0.3=1.6(小时),设货车乙返回B 地的车速为v 千米/小时,∴1.6v ≥120,解得v ≥75.答:货车乙返回B 地的车速至少为75千米/小时.9.【解答】解:(1)C 点横坐标的实际意义是游轮从杭州出发前往衢州共用了23h .∴游轮在“七里扬帆”停靠的时长=23﹣(420÷20)=23﹣21=2(h ).(2)①280÷20=14h ,∴点A (14,280),点B (16,280),∵36÷60=0.6(h ),23﹣0.6=22.4,∴点E (22.4,420),设BC 的解析式为s =20t +b ,把B (16,280)代入s =20t +b ,可得b =﹣40,∴s =20t ﹣40(16≤t ≤23),同理由D (14,0),E (22.4,420)可得DE 的解析式为s =50t ﹣700(14≤t ≤22.4),由题意:20t ﹣40=50t ﹣700,解得t =22,∵22﹣14=8(h ),∴货轮出发后8小时追上游轮.①相遇之前相距12km 时,20t ﹣40﹣(50t ﹣700)=12,解得t =21.6.相遇之后相距12km 时,50t ﹣700﹣(20t ﹣40)=12,解得t =22.4,当游轮在刚离开杭州12km 时,此时根据图象可知货轮就在杭州,游轮距离杭州12km ,所以此时两船应该也是想距12km ,即在0.6h 的时候,两船也相距12km∴0.6h 或21.6h 或22.4h 时游轮与货轮相距12km .10.【解答】解:(1)观察图象可知:x =7,y =2.75这组数据错误.(2)设y =kx +b ,把x =1,y =0.75,x =2,y =1代入可得{n +n =0.752n +n =1, 解得{n =14n =12, ∴y =14x +12, 当x =16时,y =4.5,答:秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤.11.【解答】解:(1)由题意得,高度增加2百米,则气温降低2×0.6=1.2(℃),∴13.2﹣1.2=12(℃),∴高度为5百米时的气温大约是12℃;(2)设T 关于h 的函数表达式为T =kh +b ,则:{3n +n =13.25n +n =12, 解得{n =−0.6n =15, ∴T 关于h 的函数表达式为T =﹣0.6h +15(h >0);(3)当T =6时,6=﹣0.6h +15,解得h =15.∴该山峰的高度大约为15百米,即1500米.12.【解答】解:(1)设3月份购进x 件T 恤衫,18000n +10=390002n ,解得,x =150,经检验,x =150是原分式方程的解,则2x =300,答:4月份进了这批T 恤衫300件;(2)①每件T 恤衫的进价为:39000÷300=130(元),(180﹣130)a +(180×0.8﹣130)(150﹣a )=(180﹣130)a +(180×0.9﹣130)b +(180×0.7﹣130)(150﹣a ﹣b )化简,得b =150−n 2; ①设乙店的利润为w 元,w =(180﹣130)a +(180×0.9﹣130)b +(180×0.7﹣130)(150﹣a ﹣b )=54a +36b ﹣600=54a +36×150−n 2−600=36a +2100, ∵乙店按标价售出的数量不超过九折售出的数量, ∴a ≤b , 即a ≤150−n 2,解得,a ≤50,∴当a =50时,w 取得最大值,此时w =3900,答:乙店利润的最大值是3900元.13.【解答】解:(1)由图象可知,蓄电池剩余电量为35千瓦时时汽车已行驶了150千米. 1千瓦时的电量汽车能行驶的路程为:15060−35=6千米;(2)设y =kx +b (k ≠0),把点(150,35),(200,10)代入,得{150n +n =35200n +n =10, ∴{n =−0.5n =110, ∴y =﹣0.5x +110,当x =180时,y =﹣0.5×180+110=20,答:当150≤x ≤200时,函数表达式为y =﹣0.5x +110,当汽车已行驶180千米时,蓄电池的剩余电量为20千瓦时.14.【解答】解:(1)设y 关于x 的函数解析式是y =kx +b ,{n =615n +n =3,解得,{n =−15n =6, 即y 关于x 的函数解析式是y =−15x +6;(2)当h =0时,0=−310x +6,得x =20, 当y =0时,0=−15x +6,得x =30,∵20<30,∴甲先到达地面.15.【解答】解:(1)由题意得,可设函数表达式为:y =kx +b (k ≠0), 把(20,0),(38,2700)代入y =kx +b ,得{0=20n +n 2700=38n +n ,解得{n =150n =−3000, ∴第一班车离入口处的路程y (米)与时间x (分)的函数表达为y =150x ﹣3000(20≤x ≤38);(2)把y =1500代入y =150x ﹣3000,解得x =30,30﹣20=10(分),∴第一班车从入口处到达塔林所需时间10分钟;(3)设小聪坐上了第n 班车,则30﹣25+10(n ﹣1)≥40,解得n ≥4.5,∴小聪坐上了第5班车,等车的时间为5分钟,坐班车所需时间为:1200÷150=8(分),步行所需时间:1200÷(1500÷25)=20(分),20﹣(8+5)=7(分),∴比他在塔林游玩结束后立即步行到草甸提早了7分钟.16.【解答】解:(1)由图可得,甲步行的速度为:2400÷30=80(米/分),乙出发时甲离开小区的路程是10×80=800(米),答:甲步行的速度是80米/分,乙出发时甲离开小区的路程是800米;(2)设直线OA 的解析式为y =kx ,30k =2400,得k =80,∴直线OA 的解析式为y =80x ,当x =18时,y =80×18=1440,则乙骑自行车的速度为:1440÷(18﹣10)=180(米/分),∵乙骑自行车的时间为:25﹣10=15(分钟),∴乙骑自行车的路程为:180×15=2700(米),当x =25时,甲走过的路程为:80×25=2000(米),∴乙到达还车点时,甲乙两人之间的距离为:2700﹣2000=700(米),答:乙骑自行车的速度是180米/分,乙到达还车点时甲、乙两人之间的距离是700米;(3)乙步行的速度为:80﹣5=75(米/分),乙到达学校用的时间为:25+(2700﹣2400)÷75=29(分),当25≤x ≤30时s 关于x 的函数的大致图象如右图所示.五.一次函数综合题(共2小题)17.【解答】解:(1)令y =0,则−12x +4=0,∴x =8,∴B (8,0),∵C (0,4),∴OC =4,OB =8,在Rt △BOC 中,BC =√82+42=4√5,又∵E 为BC 中点,∴OE =12BC =2√5; (2)如图1,作EM ⊥OC 于M ,则EM ∥CD ,∵E 是BC 的中点∴M 是OC 的中点∴EM =12OB =4,OE =12BC =2√5∵∠CDN =∠NEM ,∠CND =∠MNE∴△CDN ∽△MEN ,∴nn nn =nn nn =1,∴CN =MN =1,∴EN =√12+42=√17,∵S △ONE =12EN •OF =12ON •EM ,∴OF =3×4√17=1217√17,由勾股定理得:EF =√nn 2−nn 2=(2√5)2−(121717)2=1417√17,∴tan ∠EOF =nn nn =14√171712√1717=76, ∴nn =17×76=16, ∵n =−12m +4, ∴m =6,n =1,∴Q 2(6,1);(3)①∵动点P 、Q 同时作匀速直线运动,∴s 关于t 成一次函数关系,设s =kt +b ,∵当点P 运动到AO 中点时,点Q 恰好与点C 重合,∴t =2时,CD =4,DQ 3=2, ∴s =Q 3C =√22+42=2√5,∵Q 3(﹣4,6),Q 2(6,1),∴t =4时,s =√(6+4)2+(6−1)2=5√5,将{n =2n =2√5和{n =4n =5√5代入得{2n +n =2√54n +n =5√5,解得:{n =32√5n =−√5, ∴s =3√52n −√5,∵s ≥0,t ≥0,且32√5>0, ∴s 随t 的增大而增大, 当s ≥0时,3√52n −√5≥0,即t ≥23,当t =23时,Q 3与Q 重合,∵点Q 在线段Q 2Q 3上,综上,s 关于t 的函数表达式为:s =3√52n −√5(23≤t ≤4); ①(i )当PQ ∥OE 时,如图2,∠QPB =∠EOB =∠OBE ,作QH ⊥x 轴于点H ,则PH =BH =12PB , Rt △ABQ 3中,AQ 3=6,AB =4+8=12,∴BQ 3=√62+122=6√5, ∵BQ =6√5−s =6√5−3√52t +√5=7√5−3√52t ,∵cos ∠QBH =nn nn 3=nn nn =1265=25√5,∴BH =14﹣3t ,∴PB =28﹣6t , ∴t +28﹣6t =12,t =165;(ii )当PQ ∥OF 时,如图3,过点Q 作QG ⊥AQ 3于点G ,过点P 作PH ⊥GQ 于点H ,由△Q 3QG ∽△CBO 得:Q 3G :QG :Q 3Q =1:2:√5,∵Q 3Q =s =3√52t −√5,∴Q 3G =32t ﹣1,GQ =3t ﹣2, ∴PH =AG =AQ 3﹣Q 3G =6﹣(32t ﹣1)=7−32t ,∴QH =QG ﹣AP =3t ﹣2﹣t =2t ﹣2,∵∠HPQ =∠CDN ,∴tan ∠HPQ =tan ∠CDN =14,∴2t ﹣2=14(7−32n ),t =3019, (iii )由图形可知PQ 不可能与EF 平行,综上,当PQ 与△OEF 的一边平行时,AP 的长为165或3019. 18.【解答】解:(1)x =13(﹣1+7)=2,y =13(5+7)=4, 故点C 是点A 、B 的融合点;(2)①由题意得:x =13(t +3),y =13(2t +3),则t =3x ﹣3,则y =13(6x ﹣6+3)=2x ﹣1;①当∠DHT =90°时,如图1所示,点E (t ,2t +3),则T (t ,2t ﹣1),则点D (3,0),由点T 是点D ,E 的融合点得:t =n +33,2t ﹣1=2n +33, 解得:t =32,即点E (32,6);当∠TDH =90°时,如图2所示,则点T (3,5),由点T 是点D ,E 的融合点得:点E (6,15);当∠HTD =90°时,如图3所示,过点T 作x 轴的平行线交过点D 与y 轴平行的直线于点M ,交过点E 与y 轴的平行线于点N ,则∠MDT =∠NTE ,则tan ∠MDT =tan ∠NTE ,D (3,0),点E (t ,2t +3),则点T (n +33,2n +33)则MT =3−n +33=6−n 3,MD =2n +33,NE =2n +33−2t ﹣3=−2(2n +3)3,NT =n +33−t =3−2n 3, 由tan ∠MDT =tan ∠NTE得:6−n 32n +33=2(2n +3)33−2n 3, 解得:方程无解,故∠HTD 不可能为90°. 故点E (32,6)或(6,15). 六.反比例函数的性质(共1小题)19.【解答】解:(1)∵k >0,2≤x ≤3,∴y 1随x 的增大而减小,y 2随x 的增大而增大,∴当x =2时,y 1最大值为n 2=n ,①;当x =2时,y 2最小值为−n 2=a ﹣4,①; 由①,①得:a =2,k =4;(2)圆圆的说法不正确,理由如下:设m =m 0,且﹣1<m 0<0,则m 0<0,m 0+1>0,∴当x =m 0时,p =y 1=n n 0<0, 当x =m 0+1时,q =y 1=n n 0+1>0, ∴p <0<q ,∴圆圆的说法不正确.七.反比例函数系数k 的几何意义(共3小题)20.【解答】解:∵CD =DE =OE ,∴可以假设CD =DE =OE =a ,则P (n 3n ,3a ),Q (n 2n ,2a ),R (n n ,a ), ∴CP =n 3n ,DQ =n 2n ,ER =n n ,∴OG =AG ,OF =2FG ,OF =23GA , ∴S 1=23S 3=2S 2, ∵S 1+S 3=27,∴S 3=815,S 1=545,S 2=275, 故答案为275.21.【解答】解:连接OD ,过C 作CE ∥AB ,交x 轴于E , ∵∠ABO =90°,反比例函数y =n n (x >0)的图象经过OA 的中点C ,∴S △COE =S △BOD =12n ,S △ACD =S △OCD =2,∵CE ∥AB ,∴△OCE ∽△OAB ,∴n △nnnn △nnn=14, ∴4S △OCE =S △OAB ,∴4×12k =2+2+12k ,∴k =83, 故答案为:83.22.【解答】解:连接OC ,BD ,∵将△AOD 沿y 轴翻折,使点A 落在x 轴上的点E 处,∴OA =OE ,∵点B 恰好为OE 的中点,∴OE =2OB ,∴OA =2OB ,设OB =BE =x ,则OA =2x ,∴AB =3x ,∵四边形ABCD 是平行四边形,∴CD =AB =3x ,∵CD ∥AB ,∴△CDF ∽△BEF ,∴nn nn =nn nn =n 3n =13, ∵S △BEF =1,∴S △BDF =3,S △CDF =9,∴S △BCD =12,∴S △CDO =S △BDC =12,∴k 的值=2S △CDO =24.八.反比例函数图象上点的坐标特征(共3小题)23.【解答】解:∵k >0,∴函数y =n n (k >0)的图象分布在第一、三象限,在每一象限,y 随x 的增大而减小, ∵﹣2<0<2<3,∴b >c >0,a <0,∴a <c <b .故选:C .24.【解答】解:过点M 作MN ⊥AD ,垂足为N ,则MN =CD =3, 在Rt △FMN 中,∠MFN =30°,∴FN =√3MN =3√3,∴AN =MB =8√3−3√3=5√3,设OA =x ,则OB =x +3,∴F (x ,8√3),M (x +3,5√3),又∵点F 、M 都在反比例函数的图象上,∴8√3x =(x +3)×5√3,解得,x =5,∴F (5,8√3),∴k =5×8√3=40√3.故答案为:40√3.25.【解答】解:∵D (5,3),∴A (n 3,3),C (5,n 5),∴B (n 3,n 5),设直线BD 的解析式为y =mx +n ,把D (5,3),B (n 3,n 5)代入得{5n +n =3n 3n +n =n 5,解得{n =35n =0, ∴直线BD 的解析式为y =35x . 故答案为y =35x .九.待定系数法求反比例函数解析式(共1小题)26.【解答】解:(1)过点A 作AC ⊥OB 于点C ,∵△OAB 是等边三角形,∴∠AOB =60°,OC =12OB ,∵B (4,0),∴OB =OA =4,∴OC =2,AC =2√3. 把点A (2,2√3)代入y =n n ,得k =4√3.∴反比例函数的解析式为y =4√3n ;(2)分两种情况讨论:①点D 是A ′B ′的中点,过点D 作DE ⊥x 轴于点E . 由题意得A ′B ′=4,∠A ′B ′E =60°,在Rt △DEB ′中,B ′D =2,DE =√3,B ′E =1.∴O ′E =3,把y =√3代入y =4√3n ,得x =4,∴OE =4,∴a =OO ′=1;①如图3,点F 是A ′O ′的中点,过点F 作FH ⊥x 轴于点H . 由题意得A ′O ′=4,∠A ′O ′B ′=60°,在Rt △FO ′H 中,FH =√3,O ′H =1.把y =√3代入y =4√3n ,得x =4,∴OH =4,∴a =OO ′=3,综上所述,a 的值为1或3.一十.反比例函数与一次函数的交点问题(共3小题)27.【解答】解:如图,连接AC ,OE ,OC ,OB ,延长AB 交DC 的延长线于T ,设AB 交x 轴于K .由题意A ,D 关于原点对称,∴A ,D 的纵坐标的绝对值相等,∵AE ∥CD ,∴E ,C 的纵坐标的绝对值相等,∵E ,C 在反比例函数y =n n 的图象上,∴E ,C 关于原点对称,∴E ,O ,C 共线,∵OE =OC ,OA =OD ,∴四边形ACDE 是平行四边形,∴S △ADE =S △ADC =S 五边形ABCDE ﹣S 四边形ABCD =56﹣32=24,∴S △AOE =S △DEO =12,∴12a −12b =12,∴a ﹣b =24,∵S △AOC =S △AOB =12,∴BC ∥AD ,∴nn nn =nn nn ,∵S △ACB =32﹣24=8,∴S △ADC :S △ABC =24:8=3:1,∴BC :AD =1:3,∴TB :TA =1:3,设BT =m ,则AT =3m ,AK =TK =1.5m ,BK =0.5m ,∴AK :BK =3:1,∴n △nnn n △nnn =12n −12n =3, ∴n n =−3,即n n =−13, 故答案为24,−13. 28.【解答】解:连接OE ,CE ,过点A 作AF ⊥x 轴,过点D 作DH ⊥x 轴,过点D 作DG ⊥AF , ∵过原点的直线与反比例函数y =n n (k >0)的图象交于A ,B 两点,∴A 与B 关于原点对称,∴O 是AB 的中点,∵BE ⊥AE ,∴OE =OA ,∴∠OAE =∠AEO ,∵AE 为∠BAC 的平分线,∴∠DAE =∠AEO ,∴AD ∥OE ,∴S △ACE =S △AOC ,∵AC =3DC ,△ADE 的面积为8,∴S △ACE =S △AOC =12,设点A (m ,n n ),∵AC =3DC ,DH ∥AF ,∴3DH =AF ,∴D (3m ,n 3n ),∵CH ∥GD ,AG ∥DH ,∴△DHC ∽△AGD ,∴S △HDC =14S △ADG ,∵S △AOC =S △AOF +S梯形AFHD +S △HDC =12k +12×(DH +AF )×FH +S △HDC =12k +12×4n 3n ×2m +12×14×2n 3n ×2n =12k +4n 3+n 6=12,∴2k =12,∴k =6;故答案为6;(另解)连结OE ,由题意可知OE ∥AC ,∴S △OAD =S △EAD =8,易知△OAD 的面积=梯形AFHD 的面积,设A 的纵坐标为3a ,则D 的纵坐标为a ,∴(3a +a )(n n −n 3n )=16,解得k =6.29.【解答】解:令x =0,得y =12x ﹣1=﹣1, ∴B (0,﹣1),∴OB =1,把y =12x ﹣1代入y 2=2n n (x <0)中得,12x ﹣1=2n n (x <0), 解得,x =1−√4n +1,∴n n =1−√4n +1, ∴n △nnn =12nn ⋅|n n |=12√4n +1−12, ∵CE ⊥x 轴, ∴n △nnn =12n ,∵△COE 的面积与△DOB 的面积相等,∴12√4n +1−12=12n ,∴k =2,或k =0(舍去).经检验,k =2是原方程的解.故答案为:2.一十一.反比例函数的应用(共3小题)30.【解答】解:由表格中数据可得:xy =100,故y 关于x 的函数表达式为:y =100n . 故选:A .31.【解答】解:(1)设y 与x 之间的函数关系式为:y =n n (k ≠0,x >0), 把(3,400)代入y =n n 得,400=n 3, 解得:k =1200, ∴y 与x 之间的函数关系式为y =1200n (x >0); (2)把x =6,8,10分别代入y =1200n 得,y 1=12006=200,y 2=12008=150,y 3=120010=120, ∵y 1﹣y 2=200﹣150=50,y 2﹣y 3=150﹣120=30,∵50>30,∴y 1﹣y 2>y 2﹣y 3,故答案为:>.32.【解答】解:(1)∵vt =480,且全程速度限定为不超过120千米/小时, ∴v 关于t 的函数表达式为:v =480n ,(t ≥4). (2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时 将t =6代入v =480n 得v =80;将t =245代入v =480n 得v =100. ∴小汽车行驶速度v 的范围为:80≤v ≤100.①方方不能在当天11点30分前到达B 地.理由如下:8点至11点30分时间长为72小时,将t =72代入v =480n 得v =9607>120千米/小时,超速了. 故方方不能在当天11点30分前到达B 地.。
2019年、2020年山东省数学中考试题分类(6)——坐标系与一次函数一.点的坐标(共1小题)1.(2020•滨州)在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,则点M的坐标为()A.(﹣4,5)B.(﹣5,4)C.(4,﹣5)D.(5,﹣4)二.规律型:点的坐标(共1小题)2.(2019•菏泽)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2……第n次移动到点A n,则点A2019的坐标是()A.(1010,0)B.(1010,1)C.(1009,0)D.(1009,1)三.坐标确定位置(共1小题)3.(2020•威海)如图①,某广场地面是用A,B,C三种类型地砖平铺而成的.三种类型地砖上表面图案如图②所示.现用有序数对表示每一块地砖的位置:第一行的第一块(A 型)地砖记作(1,1),第二块(B型)地砖记作(2,1)…若(m,n)位置恰好为A 型地砖,则正整数m,n须满足的条件是.四.坐标与图形性质(共1小题)4.(2020•临沂)我们知道,两点之间线段最短,因此,连接两点间线段的长度叫做两点间的距离;同理,连接直线外一点与直线上各点的所有线段中,垂线段最短,因此,直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.类似地,连接曲线外一点与曲线上各点的所有线段中,最短线段的长度,叫做点到曲线的距离.依此定义,如图,在平面直角坐标系中,点A(2,1)到以原点为圆心,以1为半径的圆的距离为.五.函数自变量的取值范围(共1小题)5.(2020•菏泽)函数y=√x−2x−5的自变量x的取值范围是()A.x≠5B.x>2且x≠5C.x≥2D.x≥2且x≠5六.函数值(共1小题)6.(2020•烟台)按如图所示的程序计算函数y的值,若输入的x值为﹣3,则输出y的结果为.七.函数的图象(共1小题)7.(2020•潍坊)若定义一种新运算:a⊗b={a−b(a≥2b)a+b−6(a<2b),例如:3⊗1=3﹣1=2;5⊗4=5+4﹣6=3.则函数y=(x+2)⊗(x﹣1)的图象大致是()A.B.C.D.八.动点问题的函数图象(共2小题)8.(2020•东营)如图1,点P从△ABC的顶点A出发,沿A→B→C匀速运动到点C,图2是点P运动时线段CP的长度y随时间x变化的关系图象,其中点Q为曲线部分的最低点,则△ABC的边AB的长度为()A.12B.8C.10D.13 9.(2020•淄博)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是()A.12B.24C.36D.48九.函数的表示方法(共1小题)10.(2020•威海)下表中y与x的数据满足我们初中学过的某种函数关系.其函数表达式为.x…﹣1013…y…0340…一十.一次函数的性质(共1小题)11.(2019•临沂)下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>−bk时,y>0一十一.一次函数图象与系数的关系(共1小题)12.(2020•东营)已知一次函数y=kx+b(k≠0)的图象经过A(1,﹣1)、B(﹣1,3)两点,则k0(填“>”或“<”).一十二.一次函数图象上点的坐标特征(共3小题)13.(2019•枣庄)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过点P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,则该直线的函数表达式是()A.y=﹣x+4B.y=x+4C.y=x+8D.y=﹣x+814.(2020•临沂)点(−12,m)和点(2,n)在直线y=2x+b上,则m与n的大小关系是.15.(2019•泰安)在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,……,点A1,A2,A3,A4,……在直线l上,点C1,C2,C3,C4,……在x轴正半轴上,则前n 个正方形对角线长的和是.一十三.一次函数与一元一次方程(共1小题)16.(2020•济宁)数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y =ax+b相交于点P,根据图象可知,方程x+5=ax+b的解是()A.x=20B.x=5C.x=25D.x=15一十四.一次函数与一元一次不等式(共2小题)17.(2019•烟台)如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为.18.(2019•滨州)如图,直线y=kx+b(k<0)经过点A(3,1),当kx+b<13x时,x的取值范围为.一十五.两条直线相交或平行问题(共2小题)19.(2019•东营)如图,在平面直角坐标系中,函数y=√33x和y=−√3x的图象分别为直线l1,l2,过l1上的点A1(1,√33)作x轴的垂线交l2于点A2,过点A2作y轴的垂线交l1于点A3,过点A3作x轴的垂线交l2于点A4,…依次进行下去,则点A2019的横坐标为.20.(2020•滨州)如图,在平面直角坐标系中,直线y=−12x﹣1与直线y=﹣2x+2相交于点P,并分别与x轴相交于点A、B.(1)求交点P的坐标;(2)求△P AB的面积;(3)请把图象中直线y=﹣2x+2在直线y=−12x﹣1上方的部分描黑加粗,并写出此时自变量x的取值范围.一十六.一次函数的应用(共11小题)21.(2019•东营)甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程s(米)与时间t(秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是()A.乙队率先到达终点B.甲队比乙队多走了126米C.在47.8秒时,两队所走路程相等D.从出发到13.7秒的时间段内,乙队的速度慢22.(2019•聊城)某快递公司每天上午9:00﹣10:00为集中揽件和派件时段,甲仓库用来揽收快件,乙仓库用来派发快件,该时段内甲、乙两仓库的快件数量y(件)与时间x(分)之间的函数图象如图所示,那么当两仓库快递件数相同时,此刻的时间为()A.9:15B.9:20C.9:25D.9:30 23.(2019•济南)某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中l1、l2分别表示去年、今年水费y(元)与用水量x(m3)之间的关系.小雨家去年用水量为150m3,若今年用水量与去年相同,水费将比去年多元.24.(2020•东营)2020年初,新冠肺炎疫情爆发,市场上防疫口罩热销,某医药公司每月生产甲、乙两种型号的防疫口罩共20万只,且所有口罩当月全部售出,其中成本、售价如下表:型号价格(元/只)项目甲乙成本 12 4 售价186(1)若该公司三月份的销售收入为300万元,求生产甲、乙两种型号的防疫口罩分别是多少万只?(2)如果公司四月份投入成本不超过216万元,应怎样安排甲、乙两种型号防疫口罩的产量,可使该月公司所获利润最大?并求出最大利润.25.(2020•烟台)新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店三月份共销售A ,B 两种型号的口罩9000只,共获利润5000元,其中A ,B 两种型号口罩所获利润之比为2:3.已知每只B 型口罩的销售利润是A 型口罩的1.2倍. (1)求每只A 型口罩和B 型口罩的销售利润;(2)该药店四月份计划一次性购进两种型号的口罩共10000只,其中B 型口罩的进货量不超过A 型口罩的1.5倍,设购进A 型口罩m 只,这10000只口罩的销售总利润为W 元.该药店如何进货,才能使销售总利润最大?26.(2020•青岛)为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480m 3,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、乙两个进水口注水,游泳池的蓄水量y (m 3)与注水时间t (h )之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量y (m 3)与注水时间t (h )之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的43倍.求单独打开甲进水口注满游泳池需多少小时?27.(2020•聊城)今年植树节期间,某景观园林公司购进一批成捆的A ,B 两种树苗,每捆A种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.28.(2020•德州)小刚去超市购买画笔,第一次花60元买了若干支A型画笔,第二次超市推荐了B型画笔,但B型画笔比A型画笔的单价贵2元,他又花100元买了相同支数的B型画笔.(1)超市B型画笔单价多少元?(2)小刚使用两种画笔后,决定以后使用B型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次购买不超过20支,则每支B型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折.设小刚购买的B型画笔x支,购买费用为y元,请写出y关于x的函数关系式.(3)在(2)的优惠方案下,若小刚计划用270元购买B型画笔,则能购买多少支B型画笔?29.(2019•临沂)汛期到来,山洪暴发.下表记录了某水库20h内水位的变化情况,其中x 表示时间(单位:h),y表示水位高度(单位:m),当x=8(h)时,达到警戒水位,开始开闸放水.x/h02468101214161820 y/m141516171814.41210.3987.2(1)在给出的平面直角坐标系中,根据表格中的数据描出相应的点.(2)请分别求出开闸放水前和放水后最符合表中数据的函数解析式.(3)据估计,开闸放水后,水位的这种变化规律还会持续一段时间,预测何时水位达到6m.30.(2019•济宁)小王骑车从甲地到乙地,小李骑车从乙地到甲地,小王的速度小于小李的速度,两人同时出发,沿同一条公路匀速前进.图中的折线表示两人之间的距离y(km)与小王的行驶时间x(h)之间的函数关系.请你根据图象进行探究:(1)小王和小李的速度分别是多少?(2)求线段BC所表示的y与x之间的函数解析式,并写出自变量x的取值范围.31.(2019•德州)下表中给出A,B,C三种手机通话的收费方式.收费方式月通话费/元包时通话时间/h超时费/(元/min)A30250.1B50500.1C100不限时(1)设月通话时间为x小时,则方案A,B,C的收费金额y1,y2,y3都是x的函数,请分别求出这三个函数解析式.(2)填空:若选择方式A最省钱,则月通话时间x的取值范围为;若选择方式B最省钱,则月通话时间x的取值范围为;若选择方式C最省钱,则月通话时间x的取值范围为;(3)小王、小张今年5月份通话费均为80元,但小王比小张通话时间长,求小王该月的通话时间.2019年、2020年山东省数学中考试题分类(6)——坐标系与一次函数参考答案与试题解析一.点的坐标(共1小题)1.【解答】解:∵在平面直角坐标系的第四象限内有一点M,到x轴的距离为4,到y轴的距离为5,∴点M的纵坐标为:﹣4,横坐标为:5,即点M的坐标为:(5,﹣4).故选:D.二.规律型:点的坐标(共1小题)2.【解答】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…,2019÷4=504…3,所以A2019的坐标为(504×2+1,0),则A2019的坐标是(1009,0).故选:C.三.坐标确定位置(共1小题)3.【解答】解:观察图形,A型地砖在列数为奇数,行数也为奇数的位置上或列数为偶数,行数也为偶数的位置上,若(m,n)位置恰好为A型地砖,正整数m,n须满足的条件为m、n同为奇数或m、n 同为偶数.故答案为m、n同为奇数或m、n同为偶数.四.坐标与图形性质(共1小题)4.【解答】解:连接AO交⊙O于B,则线段AB的长度即为点A(2,1)到以原点为圆心,以1为半径的圆的距离,∵点A(2,1),∴OA=√22+12=√5,∵OB=1,∴AB=√5−1,即点A(2,1)到以原点为圆心,以1为半径的圆的距离为√5−1,故答案为:√5−1.五.函数自变量的取值范围(共1小题)5.【解答】解:由题意得x﹣2≥0且x﹣5≠0,解得x≥2且x≠5.故选:D.六.函数值(共1小题)6.【解答】解:∵﹣3<﹣1,把x=﹣3代入y=2x2,得y=2×9=18,故答案为:18.七.函数的图象(共1小题)7.【解答】解:∵当x+2≥2(x﹣1)时,x≤4,∴当x≤4时,(x+2)⊗(x﹣1)=(x+2)﹣(x﹣1)=x+2﹣x+1=3,即:y=3,当x>4时,(x+2)⊗(x﹣1)=(x+2)+(x﹣1)﹣6=x+2+x﹣1﹣6=2x﹣5,即:y=2x﹣5,∴k=2>0,∴当x>4时,y=2x﹣5,函数图象从左向右逐渐上升,y随x的增大而增大,综上所述,A选项符合题意.故选:A.八.动点问题的函数图象(共2小题)8.【解答】解:根据图2中的曲线可知:当点P在△ABC的顶点A处,运动到点B处时,图1中的AC=BC=13,当点P运动到AB中点时,此时CP ⊥AB ,根据图2点Q 为曲线部分的最低点,得CP =12,所以根据勾股定理,得此时AP =√132−122=5.所以AB =2AP =10.故选:C .9.【解答】解:由图2知,AB =BC =10,当BP ⊥AC 时,y 的值最小,即△ABC 中,AC 边上的高为8(即此时BP =8),当y =8时,PC =√BC 2−BP 2=√102−82=6,△ABC 的面积=12×AC ×BP =12×8×12=48, 故选:D .九.函数的表示方法(共1小题)10.【解答】解:根据表中y 与x 的数据设函数关系式为:y =ax 2+bx +c ,将表中(1,4)、(﹣1,0)、(0,3)代入函数关系式,得∴{a +b +c =4a −b +c =0c =3,解得{a =−1b =2c =3,∴函数表达式为y =﹣x 2+2x +3.当x =3时,代入y =﹣x 2+2x +3=0,∴(3,0)也适合所求得的函数关系式.故答案为:y =﹣x 2+2x +3.一十.一次函数的性质(共1小题)11.【解答】解:∵y =kx +b (k <0,b >0),∴图象经过第一、二、四象限,A 正确;∵k <0,∴y 随x 的增大而减小,B正确;令x=0时,y=b,∴图象与y轴的交点为(0,b),∴C正确;令y=0时,x=−b k,当x>−bk时,y<0;D不正确;故选:D.一十一.一次函数图象与系数的关系(共1小题)12.【解答】解:设直线AB的解析式为:y=kx+b(k≠0),把A(1,﹣1),B(﹣1,3)代入y=kx+b得,{−1=k+b3=−k+b,解得:k=﹣2,b=1,∴k<0,解法二:由A(1,﹣1)、B(﹣1,3)可知,随着x的减小,y反而增大,所以有k<0.故答案为:<.一十二.一次函数图象上点的坐标特征(共3小题)13.【解答】解:如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,设P点坐标为(x,y),∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为8,∴2(x+y)=8,∴x+y=4,即该直线的函数表达式是y=﹣x+4,故选:A.14.【解答】解:∵直线y=2x+b中,k=2>0,∴此函数y随着x的增大而增大,∵−12<2,∴m<n.故答案为m<n.15.【解答】解:由题意可得,点A1的坐标为(0,1),点A2的坐标为(1,2),点A3的坐标为(3,4),点A4的坐标为(7,8),……,∴OA1=1,C1A2=2,C2A3=4,C3A4=8,……,∴前n个正方形对角线长的和是:√2(OA1+C1A2+C2A3+C3A4+…+C n﹣1A n)=√2(1+2+4+8+…+2n﹣1),设S=1+2+4+8+…+2n﹣1,则2S=2+4+8+…+2n﹣1+2n,则2S﹣S=2n﹣1,∴S=2n﹣1,∴1+2+4+8+…+2n﹣1=2n﹣1,∴前n个正方形对角线长的和是:√2×(2n﹣1),故答案为:√2(2n﹣1),一十三.一次函数与一元一次方程(共1小题)16.【解答】解:∵直线y=x+5和直线y=ax+b相交于点P(20,25)∴方程x+5=ax+b的解为x=20.故选:A.一十四.一次函数与一元一次不等式(共2小题)17.【解答】解:点P(m,3)代入y=x+2,∴m=1,∴P(1,3),结合图象可知x +2≤ax +c 的解为x ≤1;故答案为x ≤1;18.【解答】解:∵正比例函数y =13x 也经过点A ,∴kx +b <13x 的解集为x >3,故答案为:x >3.一十五.两条直线相交或平行问题(共2小题)19.【解答】解:由题意可得,A 1(1,√33),A 2(1,−√3),A 3(﹣3,−√3),A 4(﹣3,3√3),A 5(9,3√3),A 6(9,﹣9√3),…,可得A 2n +1的横坐标为(﹣3)n∵2019=2×1009+1,∴点A 2019的横坐标为:(﹣3)1009=﹣31009,故答案为:﹣31009.20.【解答】解:(1)由{y =−12x −1y =−2x +2解得{x =2y =−2, ∴P (2,﹣2);(2)直线y =−12x ﹣1与直线y =﹣2x +2中,令y =0,则−12x ﹣1=0与﹣2x +2=0, 解得x =﹣2与x =1,∴A (﹣2,0),B (1,0),∴AB =3,∴S △P AB =12AB ⋅|y P |=12×3×2=3; (3)如图所示:自变量x 的取值范围是x <2.一十六.一次函数的应用(共11小题)21.【解答】解:A 、由函数图象可知,甲走完全程需要82.3秒,乙走完全程需要90.2秒,甲队率先到达终点,本选项错误;B 、由函数图象可知,甲、乙两队都走了300米,路程相同,本选项错误;C 、由函数图象可知,在47.8秒时,两队所走路程相等,均为174米,本选项正确;D 、由函数图象可知,从出发到13.7秒的时间段内,甲队的速度慢,本选项错误; 故选:C .22.【解答】解:设甲仓库的快件数量y (件)与时间x (分)之间的函数关系式为:y 1=k 1x +40,根据题意得60k 1+40=400,解得k 1=6,∴y 1=6x +40;设乙仓库的快件数量y (件)与时间x (分)之间的函数关系式为:y 2=k 2x +240,根据题意得60k 2+240=0,解得k 2=﹣4,∴y 2=﹣4x +240,联立{y =6x +40y =−4x +240,解得{x =20y =160, ∴此刻的时间为9:20.故选:B .23.【解答】解:设当x >120时,l 2对应的函数解析式为y =kx +b ,{120k +b =480160k +b =720,得{k =6b =−240, 即当x >120时,l 2对应的函数解析式为y =6x ﹣240,当x =150时,y =6×150﹣240=660,由图象可知,去年的水价是480÷160=3(元/m 3),故小雨家去年用水量为150m 3,需要缴费:150×3=450(元),660﹣450=210(元),即小雨家去年用水量为150m 3,若今年用水量与去年相同,水费将比去年多210元, 故答案为:210.24.【解答】解:(1)设生产甲、乙两种型号的防疫口罩分别是x 万只和y 万只,由题意可得:{18x +6y =300x +y =20, 解得:{x =15y =5,答:生产甲、乙两种型号的防疫口罩分别是15万只和5万只;(2)设四月份生产甲、乙两种型号的防疫口罩分别是a 万只和(20﹣a )万只,利润为w 万元,由题意可得:12a +4(20﹣a )≤216,∴a ≤17,∵w =(18﹣12)a +(6﹣4)(20﹣a )=4a +40是一次函数,w 随a 的增大而增大, ∴a =17时,w 有最大利润=108(万元),答:安排生产甲种型号的防疫口罩17万只,乙种型号的防疫口罩3万只,最大利润为108万元.25.【解答】解:设销售A 型口罩x 只,销售B 型口罩y 只,根据题意得:{x +y =90002000x ×1.2=3000y,解得{x =4000y =5000, 经检验,x =4000,y =5000是原方程组的解,∴每只A 型口罩的销售利润为:20004000=0.5(元),每只B 型口罩的销售利润为:0.5×1.2=0.6(元).答:每只A 型口罩和B 型口罩的销售利润分别为0.5元,0.6元.(2)根据题意得,W =0.5m +0.6(10000﹣m )=﹣0.1m +6000,10000﹣m ≤1.5m ,解得m ≥4000,∵﹣0.1<0,∴W 随m 的增大而减小,∵m 为正整数,∴当m =4000时,W 取最大值,则﹣0.1×4000+6000=5600,即药店购进A 型口罩4000只、B 型口罩6000只,才能使销售总利润最大,最大利润为5600元.26.【解答】解:(1)设y 与t 的函数解析式为y =kt +b ,{b =1002k +b =380, 解得,{k =140b =100, 即y 与t 的函数关系式是y =140t +100,同时打开甲、乙两个进水口的注水速度是:(380﹣100)÷2=140(m 3/h );(2)∵单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的43倍. ∴甲进水口进水的速度是乙进水口进水速度的34, ∵同时打开甲、乙两个进水口的注水速度是140m 3/h ,∴甲进水口的进水速度为:140÷(34+1)×34=60(m 3/h ), 480÷60=8(h ),即单独打开甲进水口注满游泳池需8h .27.【解答】解:(1)设这一批树苗平均每棵的价格是x 元,根据题意列方程,得: 6300.9x −6001.2x =10,解这个方程,得x =20,经检验,x =20是原分式方程的解,并符合题意,答:这一批树苗平均每棵的价格是20元;(2)由(1)可知A 种树苗每棵的价格为:20×0.9=18(元),B 种树苗每棵的价格为:20×1.2=24(元),设购进A 种树苗t 棵,这批树苗的费用为w 元,则:w =18t +24(5500﹣t )=﹣6t +132000,∵w 是t 的一次函数,k =﹣6<0,∴w 随t 的增大而减小,又∵t ≤3500,∴当t =3500棵时,w 最小,此时,B 种树苗有:5500﹣3500=2000(棵),w =﹣6×3500+132000=111000,答:购进A 种树苗3500棵,B 种树苗2000棵时,能使得购进这批树苗的费用最低,最低费用为111000元.28.【解答】解:(1)设超市B 型画笔单价为a 元,则A 型画笔单价为(a ﹣2)元. 根据题意得,60a−2=100a ,解得a =5.经检验,a=5是原方程的解.答:超市B型画笔单价为5元;(2)由题意知,当小刚购买的B型画笔支数x≤20时,费用为y=0.9×5x=4.5x,当小刚购买的B型画笔支数x>20时,费用为y=0.9×5×20+0.8×5(x﹣20)=4x+10.所以,y关于x的函数关系式为y={4.5x(1≤x≤20)4x+10(x>20)(其中x是正整数);(3)当4.5x=270时,解得x=60,∵60>20,∴x=60不合题意,舍去;当4x+10=270时,解得x=65,符合题意.答:若小刚计划用270元购买B型画笔,则能购买65支B型画笔.29.【解答】解:(1)在平面直角坐标系中,根据表格中的数据描出相应的点,如图所示.(2)观察图象当0<x<8时,y与x可能是一次函数关系:设y=kx+b,把(0,14),(8,18)代入得{b=148k+b=18解得:k=12,b=14,y与x的关系式为:y=12x+14,经验证(2,15),(4,16),(6,17)都满足y=12x+14因此放水前y与x的关系式为:y=12x+14 (0<x<8)观察图象当x>8时,y与x就不是一次函数关系:通过观察数据发现:8×18=10×14.4=12×12=16×9=18×8=144.因此放水后y与x的关系最符合反比例函数,关系式为:y=144x.(x>8)所以开闸放水前和放水后最符合表中数据的函数解析式为:y=12x+14 (0<x<8)和y=144x.(x>8)(3)当y=6时,6=144x,解得:x=24,因此预计24h水位达到6m.30.【解答】解:(1)由图可得,小王的速度为:30÷3=10km /h ,小李的速度为:(30﹣10×1)÷1=20km /h ,答:小王和小李的速度分别是10km /h 、20km /h ;(2)小李从乙地到甲地用的时间为:30÷20=1.5h ,当小李到达甲地时,两人之间的距离为:10×1.5=15km ,∴点C 的坐标为(1.5,15),设线段BC 所表示的y 与x 之间的函数解析式为y =kx +b ,{k +b =01.5k +b =15,得{k =30b =−30, 即线段BC 所表示的y 与x 之间的函数解析式是y =30x ﹣30(1≤x ≤1.5).31.【解答】解:(1)∵0.1元/min =6元/h ,∴由题意可得,y 1={30(0≤x ≤25)6x −120(x >25), y 2={50(0≤x ≤50)6x −250(x >50), y 3=100(x ≥0);(2)作出函数图象如图:结合图象可得:若选择方式A 最省钱,则月通话时间x 的取值范围为:0≤x <853, 若选择方式B 最省钱,则月通话时间x 的取值范围为:853<x <1753, 若选择方式C 最省钱,则月通话时间x 的取值范围为:x >1753. 故答案为:0≤x <853,853<x <1753,x >1753. (3)∵小王、小张今年5月份通话费均为80元,但小王比小张通话时间长, ∴结合图象可得:小张选择的是方式A ,小王选择的是方式B ,将y =80分别代入y 2={50(0≤x ≤50)6x −250(x >50),可得 6x ﹣250=80,解得:x =55,∴小王该月的通话时间为55小时.。
初中一次函数经典题型
初中一次函数经典题型是在初中数学中常见的一类题目,这类题目通常涉及到一次函数的性质、图像、方程和应用等方面。
一次函数,也称为一元一次方程,是指具有以下形式的函数:y = ax + b,其中a和b是常数,且a ≠ 0。
一次函数的图像是一条直线,具有许多特点和性质。
在初中数学中,关于一次函数的经典题型主要包括以下几种:
1. 确定一次函数的斜率和截距:已知一线性函数的图像以及通过图像上的两点,可以利用斜率的定义求出斜率,并通过斜率和通过的一点求出截距。
2. 根据一次函数的方程绘制函数图像:已知一次函数的方程,可以通过选择合适的x值,计算对应的y值,并将这些点绘制到坐标系上,连接这些点得到函数的图像。
3. 解一次方程:已知一次函数的方程,可以利用解方程的方法求出方程的解,即函数的零点。
4. 判断方程的解的个数:通过一次函数的图像,可以判断方程的解
的个数。
如果函数的图像与x轴有且仅有一个交点,则方程有且仅有一个解;如果函数的图像与x轴平行,则方程无解;如果函数的图像与x轴没有交点,但与x轴相切,则方程有无穷多解。
5. 判断一次函数图像的变化趋势:通过一次函数的斜率可以判断函数图像的变化趋势。
当斜率为正时,函数图像递增;当斜率为负时,函数图像递减;当斜率为零时,函数图像水平。
在学习一次函数的过程中,通过解答这些经典题型,可以加深对一次函数的理解,并提高解题的能力。
掌握这些题型的解题方法,不仅有助于学习数学,还能培养逻辑思维和问题解决能力。
因此,初中一次函数经典题型是数学学习中的重要内容。
16:一次函数(正比例函数)的图像和性质一、选择题1.(重庆江津4分)直线1y x =-的图象经过的象限是A 、第一、二、三象限B 、第一、二、四象限C 、第二、三、四象限D 、第一、三、四象限【答案】D 。
【考点】一次函数的性质。
【分析】由1y x =-可知直线与y 轴交于(0,﹣1)点,且y 随x 的增大而增大,可判断直线经过第一、三、四象限。
故选D 。
2.(黑龙江牡丹江3分)在平面直角坐标系中,点O 为原点,直线y kx b =+交x 轴于点A(-2,0),交y 轴于点B .若△AOB 的面积为8,则k 的值为 A .1 B .2 C .-2或4 D .4或-4 【答案】D 。
【考点】待定系数法,点的坐标与方程的关系。
【分析】根据题意画出图形,注意要分情况讨论,当B 在y 的正半轴和负半轴上时,分别求出B 点坐标,然后再利用待定系数法求出一次函数解析式,得到k 的值:①当B 在y 的正半轴上时,∵△AOB 的面积为8,∴12·OA·OB=8。
∵A(-2,0),∴OA=2,∴OB=8。
∴B(0,8)。
∵直线y kx b =+经过点A (-2,0)和点B (0,8). ∴208k b b -+=⎧⎨=⎩,解得48k b =⎧⎨=⎩。
②当B 在y 的负半轴上时,同①可得4k =-。
故选D 。
3.(广西桂林3分)直线1y kx =-一定经过点A 、(1,0)B 、(1,k )C 、(0,k )D 、(0,﹣1)【答案】D 。
【考点】直线上点的坐标与方程的关系。
【分析】根据点在直线上,点的坐标 满足方程的关系,由一次函数y kx b =+与y 轴的交点为(0,b )进行解答即可:∵直线y kx b =+中b =-1,∴此直线一定与y 轴相较于(0,-1)点, ∴此直线一定过点(0,-1)。
故选D 。
4.(广西百色3分)两条直线11y k x b =+和22y k x b =+相交于点A(-2,3),则方程组⎩⎨⎧+=+=2211b x k y b x k y 的解是 A ⎩⎨⎧==32y x B ⎩⎨⎧=-=32y x C ⎩⎨⎧-==23y x D ⎩⎨⎧==23y x【答案】B 。
一次函数
要点一:函数的概念及自变量取值范围的确定一、选择题1、函数2y
x 中,自变量x 的取值范围是(
)
A .2x
B .
2
x ≥C .
2
x D .
2
x ≤2在函数
131y x 中,自变量x 的取值范围是()
A .
13
x
B .
13
x
C .
13
x
D .
13
x
3、下列函数中,自变量
x 的取值范围是x ≥3的是(
)
A .31x y
B .3
1x
y
C .3
x y D .3
x y 4、函数3
12x x
y
中,自变量x 的取值范围是(
)
A .x ≤2
B .x =3
C .x <2且x ≠3
D .x ≤2且x ≠3
5、下列曲线中,表示
y 不是x 的函数是(
)
6、某蓄水池的横断面示意图如下图,分深水区和浅水区,如果这个注满水的蓄水池以固定
的流量把水全部放出.下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是
(
)
h
t
O A .
h
t O B .
h
t O
C .
h
t
O
D .
h
二、填空题7、在函数x y 3中,自变量x 的取值范围是.8.函数y =22
x x
的自变量x 的取值范围是
.
9、在函数21y
x 中,自变量x 的取值范围是.
10、函数12
y
x 中,自变量x 的取值范围是
.
11、函数1
x x y
中,自变量x 的取值范围是
.
12、已知函数
1()
1f x x
,那么(3)
f .
13、如图,当输入
5x
时,输出的y
.
要点二、一次函数图象、性质及解析式一、选择题
1、若正比例函数的图像经过点(-
1,2),则这个图像必经过点(
)
A .(1,2)
B .(-1,-2)
C .(2,-1)
D .(1,-2)
2、P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数
y= -x 图象上的两点,则下列判断正确的是
(
)
A .y 1>y 2
B .y 1<y 2
C .当x 1<x 2时,y 1>y 2
D .当x 1<x 2时,y 1<y 2
3、一次函数
23y x 的图象不经过(
)A .第一象限B .第二象限
C .第三象限
D .第四象限
4、如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为(
).
5、已知函数y kx b 的图象如图,则2y kx b 的图象可能是()
因函数y kx b 的图象过(1,0)
,则2y kx b 的图象一定过(1,0).并且比例系数
的绝对值越大其图象越陡峭.
二、填空题6、将直线
y = 2 x
─ 4 向上平移5个单位后,所得直线的表达式是______________.
7、已知一次函数
21y
x ,则y 随x 的增大而_________(填“增大”或“减小”).
8、一次函数的图象过点(
0,2),且函数y 的值随自变量x 的增大而增大,请写出一个符合
条件的函数解析式:_
_.
9、一次函数
3y x b 的图象过坐标原点,则
b 的值为
.
10、一辆汽车在行驶过程中,路程y (千米)与时间x (小时)之间的函数关系如图所示
当
0≤x ≤1时,y 关于x 的函数解析式为y = 60 x ,那么当1≤x ≤2时,y 关于x 的函数解析式
为_____________.
11、如图,是一个正比例函数的图像,把该图像向左平移一个单位长度,得到的函数图像的
解析式为
.
O
12
160
x/小时
y/千米
12、已知y 是x 的一次函数,下表给出了部分对应值,则m 的值是.
13、已知一次函数的图象过点
35,与49,,则该函数的图象与y 轴交点的坐标为
__________ _.
要点三、一次函数的应用一、选择题
1、由于干旱,某水库的蓄水量随时间的增加而直线下降.若该水库的蓄水量
V(万米3
)与干
旱的时间t(天)的关系如图所示,则下列说法正确的是
( ).
/天
t /万米3
V 20040060080010001200O
5040
30
20
10
A .干旱开始后,蓄水量每天减少20万米 3
B .干旱开始后,蓄水量每天增加20万米
3
C .干旱开始时,蓄水量为
200万米
3
D .干旱第50天时,蓄水量为 1 200万米3
.
2.小高从家门口骑车去单位上班,先走平路到达点
A ,再走上坡路到达点
B ,最后走下坡
路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是()
A .12分钟
B .15分钟
C .25分钟
D .27分钟
二、填空题
3、我市某出租车公司收费标准如图所示,
如果小明只有
19元钱,那么他乘此出租车最远能
到达
公里处.
4、如图,l 1反映了某公司的销售收入与销量的关系,
l 2 反映了该公司产品的销售成本与销
量的关系,当该公司赢利(收入大于成本)时,销售量必须
____________.
要点四、一次函数与方程、不等式的关系一、选择题1、坐标平面上,点
P(2,3)在直线L 上,其中直线L 的方程式为2x by=7,求b (
).
A. 1
B. 3
C.
2
1 D.
3
12、如图,直线
(0)y kx b k
与x 轴交于点(30),,关于x 的不等式0kx b 的解集是
(
)
A .3
x B .
3
x C .
x D .
x 3、直线
11:l y k x b 与直线22:l y k x c 在同一平面直角坐标系中的图象如图所示,则
关于x 的不等式
12k x b k x c 的解集为(
).
A.x >1
B.x <1
C.x >-2
D.x <-2
4、如图,直线
y kx b 经过点(12)A ,和点(20)B ,,
直线2y
x 过点A ,则不等式20x kx b 的解集为(
)
A .
2
x B .
21
x C .
20
x D .
10
x 5、如图,直线
l 1和l 2的交点坐标为(
)
A.(4,-2)
B. (2,-4)
C. (-4,2)
D. (3,-1)
O
y
x
2
2
l 1
l 2
6、下列图象中,以方程
22
0y x 的解为坐标的点组成的图象是(
)二、填空题7、已知一次函数
y kx b 的图象如图,当
0x 时,y 的取值范围是
.
8、如图,已知函数
y x b 和3y ax 的图象交点为P ,
则不等式
3x b ax 的解集为
.
y x
O
2
A .
1 1
2 112
y x
O
2
B .1 1
2 112
y x
O
2
C .1 1
2 112
y x
O
2
D .
1 1
2 112
O
x
y 1 P
y=x+b
y=ax+3
y
x
O 1
-2 图2。