一种新的山脊线和山谷线自动提取方法
- 格式:pdf
- 大小:261.66 KB
- 文档页数:5
山脊线、山谷线和鞍部点的提取山脊线、山谷线和鞍部点的提取一.实习背景山脊线、山谷线是地形特征线,它们对地形、地貌具有一定的控制作用。
它们与山顶点、谷底点以及鞍部点等一起构成了地形及其起伏变化的骨架结构。
因此在数字地形分析中,山脊线和山谷线以及地形特征点等的提取和分析是很有必要的。
相邻两山头之间呈马鞍形的低凹部分称为鞍部,鞍部是两个山脊和两个山谷会合的地方。
鞍部点是重要的地形控制点,它和山顶点、山谷点以及山脊线、山谷线等构成的地形特征点线,具有对地形具有很强的控制作用。
因此,对这些地形特征点、线的分析研究在数字地形分析中具有很重要的意义。
同时,由于鞍部点的特殊地貌形态,使得鞍部点的提取方法较山顶点和山谷的提取更难,目前没有什么有效的方法来提取鞍部点,利用水文分析的方法可以来提取一些鞍部点,但是它还是具有一定局限性。
二.实习目的(1)熟练掌握基于DEM利用ArcGIS进行提取相关地形特征的方法与原理;(2)深入认识山脊线、山谷线和鞍部点3个基本地形特征;三.实习内容1.提取dem数据的SOA2基于地形表面的几何形态分析方法提取山脊线山谷线3.基于DEM水文分析方法提取山脊线山谷线4.鞍部点的提取四.实习数据DEM五.实习工具Surface Analyst,model工具六.实习步骤1.提取DEM的SOA数据A.求取原始DEM数据层的最大高程值,记为H;通过Spatial Analysis 下的栅格计算器 Calculator,公式为(H-DEM),得到与原来地形相反的 DEM数据层,即反地形DEM数据;B.基于反地形 DEM数据求算坡向值;C.利用 SOA 方法求算反地形的坡向变率,记为 SOA2,由原始DEM数据求算出的坡向变率值为 SOA1;D.在 Spatial Analysis下使用栅格计算器 Calculator,公式为 SOA =(([SOA1]+[SOA2])-Abs([SOA1]-[SOA2]))/ 2,即可求出没有误差的 DEM 的坡向变率,2.利用基于地形表面的几何形态分析方法提取山脊线山谷线(1)山脊线的提取其中在focal statistics中选择3*3的窗口,类型选择为mean,在minus中再次导入DEM,进行计算。
dem 数据生成山脊线的操作流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!DEM数据生成山脊线的操作流程详解在地理信息系统(GIS)中,数字高程模型(Digital Elevation Model, DEM)是一种用于表示地形地貌的重要数据类型。
第一章习题一、判断题1、等高线地形图上,地形起伏、地物等的描述是以象形符号、色彩或明暗的变化来表示的。
(在等高线地形图上,地形起伏、地物等的描述不再是象形符号、色彩或明暗的变化,而是正交地投影在水平面上,相邻高程相等的点连接而成的闭合曲线表示地形起伏特征和形态结构,线划符号表示按比例缩小的地物。
)2、数字地形表达的方式可以分为两大类,即数字描述和图形描述。
(数学描述)3、高程常常用来描述地形表面的起伏形态,(传统)高程模型就是等高线,其数学意义是定义在三维(二维)地理空间上的连续曲面函数,当此高程模型用计算机来表达时,称为数字高程模型。
×(高程数据常常采用绝对高程或海拔(即从大地水准面起算的高度),因此DEM也常常称为DTM。
本书对数字高程模型的定义为:数字高程模型是对二维地理空间上具有连续变化特征地理现象的模型化表达和过程模拟,英文名称为Digital Elevation Model,简称DEM。
简单地说,空间起伏连续变化现象的数字化表示和分析工具的集合。
)4、DEM指以绝对高程或海拔表示的地形模型,而DTM泛指地形表面自然、人文、社会景观模型。
5、我们在建立DEM网络时需要考虑网络在空间上的分布状态。
√6、不论是数字地貌模型还是数字地形模型,都是在数字高程模型所确定的平面位置上用相应的地形特征值取代高程而形成的,但这一原则不适合于非地形要素的数字建模。
×(不论是数字地貌模型还是数字地形模型,都是在数字高程模型所确定的平面位置上用相应的地形特征值取代高程而形成的,这是由数字高程模型的本质所决定的,即DEM是二维地理空间上地形要素的定位和数字描述。
这一原则同样也适合于非地形要素的数字建模,只要该非地形要素可用数字形式(编码)来描述,则可形成各自的数字模型。
)7、建立在地形数据上的数据处理方法不适合于非地形数据的处理。
×数字高程模型应用范畴与前景(● 地学分析应用。
● 非地形特性应用。
实例与练习练习1. 利用水文分析方法提取山脊、山谷线1.背景:山脊线、山谷线是地形特征线,它们对地形、地貌具有一定的控制作用。
它们与山顶点、谷底点以及鞍部点等一起构成了地形及其起伏变化的骨架结构。
因此在数字地形分析中,山脊线和山谷线以及地形特征点等的提取和分析是很有必要的。
2.目的:理解基于DEM结合水文分析的方法提取出研究区域的山脊线和山谷线的原理;掌握水流方向、汇流累积量的提取方法以及它们的提取原理;能将水文分析的方法和其它的空间分析方法相结合以解决应用问题。
3.要求:(1)利用水文分析思想和工具提取研究区域的山脊线;(2)利用水文分析思想和工具提取研究区域的山谷线。
4.数据:一幅25m分辨率的黄土地貌DEM数据,数据的区域大概有140 km2。
数据存放于…/ChP11/Ex1中,请将其拷贝到E:/ChP11/Ex1。
结果数据保存在…/ChP11/Ex1/Result 中。
5.算法思想:对于水文物理过程研究而言,由于山脊、山谷分别表示分水性与汇水性,山脊线和山谷线的提取实质上也是分水线与汇水线的提取。
因此,对于山脊线和山谷线就可以利用水文分析的方法进行提取。
基于DEM的这种地形表面流水物理模拟分析的原理是:对于山脊线而言,由于它同时也是分水线,那么对于分水线上的那些栅格,由于分水线的性质是水流的起源点,通过地表径流模拟计算之后这些栅格的水流方向都应该只具有流出方向而不存在流入方向,也就是其栅格的汇流累积量为零。
通过对零值的汇流累积值的栅格的提取,就可以得到分水线,也就得到了山脊线;对于山谷线而言,由于其具有汇水的性质,那么对于山谷线的提取,可以利用反地形的特点,即是利用一个较大的数值减去原始的DEM数据,而得到了与原始地形完全相反的地形数据,也就是原始的DEM中的山脊变成负地形的山谷,而原始DEM中的山谷在负地形中就变成了山脊,那么,山谷线的提取就可以在负地形中利用提取山脊线的方法进行提取。
山谷(脊)线的提取方法研究作者姓名刘金柱专业测绘工程指导老师杨容浩摘要近年来对DEM的研究,主要是从其中提取需要的有用信息,其中山脊线与山谷线这类重要的地形信息是近几十年来国内外研究比较热门的方向。
论文首先介绍了ArcGIS关于山谷线山脊线的提取原理与步骤,然后又引入TauDEM软件,着重介绍了其关于山脊线与山谷线提取的原理,包括8方向(D8)流水方向计算以及D8有效邻域分析的原理与实现方法。
通过对负地形的生成、水流方向上洼地提取及填充、选择合适的阈值、D8水流方向的计算理论、D8有效邻域的分析与处理等的研究,提出用计算汇流量的原理提取等高线。
然后通过二值化舍去非山谷(脊)线的数据信息,即可得到清晰的山谷(脊)线。
关键词:数字高程模型,地形分析,山谷(脊)线,水流方向Study On Methods of Valley ( Ridge)Lines ExtractionAbstract:In recent years, the research based on DEM are mostly about extracting useful information from it,and extracting valley (ridge) lines is one of the most extensive direction both at home and abroad.Firstly,the article gives a detailed description of the extracting principles and steps on ArcGIS,and then describes the TauDEM software,which emphatically introduces the principle of the extraction, including eight directions (D8) water computing as well as analysis and realization methods of the D8 contribution area.This paper mainly studies the generating of the negative terrain,the extraction and filling of Depression in the direction of flow,choosing a suitable threshold to determine the accuracy of grid data and suitability,the calculation of the D8 flow, and the analysis of the D8 contribution areas,thus proposing a new principle to extract the valley (ridge) lines based on calculating the flow.Then binaries and eliminats non-data of valley (ridge) lines.Finally we can get the sharp-edged valley (ridge) lines.Key words: Digital Elevation Model , Terrain Analysis,TauDEM ,Valley (Ridge) Line , The Direction Of Flow目录第1章前言 (1)1.1 山谷(脊)线提取的目的和意义 (1)1.2 山谷(脊)线提取技术的研究现状 (2)1.3山谷(脊)线提取的主要方法分类 (4)1.4本文研究内容及方法 (5)第2章基于ArcGIS的山谷(脊)线提取方法 (6)2.1 ArcGIS软件简介 (6)2.2 ArcGIS山谷(脊)线提取的基本原理 (6)2.3 ArcGIS山谷(脊)线提取的方法步骤 (7)第3章基于TauDEM的山谷(脊)线提取方法 (17)3.1 TauDEM软件简介 (17)3.2 TauDEM山谷(脊)线提取的基本原理 (18)3.3 TauDEM山谷(脊)线提取的方法步骤 (20)第4章山谷(脊)线提取结果的对比分析 (26)4.1 TauDEM与ArcGIS山谷(脊)线提取结果对比分析 (26)4.2 TauDEM山谷(脊)线提取结果优势总结 (28)4.3 ArcGIS与TauDEM的结合处理 (29)结论 (31)致谢 (33)参考文献 (34)第1章前言1.1 山谷(脊)线提取的目的和意义山谷线和山脊线是重要的地形特征信息,对地形及其相关领域的研究有重要的意义,山谷(脊)线的提取一直都受到相关研究人员的广泛关注。
地形分析报告三种形式地形地貌分析地形地貌分析是城市规划中的重要内容,是城市规划的基础分析之一。
地形地貌分析在城市规划的不同时期不同深度中都有非常广泛的应用,从宏观尺度的城市选址、城市布局、功能区组织到微观尺度的道路管网、景观组织无一不受地形地貌的影响,因此,地形地貌分析对城市规划的影响是无处不在的。
长时间以来,城市规划的基础数据通常是平面的地形图数据, 可以在其基础上进行简单的地形分析,近年来随着信息技术尤其是GIS技术的发展, 各种新方法和应用模型不断融入到城市规划领域,传统的地形分析由二维平面分析发展到了新的三维地形分析和三维透视图,从而帮助规划人员根据地形特征进行合理科学的城市规划。
地形分析的基础是要建立数字高程模型(DEM)。
DEM主要用于描述地面起伏状况,可以用于提取各种地形参数,如坡度、坡向等,并进行通视分析等应用分析。
目前DEM的建立主要来源于:①地形图中的等高线;②通过遥感影像提取高程数据;③其它方式,如全球定位系统(GPS)和激光扫描测高系统等。
DEM包括两种表达形式:规则网格(GRID) 和三角网(TIN)。
此外,基于二维平面形式表示的等值线图也可以理解为数字搞成的另一种表达方式。
GRID是由一组大小相同的网格描述地形表面,它能充分表现高程的细节变化,拓扑关系简单,但对于表达不规则的地面特征则略显不协调。
TIN是由分散的地形点按照一定的规则构成的一系列不相交的三角形组成的,与不规则的地面特征和谐一致,可以表示纤细功能特征和叠加任意形状的区域边界。
GRID 常用的生成算法有包括反距离权插值、趋势面插值、样条插值、克里金插值等;TIN 生成算法主要有分割2归并法、逐点插入法和逐步生长法。
城市规划中地形分析的实质就是对DEM的应用范围进行拓广和延伸。
从地形分析的复杂性角度, 可以将地形分析分为两类: 一类是基本地形因子(包括坡度、坡向等)的计算; 另一类是衍生出的其它的地形分析, 包括地形量算、通视分析、地形特征提取等。
山脊线和山谷线提取插件版本V1.0操作说明1/6山脊线和山谷线提取插件操作说明1引言1.1编写目的编写本使用说明的目的是充分叙述本脚本软件所能实现的功能及其运行环境,以便使用者了解本脚本软件的使用范围和使用方法。
1.2编写背景山脊线和山谷线的提取在很多行业,例如环境保护、水文水利、农业等行业应用很广泛。
目前主要依赖ArcGIS中的空间分析工具来完成,需要使用13个空间分析工具来完成,费时费力,同时会产生许多中间过程文件。
本插件使用Python 语言,基于ArcGIS10进行二次开发,基于DEM数字高程模型,使用1个脚本来实现山脊线和山谷线的提取。
技术问题可以在QQ群讨论:9609331152运行环境2.1软件环境win7及以上版本、ArcGIS10.0及以上版本2.2硬件环境CPU:2.4GHz以上硬盘:至少4G以上的空闲空间内存:至少4G的空闲内存显示器分辨率:1280×600以上山脊线和山谷线提取插件版本V1.0操作说明1/63运行原理本插件运行原理如下图所示:图1:山谷线和山脊线提取脚本运行过程(1)坡向分析对输入的地形图进行坡向分析(Aspect),结果记为A。
結果示例如下:(2)坡度分析Slope对第一步的结果进行坡度分析,结果记为SOA1。
(3)反地形DEM求取原始DEM数据层的最大高程值,记为H;通过栅格计算器计算,公式为H-DEM,得到与原来地形相反的DEM数据层,既反地形DEM。
结果记为rastercalc。
(4)反地形的坡向分析求反地形DEM的坡向。
结果记为Aspect_raste1.(5)反地形的坡度分析求反地形的坡向变率,记为SOA2(6)然后利用soa1和soa2求得没有误差的DEM的坡向变率(注意大小写一致)利用栅格计算器,公式:(([SOA1]+[SOA2])-Abs([SOA1]-[SOA2]))/2,结果记为SOA。
(7)邻域计算Block Statistics设置Statistic type(默认为MEAN平均值),领域的类型默认为矩形(也可以设置为其他类型),领域大小自行设置(可以是3×3,下图设置为275×275)。
山脊线山谷线提取实验报告实验内容描述:山脊线和山谷线构成了地形起伏变化的分界线(骨架线),因此它对于地形地貌研究具有重要意义;另一方面,对于水文物理过程研究而言,由于山脊、山谷分别代表示分水性与汇水性,山脊线和山谷线的提取实质上也是分水线与汇水线的提取。
本次实验通过某区域栅格DEM掌握山脊线和山谷线这两个基本地形特征信息的理论及其基于DEM的提取方法与原理;同时,熟练掌握利用ArcGIS软件对这两个地形特征信息的提取方法。
实验原理:1.本实验基于规则格网DEM数据使用平面曲率与坡形组合法提取山脊线和山谷线,首先利用DEM数据提取地面的平面曲率及地面的正负地形,取正地形上平面曲率的大值即为山脊,负地形上平面曲率的大值为山谷。
实际应用中,由于平面曲率的提取比较繁琐,而坡向变率(SOA)在一定程度上可以很好地表征平面曲率。
因此,提取过程中可以SOA代替平面曲率。
2.主要用到以下理论知识:1)坡向变率:是指在提取坡向基础上,提取坡向的变化率,亦即坡向之坡度(Slope of Aspect,SOA)。
它可以很好地反应等高线弯曲程度;2)反地形DEM数据:求取原始DEM数据层的最大高程值,记为H,通过公式(H-DEM),得到与原来地形相反的DEM数据层,即反地形DEM数据;3)地面坡向变率SOA:地面坡向变率在所提取的地表坡向矩阵的基础上沿袭坡度的求算原理,提取地表局部微小范围内坡向的最大变化情况。
但是SOA在提取过程中在北面坡将会有误差产生,所以要将北坡坡向的坡向变率误差进行纠正,其公式为:SOA=(( [SOA1]+[ SOA2] )-Abs( [SOA1]-[ SOA2] ))/2其中:SOA1为原始DEM数据层坡向变率,SOA2为反地形DEM数据层坡向变率。
4)焦点统计5)ArcScan自动矢量化流程图、实验步骤:1.相对路径2.加载数据3.提取原始dem的坡向(利用dem数据--空间分析--表面分析--坡度工具,命名为Aspect)4.提取原始DEM数据的坡向变率(利用3中生成的Aspect图层--空间分析--表面分析--坡度工具,命名为SOA1)5.提取反地形DEM数据(栅格计算器--输入公式H-DEM)1)找出DEM最大高程值(右键属性---找出数据源中最大值为1153.791870117188)2)栅格计算器提取反地形DEM数据(输入公式1153.791870117188 - "dem",命名为INdem)6.提取反地形DEM数据的坡向值7.计算反地形DEM数据的坡向变率8.计算进行误差纠正的地面坡向变率(栅格计算器--输入公式(("SOA1" + "SOA2") - Abs("SOA1" - "SOA2")) / 2)9.邻域分析(原始dem--邻域分析--焦点统计focal statistics(统计原始dem的平均值)---设置统计类型为平均值mean,邻域类型为矩形(也可为圆形),邻域大小为3*3(我发现邻域越大越模糊)(11*11),则可得到一个邻域为3*3(11*11)的矩形的平均数据层,命名为mean10.计算正负地形分布区域(空间分析--地图代数--栅格计算器---输入公式为"dem" - "mean",命名为Dvalue(差值))11.利用栅格计算器提取山脊线(公式为"SOA" > 70 & "Dvalue" > 0这是错的!!要加括号!!("SOA" > 70) &( "Dvalue" > 0))和山谷线(("SOA" > 70) & ("Dvalue" < 0))12.利用ArcScan自动矢量化得到山脊线山谷线的矢量图层1)在ArcCatalog中新建(方法有两种:右击文件夹--new--shapefile!或者是右击geodatabase--new--feature class(新建要素类))山脊线图层(名称为shanjiline,类型为线)方法1:new--shapefile方法2:new--feature class(但是这种方法下的线图层,在自动矢量化山脊线后无法读到这个图层,所有还是选择方法1---这是因为栅格图层和矢量图层不能放在同一个geodatabase里面么)2)打开开始编辑3)勾选扩展工具中的自动矢量化工具ArcScan4)在菜单栏空白处右击勾选ArcScan,打开ArcScan工具条--单击自动矢量化下的生成要素打开生成要素对话框即可生成自动矢量化后的矢量山脊线5)用同样的方法生成矢量山谷线13.制作立体图。
基于DEM自动提取山脊线、山谷线方法研究作者:栗丹来源:《环球人文地理·评论版》2015年第01期摘要:从数字高程模型中自动提取山脊线和山谷线的技术在测绘、工程设计等方面有着重要的意义。
传统依靠二维等高线形态分析方法提取的山脊线和山谷线很难得到理想效果。
本文设计出了一种基于水文地貌关系正确的DEM中自动提取山脊线和山谷线方法,同时采用单流向(D8)算法和多流向(Dinf)算法分别对提取山脊线和山谷线结果进行对比分析,得出采用多流向算法提取山脊线和山谷线时,结果与实际地形相符。
关键词:山脊线;算法;地形分析一、引言山脊线、山谷线作为地形特征线对地形、地貌具有一定的控制作用[1] -[3]。
它们与山顶点、谷底点以及鞍部点等一起构成了地形及其起伏变化的骨架结构。
由于山脊线具有分水性,山谷线具有汇水性特征使得它们在工程应用方面具有特殊的意义[4]。
研究人员借助地形表面流水模拟的方法从DEM 数据中自动提取山脊线和山谷线,用于区域地形的水分析[5] 。
因此在数字地形分析中,山脊线和山谷线的提取和分析是具有很大应用价值的[7]。
所以在本实验中,基于水文分析方法在DEM中采用不同算法提取出山脊线和山谷线,是本文研究的一个重点,也是在以往实验基础上的一个创新,通过实验使我们在以后能够利用水文分析的方法与其它空间分析方法相结合以解决实际应用问题。
二、研究方法1.山脊线和山谷线提取技术路线提取山脊线和山谷线可以利用水文分析的方法进行,对分水线和汇水线进行提取是在实际操作中的步骤。
水流的起源点的定义是分水线的性质。
通过提取零值的汇流累积值的栅格,分水线就可以得到。
汇水线由于具有汇水作用而具有较大的上游汇水面积,在提取山谷线时,利用反地形的特点,即利用一个较大的数值减去原始的DEM数据,得到与原始地形完全相反的地形数据,使得原始的DEM中的山脊变成反地形的山谷,而原始DEM中的山谷在反地形中就变成了山脊,再利用山脊线的提取方法就可以实现山谷线的提取。
山谷线、山脊线提取自动提取山脊线和山谷线arcmap 自动提取山脊线和山谷线的方法1 平面曲率与坡形组合法基于规则格网DEM是最主要的自动提取山脊线和山谷线的方法,从算法设计原理上来分,大致可以分为以下五种:1) 基于图像处理技术的原理;2) 基于地形表面几何形态分析的原理;3) 基于地形表面流水物理模拟分析原理;4) 基于地形表面几何形态分析和流水物理模拟分析相结合的原理;5) 平面曲率与坡形组合法。
平面曲率与坡形组合法提取的山脊、山谷的宽度可由选取平面曲率的大小来调节,方法简便,效果好。
该方法基本处理过程为:首先利用DEM数据提取地面的平面曲率及地面的正负地形,取正地形上平面曲率的大值即为山脊,负地形上平面曲率的大值为山谷。
实际应用中,由于平面曲率的提取比较繁琐,而坡向变率(SOA)在一定程度上可以很好地表征平面曲率。
因此,下面的提取过程以SOA代替平面曲率。
具体提取过程为:1)激活DEM 数据,在Spatial Analysis 下使用surface 菜单下的Derive Aspect 命令,提取DEM 坡向层面,记为A;2)激活A 层面,在Spatial Analysis 下使用surface 菜单下的Derive Slope 命令,提取A 层面的坡度信息,记为SOA1;3)求取原始DEM 数据层的最大高程值,记为H;通过Spatial Analysis 下的栅格计算器Calculator,公式为(H-DEM),得到与原来地形相反的DEM 数据层,即反地形DEM 数据;4)基于反地形DEM 数据求算坡向值;5)利用SOA 方法求算反地形的坡向变率,记为SOA2;6)在Spatial Analysis 下使用栅格计算器Calculator,公式为SOA =(([SOA1]+[SOA2])-Abs ([SOA1]-[SOA2]))/ 2,即可求出没有误差的DEM 的坡向变率SOA;7)激活原始DEM 数据,在Spatial Analysis 下使用栅格邻域计算工具Neighborhood Statistics;设置Statistic type 为平均值,邻域的类型为矩形(也可以为圆),邻域的大小为275×275 MAP,则可得到一个邻域为275×275 MAP的矩形的平均值层面,记为B;8)在Spatial Analysis 下使用栅格计算器Calculator,公式为C =[DEM]-[B],即可求出正负地形分布区域,9)在Spatial Analysis下使用栅格计算器Calculator,公式为D =[C] >0 & SOA > 70,即可求出山脊线;10)同理,在栅格计算器Calculator 中,修改公式为D =[C] < 0 & SOA > 70,即可求出山谷线地形特征信息提取(山谷线、山脊线)方法1:SOA法SOA法原理:山谷线和山脊线实质是平面曲率发生突变的地方,所以用SOA来近似平面曲率,提取其中变法大的就是山谷线和山脊线,其中山谷线对应的是负地形中SOA较大的值,山脊线对应的是正地形中SOA较大的值。
山脊山谷线的提取山脊山谷线的提取1.背景:作为地形特征线的山脊线、山谷线对地形、地貌具有一定的控制作用。
它们与山顶点、谷底点以及鞍部点等一起构成了地形起伏变化的骨架结构。
同时由于山脊线具有分水性,山谷线具有合水特征,使得它们在地形分析中具有特殊的意义。
2.目的:了解基于DEM水文分析方法提取山脊线和山谷线的原理,掌握水流方向、汇流累积提取原理及方法。
3.要求:利用ArcGIS水文分析模块提取出样区的山脊线和山谷线。
4.数据:25米分辨率的DEM数据,区域面积约140平方公里。
5.算法思想:山脊线和山谷线的提取实质上是分水线和汇水线的提取。
因此,可以利用水文分析的方法进行提取。
对于山脊线而言,由于它同时也是分水线,而分水线的性质即为水流的起源点。
所以,通过地表径流模拟计算之后,这些栅格的水流方向都应该只具有流出方向而不存在流入方向,及栅格的汇流累计为0.因此通过对0值的提取,就可得到分水线,即山脊线。
对山谷线而言,可以利用反地形计算。
即利用一个较大的数值减去原始DEM数据,得到与原始DEM地形相反的地形数据,使得原始的DEM中的山脊变成反地形的山谷,而原始DEM中的山谷在反地形中就变成了山脊。
再利用山脊线的提取方法就可以实现山谷线的提取。
但是此方法提取出的山脊和山谷位置有些偏差,可以利用正、负地形加以纠正。
6.操作步骤:(1)正负地形的提取。
1)在ArcMap中加载样区的原始DEM数据。
2)加载SpatialAnalyst模块,单击SpatialAnalyst模块的下拉箭头,单击Neighborhood Statistics菜单工具,利用邻域分析的方法以11*11的窗口计算平均值,计算结果命名为meandem3)单击SpatialAnalyst中的RasterCalculator 命令,对原始DEM数据域邻域分析之后的数据meandem做减法运算。
4)对运算结果进行两次重分类(Reclassify命令),分级界限为0.一次将大于0的区域赋值为1(即正地形),小于0的区域赋值为0,命名为zhengdixing,如图所示。
一种山脊线和山谷线提取的新方法
近日,一项新的山脊线和山谷线提取方法的研究受到了科
技界的广泛关注。
其最新研究成果为提取山脊线和山谷线提供
了一种高效的方案。
该提取方法主要采用连接极值的方式。
首先,通过引入中
间极值,根据灰色关联度来检测极值,发现局部最大、最小值,建立极值结构图剔除局部极值;然后,判断极值之间的关联关系,使用基于非重叠平窗的邻接关系建立回路,进而形成山脊
线和山谷线;最后,通过滤波处理得到平滑纹理,可以得到较
好的提取结果。
这种提取方法证明比其它经典方法更加高效,更加稳定。
原理上,它利用灰色关联度捕捉极值的变化规律,避免了局部
最小值/最大值的误检,提高了极值检出的准确性;算法上,
它通过基于平窗判别邻接关系,不受明显大山谷和山脊裂缝的
影响,消除歧义,从而简化算法处理过程,减少了算法的计算
量和工作量。
因此,在反演海洋、地震勘探、高分辨率遥感影像等领域,这种新的提取方法将会有广泛的应用,同时也丰富了互联网的
内容,提高了人们的智能化体验。
基于水文分析方法提取山脊线和山谷线1.提取思路:基于水文分析方法提取山脊线和山谷线实际上是对分水线和汇水线的提取。
对于山脊线来说,它同时也是分水线,即水流的起始点。
因此通过地表径流计算后,这些栅格的水流方向应该都只具有流出方向而不存在流入方向,也就是说这些栅格的汇流累积量为0,因此通过对0值的提取也就得到了山脊线。
对山谷线的提取,可以对反地形DEM数据提取山脊线,得到的就是实际上的山谷线。
2.基础操作步骤介绍:2.1 正负地形的提取:选择【系统工具箱→Spatial Analyst Tools→邻域分析→焦点统计】工具,得到邻域大小为11×11(可以根据需要自行设置)的矩形的平均值数据层Mean_DEM。
选择【系统工具箱→Spatial Analyst Tools→地图代数→栅格计算器】工具,输入"DEM" - "Mean_DEM"地图代数公式,得到正负地形分布区域数据层。
选择【系统工具箱→Spatial Analyst Tools→重分类→重分类】工具,将大于0的区域赋值为1,小于0的区域赋值为0,得到正地形数据层zhengdixing。
同样,选择【系统工具箱→Spatial Analyst Tools→重分类→重分类】工具,将大于0的区域赋值为0,小于0的区域赋值为1,得到负地形数据层fudixing。
2.2 山脊线的提取:选择【系统工具箱→Spatial Analyst Tools→水文分析→填洼】工具,对原始DEM进行洼地填充,得到无洼地DEM数据层Fill_DEM。
具,对无洼地DEM数据进行水流方向计算,得到流向数据层FlowDir。
具,计算汇流累积量,得到数据层FlowAcc。
选择【系统工具箱→Spatial Analyst Tools→地图代数→栅格计算器】工具,输入地图表达式"FlowAcc" == 0,提取汇流累积量为0的栅格区域,得到数据层Facc0。
实验项目名称:地形特征信息提取(山脊线、山谷线提取)1、背景地信特征要素,主要是指对地形对地表的空间分布特征具有控制作用的点、线或面状要素。
特征地形要素构成地表地形与起伏变化的基本框架。
特征地形要素的提取更多地应用较为复杂的技术方法,如山谷线、山脊线等的提取采用了全局分析法,成为栅格数据地学分析中很具特色的数据处理内容。
自动提取山脊线和山谷线的主要方法都是基于规则格网DEM数据的,算法有多种,其中,平面曲率与坡形组合法方法简便,效果好。
该方法基本处理过程为:首先利用DEM数据提取地面的平面曲率及地面的正负地形,取正地形上平面曲率的大值即为山脊,负地形上平面曲率的大值为山谷。
实际应用中,由于平面曲率的提取比较繁琐,而坡向变率(SOA)在一定程度上可以很好地表征平面曲率。
因此,提取过程中可以SOA代替平面曲率。
2、目的通过本实例,使学生掌握山脊线和山谷线这两个基本地形特征信息的理论及其基于DEM的提取方法与原理。
同时,熟练掌握利用ArcGIS软件对这两个地形特征信息的提取方法。
3、数据某区域栅格DEM。
4、要求利用所给区域DEM数据,提取该区域山脊线、山谷线栅格数据层。
补充资料:1、坡度变率:地面坡度变率,是地面坡度在微分空间的变化率,是依据坡度的求算原理,在所提取的坡度值的基础上对地面每一点再求算一次坡度,即坡度之坡度(Slope of Slope,SOS)。
坡度是地面高程的变化率的求解,因此,坡度变率表征了地表面高程相对于水平面变化的二阶导数。
2、反地形DEM数据:求取原始DEM数据层的最大高程值,记为H,通过公式(H-DEM),得到与原来地形相反的DEM数据层,即反地形DEM数据。
3、地面坡向变率:是指在提取坡向基础上,提取坡向的变化率,亦即坡向之坡度(Slope of Aspect,SOA)。
它可以很好地反应等高线弯曲程度。
地面坡向变率在所提取的地表坡向矩阵的基础上沿袭坡度的求算原理,提取地表局部微小范围内坡向的最大变化情况。