电动机控制自动开关电路图
- 格式:doc
- 大小:125.00 KB
- 文档页数:1
自动往返控制电路图
电力维修人员在实际的设备操作过程中,会遇到各种各样的工况需求,有些设备的工作台要在一定的距离上能够实现自动循环往返控制,这个时候可以用行程开关配合电动机控制电路来实现,实际上的电路类似于行程开关控制的电动机自动正反转电路,接下来我们一起来看一下自动往返控制电路。
一、行程开关控制的电动机自动往返控制电路参考图。
二、由行程开关控制的电动机自动往返控制电路动作过程解析:
注明:行程开关SQ3,行程开关SQ4位于工作台的两侧,目的在于对电路进行极限保护,即双重行程开关用来停止电动机的极限运行,相对的更加的安全,可靠和实用。
1。
电机控制线路图大全Y-△(星三角)降压启动控制线路-接触器应用接线图Y-△降压启动适用于正常工作时定子绕组作三角形连接的电动机。
由于方法简便且经济,所以使用较普遍,但启动转矩只有全压启动的三分之…,故只适用于空载或轻载启动。
Y-△启动器有OX3-13、Qx3—30、、Qx3—55、QX3—125型等。
OX3后丽的数字系指额定电压为380V时,启动器可控制电动机的最大功率值(以kW计)。
OX3—13型Y-△自动启动器的控制线路如图11—11所示。
()合上电源开关Qs后,按下启动按钮SB2,接触器KM和KMl线圈同时获电吸合,KM和KMl主触头闭合,电动机接成Y降压启动,与此同时,时间继电器KT的线圈同时获电,I星形—三角形降压起动控制线路星形——三角形降压起动控制线路星形——三角形( Y —△)降压起动是指电动机起动时,把定子绕组接成星形,以降低起动电压,减小起动电流;待电动机起动后,再把定子绕组改接成三角形,使电动机全压运行。
Y —△起动只能用于正常运行时为△形接法的电动机。
1.按钮、接触器控制 Y —△降压起动控制线路图 2.19 ( a )为按钮、接触器控制 Y —△降压起动控制线路。
线路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合, KM1 自锁,电动机星形起动,待电动机转速接近额定转速时,按下 SB2 , KM2 断电、 KM3 得电并自锁,电动机转换成三角形全压运行。
2.时间继电器控制 Y —△降压起动控制线路图 2.19 ( b )为时间继电器自动控制 Y —△降压起动控制线路,电路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合,电动机星形起动,同时 KT 也得电,经延时后时间继电器 KT 常闭触头打开,使得 KM2 断电,常开触头闭合,使得 KM3 得电闭合并自锁,电动机由星形切换成三角形正常运行。
图2定子串电阻降压起动控制线路图2是定子串电阻降压起动控制线路。
电动机控制线路图1手动正转控制利用铁壳开关或胶盖瓷底刀开关的控制线路如图1所示。
在一般工厂中使用的三相电风扇及砂轮机等设备常采用这种控制线路。
图中QS-FU表示铁壳开关(或胶盖瓷底刀开关)。
当合上铁壳开关,电动机就能转动,从而带动生产机械旋转。
拉闸后,熔断器就脱离电源,以保证安全。
2.采用转换开关的控制转换开关控制线路如图2所示。
图中QS为转换开关,也叫组合开关。
它的作用是引入电源或控制小容量电动机的启动和停止。
图2采用转换开关的控制机床电气控制中常用的转换开关有HZ10系列。
这种转换开关有3副静触片,每一触片的一端固定在绝缘垫板上,另一端伸出盒外,并附有接线柱,以便和电源、用电设备相接。
3个动触片装至绝缘垫板上,垫板套在附有手柄的绝缘杆上。
手柄能向任一方向每次转动90°,并带动3个动触片分别与3副静触片同时通断。
3.用倒顺开关的正反转控制常用的倒顺开关有HZ3-132型和QX1-13M/4.5型,其控制线路如图3所示。
图3用倒顺开关的正反转控制倒顺开关有6个接线柱,L1、L2和L3分别接三相电源,D1、D2和D3分别接电动机。
倒顺开关的手柄有3个位置:当手柄处于停止位置时,开关的两组动触片都不与静触片接触,所以电路不通,电动机不转;当手柄拨到正转位置时,A、B、C、F触点闭合,电动机接通电源正向运转;当电动机需向反方向运转时,可把倒顺开关手柄拨到反转位置上,这时A、B、D、E触片接通,电动机换相反转。
在使用过程中电动机处于正转状态时欲使它反转,必须先把手柄拨至停转位置,使它停转,然后再把手柄拨至反转位置,使它反转。
倒顺开关一般适用于4.5kW以下的电动机控制线路。
4.具有自锁的正转控制具有自锁的正转控制线路如图4所示。
当启动电动机时合上电源开关QS,按下启动按钮SB1,接触器KM线圈获电,KM主触点闭合,使电动机M运转;松开SB1,由于接触器KM常开辅助触点闭合自锁,控制电路仍保持接通,电动机M继续运转。
电动机点动控制电路讲解控制线路原理图如下所示:启动:按下起动按钮SB→接触器KM线圈得电→KM主触头闭合→电动机M启动运行。
停止:松开按钮SB→接触器KM线圈失电→KM主触头断开→电动机M失电停转。
这种控制方法常用于电动葫芦的起重电机控制和车床拖板箱快速移动的电机控制。
点动、单向转动控制线路是用按钮接触器来控制电动机运转的最简单的控制线路接线示意图如下图所示。
从图中可以看出点动正转控制线路是由转换开关QS、熔断器FU、启动按钮SB、接触器KM及电动机M组成。
其中以转换开关QS作电源隔离开关,熔断器FU 作短路保护,按钮SB控制接触器KM的线圈得电、失电,接触器KM的主触头控制电动机M的启动与停止,线路工作原理如下:当电动机M需要点动时,先合上转换开关QS,此时电动机M尚未接通电源。
按下启动按钮SB,接触器KM的线圈得电,使衔铁吸合,同时带动接触器KM 的三对主触头闭合,电动机M便接通电源启动运转。
当电动机需要停转时,只要松开启动按钮SB,使接触器KM的线圈失电,衔铁在复位弹簧作用下复位,带动接触器KM的三对主触头恢复断开,电动机M失电停转。
上图中点动正转控制接线示意图是用近似实物接线图的画法表示的,看起来比较直观,初学者易学易懂,但画起来却很麻烦,特别是对一些比较复杂的控制线路,由于所用电器较多,画成接线示意图的形式反而使人觉得繁杂难懂,很不实用。
因此,控制线路通常不画接线示意图,而是采用国家统一规定的电器图形符号和文字符号,画成控制线路原理图。
点动正转控制线路原理图,如下。
它是根据实物接线电路绘制的,图中以符号代表电器元件,以线条代表联接导线。
用它来表达控制线路的工作原理,故称为原理图。
原理图在设计部门和生产现场都得到了广泛的应用。
除了点动控制电路,在工作中,还会用到各种电路,比如:起保停电路、自锁控制电路、正反转控制电路、降压启动控制电路、启停控制电路等等...。
34种自动控制原理图1.可控硅调速电路
2.电磁调速电机控制图
3.三相四线电度表互感器接线
4.能耗制动
5.顺序起动,逆序停止
6.锅炉水位探测装置
7.电机正反转控制电路
8.电葫芦吊机电路
9.单相漏电开关电路
10.单相电机接线图
11.带点动的正反转起动电路
12.红外防盗报警器
13.双电容单相电机接图
14.自动循环往复控制线路
15.定子电路串电阻降压启动控制线
16.按启动钮延时运行电路
17.星形 - 三角形启动控制线路
18.单向反接制动的控制线路
19.具有反接制动电阻的可逆运行反接制动的控制线路
20.以时间原则控制的单向能耗制动线路
21.以速度原则控制的单向能耗制动控制线路
22.电动机可逆运行的能耗制动控制线路
23.双速电动机改变极对数的原理
24.双速电动机调速控制线路
25.使用变频器的异步电动机可逆调速系统控制线路
26.正确连接电器的触点
27.线圈的连接
28.继电器开关逻辑函数
29.三相半波整流电路图
30.三相全波整流电路图
31.三相全波6脉冲整流原理图
32.六相12脉冲整流原理图
33.负载两端的电压
在一个周期中,每个二极管只有三分这一的时候导通(导通角为120度)。
负载两端的电压为线电压。
34.直流调速原理功能图。
三相异步电动机启动控制原理图1.三相异步电动机的点动控制点动正转控制线路是用按钮、接触器来控制电动机运转的最简单的正转控制线路。
所谓点动控制是指:按下按钮,电动机就得电运转;松开按钮,电动机就失电停转。
典型的三相异步电动机的点动控制电气原理图如图3-1(a)所示。
点动正转控制线路是由转换开关QS、熔断器FU、启动按钮SB、接触器KM及电动机M组成。
其中以转换开关QS作电源隔离开关,熔断器FU作短路保护,按钮SB控制接触器KM的线圈得电、失电,接触器KM的主触头控制电动机M的启动与停止。
点动控制原理:当电动机需要点动时,先合上转换开关QS,此时电动机M尚未接通电源。
按下启动按钮SB,接触器KM的线圈得电,带动接触器KM的三对主触头闭合,电动机M便接通电源启动运转。
当电动机需要停转时,只要松开启动按钮SB,使接触器KM的线圈失电,带动接触器KM的三对主触头恢复断开,电动机M失电停转。
在生产实际应用中,电动机的点动控制电路使用非常广泛,把启动按钮SB换成压力接点、限位节点、水位接点等,就可以实现各种各样的自动控制电路,控制小型电动机的自动运行。
2.三相异步电动机的自锁控制三相异步电动机的自锁控制线路如图3-2所示,和点动控制的主电路大致相同,但在控制电路中又串接了一个停止按钮SB1,在启动按钮SB2的两端并接了接触器KM的一对常开辅助触头。
接触器自锁正转控制线路不但能使电动机连续运转,而且还有一个重要的特点,就是具有欠压和失压保护作用。
它主要由按钮开关SB(起停电动机使用)、交流接触器KM(用做接通和切断电动机的电源以及失压和欠压保护等)、热继电器(用做电动机的过载保护)等组成。
欠压保护:“欠压”是指线路电压低于电动机应加的额定电压。
“欠压保护”是指当线路电压下降到某一数值时,电动机能自动脱离电源电压停转,避免电动机在欠压下运行的一种保护。
因为当线路电压下降时,电动机的转矩随之减小,电动机的转速也随之降低,从而使电动机的工作电流增大,影响电动机的正常运行,电压下降严重时还会引起“堵转”(即电动机接通电源但不转动)的现象,以致损坏电动机。
刀闸开关直接启停的电动机控制电路
胶盖刀闸的外形及刀闸开关直接启停的电动机控制电路如图2-1所示。
把开式负荷开关的胶盖打开后,能看到这种开关的全部导电零件(包括熔断丝)都安装在一块瓷底板上,彼此之间用绝缘胶盖隔开(防止合闸和分闸产生的弧光,造成短路,并能防止带电体裸露),避免人身触电。
HH3系列负荷开关适用于交流频率50Hz,额定工作电压380V、额定工作电流至200A的电路中,可作为手动不频繁地接通与分断,有负载短路保护之用。
图2-1 刀闸开关直接启停的电动机控制电路例如,额定电流60A以下的开启式负荷开关,在电力线路中可作为一般照明、电热、小水泵等回路的控制开关;在建筑施工现场作为
施工机械,如电焊机、卷扬提升机,振动机、切断机等的控制电源,也可用作分支线路的配电开关。
在户外安装时,要有防雨措施。
适当降低三极的开启式负荷开关容量,可以直接用手不频繁地控制小型电动机(如380V、4.5kW以下电动机),并可采用熔断器(熔断丝也称保险丝,断后可随时更换,但必须先排除故障点)进行短路过载保护。
电动机单方向运转控制接线图收藏此信息打印该信息添加:不详来源:未知主回路导线:按导线选择口诀选用。
控制回路导线:可使用不小于1.5mm2绝缘铜导线。
控制回路熔断器(FU2):可使用5A或10A的熔断器,装1.5A的熔丝。
导线并实际接线(实做)由空气开关在主回路保护例题:为一台7.5kw电动机单方向运行的设备作接线,选用各种电器元件及导线1、7.5kw电动机的额定电流为15A。
2、开关:可选用HQ-60/3的胶盖闸,或HK-60/3的铁壳开关。
3、主回路熔断器:可选用RClA-30/30的瓷插式熔断器,或RL1-60/30螺旋式熔断器。
4、交流接触器:可选用B25、CJ20-25、CJ10-20中的任一种。
5、热继电器:可选用JR16—26/3D、热元件的额定电流用22A或16A的,整定在15A 上。
6、控制回路熔断器:可选用RClA-5/3或RL1—15/2。
画出接线原理图并说明动作过程:由刀开关控制熔断器做主保护的电路由空气开关做主回路保护的电路工作过程:按下控制起动按钮SB2,接触器KM线圈得电铁芯吸合,主触点闭合使电动机得电运行,其辅助常开接点也同时闭合实现了电路的自锁,电源通过FU1→SB1的常闭→K M的常开接点→接触器的线圈→FU2,松开SB2,KM也不会断电释放。
当按下停止按钮S B1时,SB1常闭接点打开,KM线圈断电释放,主、辅接点打开,电动机断电停止运行。
FR为热继电器,当电动机过载或因故障使电机电流增大,热继电器内的双金属片会温度升高使FR常闭接点打开,KM失电释放,电动机断电停止运行,从而实现过载保护。
说明各元件的作用并根据给定的电动机容量选用各种电器。
开关(QS或QF)的额定电流:(1)刀开关起接通和断开电源的作用,可按3倍的电动机额定电流选择。
(2)空气开关分合电源并有短路保护的作用,可按等于或略大于电动机额定电流选择。
熔断器(FU)起短路保护作用:可按(1.5~2.5) 电动机额定电流范围内选取。
电机启动常见方法1、定时自动循环控制电路说明:(技师一)1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控制;正转维持时间为20秒钟,反转维持时间为40秒钟。
2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。
3、简述电路工作原理。
注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。
定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器KA吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并联,接通了起动控制电路。
按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时开始)。
同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电。
当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止。
KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。
这时KM2动合触点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。
因此时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。
与按钮SB2串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次起动控制电路。
热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断开,保护了电动机。
2、顺序控制电路(范例)顺序控制电路(范例)工作原理:图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。
按下起动按钮SB2,KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。
三相异步电动机的控制电路1.直接启动控制电路直接启动即启动时把电动机直接接入电网,加上额定电压,一般来说,电动机的容量不大于直接供电变压器容量的20%—30%时,都可以直接启动。
1).点动控制合上开关S,三相电源被引入控制电路,但电动机还不能起动。
按下按钮SB,接触器KM开主触点接通,电动机定子接入三相电源起动运转。
松开按钮SB,接触器KM线圈断电,衔铁松开,常开主触点断开,电动机因断电而停转。
2).直接起动控制(1)起动过程。
按下起动按钮SB1,接触Array器KM线圈通电,与SB1并联的KM的辅助常开触点闭合,以保证松开按钮SB1后KM线圈持续通电,串联在电动机回路中的KM的主触点持续闭合,电动机连续运转,从而实现连续运转控制。
(2)停止过程。
按下停止按钮SB2,Array接触器KM线圈断电,与SB1并联的KM的辅助常开触点断开,以保证松开按钮SB2后KM线圈持续失电,串联在电动机回路中的KM的主触点持续断开,电动机停转。
与SB1并联的KM的辅助常开触点的这种作用称为自锁。
图示控制电路还可实现短路保护、过载保护和零压保护。
a)起短路保护的是串接在主电路中的熔断器FU。
一旦电路发生短路故障,熔体立即熔断,电动机立即停转。
b)起过载保护的是热继电器FR。
当过载时,热继电器的发热元件发热,将其常闭触点断开,使接触器KM线圈断电,串联在电动机回路中的KM的主触点断开,电动机停转。
同时KM辅助触点也断开,解除自锁。
故障排除后若要重新起动,需按下FR的复位按钮,使FR的常闭触点复位(闭合)即可。
c)起零压(或欠压)保护的是接触器KM本身。
当电源暂时断电或电压严重下降时,接触器KM线圈的电磁吸力不足,衔铁自行释放,使主、辅触点自行复位,切断电源,电动机停转,同时解除自锁。
2.正反转控制 1).简单的正反转控制(1)正向起动过程。
按下起动按钮SB 1,接触器KM 1线圈通电,与SB 1并联的KM 1的辅助常开触点闭合,以保证KM 1线圈持续通电,串联在电动机回路中的KM 1的主触点持续闭合,电动机连续正向运转。
4个电机控制电路图,搞定所有电机控制设计!点动控制点动控制又称为寸动控制,顾名思义就是按动按钮开关,电动机得电启动运转;当松开按钮开关后,电动机失电停止运转。
点动控制是电路中最基基础的控制电路,广泛应用在电路中。
原理图点动实物接线工作原理:当按下按钮SB,交流接触器工作线圈得电吸合,其主触点瞬间闭合,接通三相电源,电动机得电启动运行;当松开按钮SB,交流接触器工作线圈失电断开,主触点瞬间断开,断开三相电源,电动机失电停止运转。
自锁控制自锁控制就是依靠接触器或者继电器自身的常开辅助触点,而使其工作线圈保持通电的现象。
它与点动控制最大区别是,点动控制是接通接触器线圈电源后,松开启动按钮后接触器线圈立马断电,电机停止;而自锁控制,当接触器线圈得电后,松开启动按钮,接触器线圈依然保持通电。
自锁控制在控制电路中可以起到很好的失压和欠压保护作用,当电路电源由于某种原因,导致电压下降,电压低于85%时,接触器的电磁系统所产生的电磁力克服不了弹簧的反作用力,因而释放,主触点打开,自动切断主电路,达到欠压保护。
当电路断电时,接触器工作线圈失电释放,自锁触点断开,当再次来电时,电机不会立刻启动,必须重新按动启动按钮SB,电机才能再次工作,起到失压保护。
自锁控制原理图自锁实物接线图工作原理:启动时,按动启动按钮SB2,接触器工作线圈得电吸合,主触点闭合,三相电源接通,电机得电运行。
在交流接触器工作线圈得电吸合同时,接触器并联在启动按钮SB2上的辅助触点闭合自锁,在启动按钮SB2松开后,电流经辅助触点保持接触器工作线圈通电吸合,所以主触点不会断开,电机保持正常工作。
互锁控制互锁控制简单理解就是两者相互制约。
比如有一台电机可以左右运行,如果没有相互制约,同时启动势必造成电源短路,因此约定左边运行时右边不能运行,右边运行时左边不能运行,这样的相互制约就是互锁。
互锁一般通过软件编程、接触器或继电器常闭触点、按钮的动断触点来实现。