第六章 非线性规划
- 格式:docx
- 大小:16.68 KB
- 文档页数:2
非线性规划非线性规划是一种涉及非线性目标函数和/或非线性约束条件的优化问题。
与线性规划不同,非线性规划可能存在多个局部最优解,而不是全局最优解。
非线性规划在许多领域都有广泛的应用,如经济学、工程学和管理学等。
非线性规划的一般形式可以表示为:最小化或最大化 f(x),其中 f(x) 是一个非线性函数,x 是决策变量向量。
满足一组约束条件g(x) ≤ 0 和 h(x) = 0,其中 g(x) 和 h(x) 是非线性函数。
为了求解非线性规划问题,可以使用不同的优化算法,如梯度下降法、牛顿法和拟牛顿法等。
这些算法的目标是找到目标函数的最小值或最大值,并满足约束条件。
非线性规划的难点在于寻找全局最优解。
由于非线性函数的复杂性,这些问题通常很难解析地求解。
因此,常常使用迭代算法来逼近最优解。
非线性规划的一个重要应用是在经济学中的生产计划问题。
生产活动通常受到多个因素的限制,如生产能力、原材料和劳动力等。
非线性规划可以帮助确定最佳的生产数量,以最大化利润或最小化成本。
另一个应用是在工程学中的优化设计问题。
例如,优化某个结构的形状、尺寸和材料以满足一组要求。
非线性规划可以帮助找到最佳设计方案,以最大程度地提高性能。
在管理学中,非线性规划可以用于资源分配和风险管理问题。
例如,优化一个公司的广告预算,以最大程度地提高销售额。
非线性规划可以考虑多种因素,如广告投入和市场需求,以找到最佳的广告投放策略。
总之,非线性规划是一种重要的优化方法,用于解决涉及非线性目标函数和约束条件的问题。
它在经济学、工程学和管理学等领域有广泛的应用。
尽管非线性规划的求解难度较大,但通过合适的优化算法,可以找到最佳的解决方案。
非线性规划知识点讲解总结1. 非线性规划的基本概念非线性规划是指目标函数和/或约束条件包含非线性项的优化问题。
一般来说,非线性规划问题可以表示为如下形式:\[\min f(x)\]\[s.t. \ g_i(x) \leq 0, \ i=1,2,...,m\]\[h_j(x)=0, \ j=1,2,...,p\]其中,\(x \in R^n\)是优化变量,\(f(x)\)是目标函数,\(g_i(x)\)和\(h_j(x)\)分别表示不等式约束和等式约束。
目标是找到使目标函数取得最小值的\(x\)。
2. 非线性规划的解决方法非线性规划问题的求解是一个复杂的过程,通常需要使用数值优化方法来解决。
目前,常用的非线性规划求解方法主要包括梯度方法、牛顿方法和拟牛顿方法。
(1)梯度方法梯度方法是一种基于目标函数梯度信息的优化方法。
该方法的基本思想是在迭代过程中不断沿着梯度下降的方向更新优化变量,以期望找到最小值点。
梯度方法的优点是简单易实现,但缺点是可能陷入局部最优解,收敛速度慢。
(2)牛顿方法牛顿方法是一种基于目标函数的二阶导数信息的优化方法。
该方法通过构造目标函数的泰勒展开式,并利用二阶导数信息来迭代更新优化变量,以期望找到最小值点。
牛顿方法的优点是收敛速度快,但缺点是计算复杂度高,需要计算目标函数的二阶导数。
(3)拟牛顿方法拟牛顿方法是一种通过近似求解目标函数的Hessian矩阵来更新优化变量的优化方法。
该方法能够克服牛顿方法的计算复杂度高的问题,同时又能保持相对快速的收敛速度。
拟牛顿方法的典型代表包括DFP方法和BFGS方法。
3. 非线性规划的应用非线性规划方法在实际生活和工程问题中都有着广泛的应用。
以下将介绍非线性规划在生产优化、资源分配和风险管理等领域的应用。
(1)生产优化在制造业中,生产线的优化调度问题通常是一个非线性规划问题。
通过对生产线的机器设备、生产工艺和生产速度等因素进行建模,并设置相应的目标函数和约束条件,可以使用非线性规划方法来求解最优的生产调度方案,以最大程度地提高生产效率和减少成本。
第六章 非线性规划由前几章知道,线性规划的目标函数和约束条件都是其自变量的线性函数,如果目标函数或约束条件中包含有自变量的非线性函数,则这样的规划问题就属于非线性规划。
第一节 基本概念一、 非线性规划的数学模型非线性规划数学模型的一般形式是⎪⎩⎪⎨⎧=≥==),,2,1(0)(),,2,1(0)()(min l j x g m i x h x f ji (6.1)其中,X=(n χχχ,,,21 )T 是n 维欧氏空间E n 中的点(向量),目标函数)(X f 和约束函数)()(X j X i g h 、为X 的实函数。
有时,也将非线性规划的数学模型写成 ⎩⎨⎧=≥),,2,1(0)()(min l j X g X f j (6.2)即约束条件中不出现等式,如果有某一约束条件为等式0)(=X g j ,则可用如下两个不等式约束替代它: ⎩⎨⎧≥-≥0)(0)(X g X g jj模型(6.2)也常表示成另一种形式:{}⎩⎨⎧=≥=⊂∈),,2,1(,0)(|),(min l j X g X R E R X X f j n (6.3)上式中R 为问题的可行域。
若某个约束条件氏“≤”不等式的形式,只需用“-1”乘这个约束的两端,即可将其变成“≥”的形式。
此外,由于[])(m in )(m ax x f X f --=,且这两种情况下求出的最优解相同(如有最优解存在),故当需使目标函数极大化时,只需求其负函数极小化即可。
二、二维问题的图解当只有两个自变量时,求解非线性规划也可像对线性规划那样借助于图解法。
考虑非线性规划问题⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≥-+=-+-+-=000505)1()2()(min 212122212221x x x x x x x x x X f (6.4)如对线性规划所作的那样,在21Ox x 坐标平面画出目标函数的等值线,它是以点(2.1)为圆心的同心圆,再根据约束条件画出可行域,它是抛物线段ABCD (图6-1)。
1. 非线性规划我们讨论过线性规划,其目标函数和约束条件都是自变量的线性函数。
如果目标函数是非线性函数或至少有一个约束条件是非线性等式(不等式),则这一类数学规划就称为非线性规划。
在科学管理和其他领域中,很多实际问题可以归结为线性规划,但还有另一些问题属于非线性规划。
由于非线性规划含有深刻的背景和丰富的内容,已发展为运筹学的重要分支,并且在最优设计,管理科学,风险管理,系统控制,求解均衡模型,以及数据拟合等领域得到越来越广泛的应用。
非线性规划的研究始于三十年代末,是由W.卡鲁什首次进行的,40年代后期进入系统研究,1951年.库恩和.塔克提出带约束条件非线性规划最优化的判别条件,从而奠定了非线性规划的理论基础,后来在理论研究和实用算法方面都有很大的发展。
非线性规划求解方法可分为无约束问题和带约束问题来讨论,前者实际上就是多元函数的极值问题,是后一问题的基础。
无约束问题的求解方法有最陡下降法、共轭梯度法、变尺度法和鲍威尔直接法等。
关于带约束非线性规划的情况比较复杂,因为在迭代过程中除了要使目标函数下降外,还要考虑近似解的可行性。
总的原则是设法将约束问题化为无约束问题;把非线性问题化为线性问题从而使复杂问题简单化。
求解方法有可行方向法、约束集法、制约函数法、简约梯度法、约束变尺度法、二次规划法等。
虽然这些方法都有较好的效果,但是尚未找到可以用于解决所有非线性规划的统一算法。
非线性规划举例 [库存管理问题] 考虑首都名酒专卖商店关于啤酒库存的年管理策略。
假设该商店啤酒的年销售量为A 箱,每箱啤酒的平均库存成本为H 元,每次订货成本都为F 元。
如果补货方式是可以在瞬间完成的,那么为了降低年库存管理费用,商店必须决定每年需要定多少次货,以及每次订货量。
我们以Q 表示每次定货数量,那么年定货次数可以为QA,年订货成本为Q A F ⨯。
由于平均库存量为2Q,所以,年持有成本为2Q H ⨯,年库存成本可以表示为:Q HQ A F Q C ⨯+⨯=2)( 将它表示为数学规划问题:min Q H Q A F Q C ⋅+⋅=2)( ..t s 0≥Q其中Q 为决策变量,因为目标函数是非线性的,约束条件是非负约束,所以这是带约束条件的非线性规划问题。
非线性规划什么是非线性规划?非线性规划(Nonlinear Programming,简称NLP)是一种数学优化方法,用于求解包含非线性约束条件的优化问题。
与线性规划不同,非线性规划中的目标函数和约束条件都可以是非线性的。
非线性规划的数学表达式一般来说,非线性规划可以表示为以下数学模型:minimize f(x)subject to g_i(x) <= 0, i = 1, 2, ..., mh_j(x) = 0, j = 1, 2, ..., px ∈ R^n其中,f(x)是目标函数,g_i(x)和h_j(x)分别是m个不等式约束和p个等式约束,x是优化变量,属于n维实数空间。
非线性规划的解法由于非线性规划问题比线性规划问题更为复杂,因此解决非线性规划问题的方法也更多样。
以下列举了几种常用的非线性规划求解方法:1. 数值方法数值方法是最常用的非线性规划求解方法之一。
它基于迭代的思想,通过不断优化目标函数的近似解来逼近问题的最优解。
常见的数值方法有梯度下降法、牛顿法、拟牛顿法等。
2. 优化软件优化软件是一类针对非线性规划问题开发的专用软件,它集成了各种求解算法和优化工具,可以方便地求解各种类型的非线性规划问题。
常见的优化软件有MATLAB、GAMS、AMPL等。
3. 线性化方法线性化方法是一种将非线性规划问题转化为等价的线性规划问题的求解方法。
它通过线性化目标函数和约束条件,将非线性规划问题转化为线性规划问题,然后利用线性规划的求解方法求解得到最优解。
4. 分类方法分类方法是一种将非线性规划问题分解为若干个子问题求解的方法。
它将原始的非线性规划问题分解为多个子问题,然后将每个子问题分别求解,并逐步逼近原始问题的最优解。
以上仅是非线性规划求解方法的一小部分,实际上还有很多其他的方法和技巧可供选择。
在实际应用中,选择合适的方法和工具是非常重要的。
非线性规划的应用非线性规划在实际生活和工程中有着广泛的应用。
97第六章* 非线性规划前面几章,我们论述了线性规划及其扩展问题,这些问题的约束条件和目标函数都是关于决策变量的一次函数。
虽然大量的实际问题可以简化为线性规划及其扩展问题来求解,但是还有相当多的问题很难用线性函数加以描述。
如果目标函数或约束条件中包含有非线性函数,就称这样的规划问题为非线性规划问题。
由于人们对实际问题解的精度要求越来越高,非线性规划自20世纪70年代以来得到了长足的发展;目前,已成为运筹学的一个重要分支,在管理科学、最优设计、系统控制等许多领域得到了广泛的应用。
一般来讲,非线性规划问题的求解要比线性规划问题的求解困难得多;而且也不象线性规划问题那样具有一种通用的求解方法(单纯形法)。
非线性规划没有能够适应所有问题的一般求解方法,各种方法都只能在其特定的范围内发挥作用。
本章在简要介绍非线性规划基本概念和一维搜索的基础上,重点介绍无约束极值问题和约束极值问题的求解方法。
§1非线性规划的数学模型1.1 非线性规划问题[例6-1] 某商店经销A 、B 两种产品,售价分别为20和380元。
据统计,售出一件A 产品的平均时间为0.5小时,而售出一件B 产品的平均时间与其销售的数量成正比,表达式为n 2.01+。
若该商店总的营业时间为1000小时,试确定使其营业额最大的营业计划。
解:设1x 和2x 分别代表商店经销A 、B 两种产品的件数,于是有如下数学模型:2138020)(m ax x x x f +=10002.05.02221≤++x x x0,021≥≥x x98 [例6-2] 在层次分析(Analytic Hierarchy Process , 简记为 AHP )中,为了进行多属性的综合评价,需要确定每个属性的相对重要性,即它们各自的权重。
为此,将各属性进行两两比较可得如下判断矩阵:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=nn n n a a a a J 1111其中:ij a 是第i 个属性与第j 个属性的重要性之比。
第六章非线性规划(一)非线性规划的理论模型
Min f(X)
s.t. h
i
(X)=0(i=1,2,…,m)
g
j
(X)≥0(j=1,2,…,m)
其中,目标函数和约束方程含有非线性表达式。
若D={X∈R n:h
i (X)=0,i=1,2,…,m,g
j
(X)≥0,j=1,2,…,l}为可行域
可简化为 min f(X)
X∈D
D中的点X为非线性规划模型的可行解
当D=R n时---无约束线性规划当D≠R n时---有约束线性规划
(二)非线性规划的解及相关概念
1)可行解:D中的点X为非线性规划模型的可行解
2)最优解:若有X*∈D,对于任意的X∈D,都存在f(X*)≤f(X)则X*为最优解。
(全局最优解)
注:非线性规划问题的最优解可以在可行域的任意点取得。
3)梯度:若函数f(X)在X
0的领域内有连续一阶偏导数,则称f(X)在X
处对n
个变量的偏导数组成的向量为f(X)在X
的梯度。
梯度的几何意义:○1等高线;
○2函数f(X)在X
0的梯度方向是函数在X
处增加最快的方
向;
○3函数f(X)在X
0的梯度是等高线在点X
切平面的法向量;
4)海赛阵:若函数f(X)在X
0的领域内有连续二阶偏导数,则称f(X)在X
处对n
个变量两两组合的二阶偏导数组成的矩阵为f(X)在X
的海赛阵。
5)凸规划:在非线性规划问题中,目标函数为凸函数,不等式约束为凹函数,等式约束为仿射函数,则称这样的非线性规划为凸规划。
注:○1如果f(X)为凸函数,则-f(X)为凹函数.
○2对于多元函数f(X),海赛阵为半正定,则f(X)为凸函数;
海赛阵为半负定,则f(X)为凹函数。
6)凸规划的性质:凸规划的约束集为凸集,凸规划的最优解集是凸集,任何局部最优解也是全局最优解。
如果目标函数为严格凸函数,且
最优解存在,则其最优解是唯一的。
(三)无约束极值的解法
1)一维搜索:一维搜索是一种求解单变量实值函数的极值点的过程,也称线性搜索。
常用的搜索方法有斐波拉契法,0.618法等
2)梯度法:梯度法也叫最速下降法,是一种求解无约束极值问题的最简单,最基本的下降类算法,其指导思想是:选取P
K
,使函数f(x)下降最快,
或者说使f(X
K +入P
K
)-f(X
K
)<0,并且是上式左边的绝对值尽可能地大。
(四)罚函数法
罚函数法:罚函数法是求解一般有约束极值问题的一种比较简单实用的方法,其基本思想是:将约束条件与目标函数组合在一起,化成无约束极
值问题来进行求解。
可分为外点法和内点法。
外点法是从可行域的外部逐步逼近最优解,
内点法是从可行域的内部逐渐逼近最优解。