煤层气压裂和排采技术
- 格式:ppt
- 大小:14.36 MB
- 文档页数:80
煤层气运移排采过程(自己整理)
对于光亮煤分层,煤层气由基质孔隙表面解吸,再由基质块扩散到割理内,然后由割理运移至外生裂隙,最终由外生裂隙运移至井筒。
对于暗淡煤分层,由于分层内割理不发育,当煤层气由基质孔隙表面解吸后,直接由基质块扩散到外生裂隙,最后经外生裂隙运移至井筒。
煤层气由基质表面解吸后向割理或外生裂隙迁移的过程是扩散,服从福克定律;煤层气在割理或外生裂隙中的运移过程是渗流,服从达西线性渗流定律。
煤层气的排采:对于煤层气的排采来讲,首先经由外生裂隙和割理将煤层中的水排出,降低煤储层压力,使外生裂隙和割理表面的煤层气解吸,随着储层压力的进一步降低,煤基质中的煤层气由基质孔隙表面解吸,解吸出的煤层气经割理或外生裂隙运移至井筒并排出。
煤层气井排采一般包括如下三个阶段:第一阶段一保持高导流能力的人工裂缝。
若压裂后井口压力未扩散完,可先装油嘴或针形阀控制放喷,油嘴大小根据产量和井口压力、煤层情况而定,保证井口不出大量煤粉和压裂砂前提下,排液量一般控制在2~4 m3/h。
待井口压力降为零后,溢流量不大的情况下,下人已选择好的泵。
此时,地面流程及地面排采设备应提前安装好。
排采初期,关闭套管阀门,油管以适当泵送能力排出水,同时要监测环空液面,适时调整排采设备的工作制度,使液面最好每天下降2o~40 m,这一阶段时间尽可能长一些,其目的是保持压裂后形成一个稳定的高导流能力的裂缝。
如果套管出现高真空,应暂时打开套管阀门,使压力趋于平衡。
在这一阶段,随着排水,首先表现出一部分游离气和溶解气产出,过一段时间后,环空液面降低,井底附近储层压力降低到解吸压力,吸附气开始解吸。
当储层压力接近解吸压力时要特别注意,这时易产生一个突变,一般表现为气产量突然增大,套压增大,有时气会将环空水带出,造成环空液面突然下降。
这一突变,对于比较疏松的煤层,极易出大量的煤粉,可能造成填砂裂缝的堵塞。
对于较软的煤层,可能由于储层孔隙压力突然降低,造成割理关闭,从而影响煤层渗透性。
当接近解吸压力时,适当放慢降液速度,控制套压,并使储层压力仍然缓慢下降。
第二阶段——合理地控制井底流压。
在排采初期,由于液面降低,有效应力增加,导致割理间隙减小,孔隙度降低,渗透率减小。
当吸附气开始解吸后,煤层割理收缩,孔渗性增加,继续降低流压,有利于弥补应应作用造成的割理闭合。
在这一阶段主要通过控制环空液面来控制井底流压。
套压升至约1 MPa左右,可用套管针形阀或较小油嘴控制开始产气。
由于继续排水,液面缓慢下降,同时逐步加大油嘴使套压降低,减小套压利于储层中更多的水进入井筒并疏干井筒附近的水,目的是在环空液面降低到泵的吸人口后,地面压力长期保持在正常工作的范围(O.05~0.1 MPa)。
第三阶段——稳定生产阶段。
煤层气开发工程关键技术及发展趋势探究摘要:煤层气开发工程逐渐受到了社会的广泛关注,主要是因为煤层气开发坚持了高效与环保原则,可以将煤层气开发对环境的影响程度降低到最轻。
煤层气开发具备优越的开发条件,管理人员在煤层气开发的过程中需要应用关键技术,充分发挥关键技术价值,在原来的基础上不断提升煤层气开发水平。
本文主要对常用的煤层气开发工程关键技术进行了论述,并且明确了煤层气开发技术的未来发展趋势,为管理人员应用关键技术提供了更多切实可行的方案。
关键词:煤层气开发工程;关键技术;发展趋势引言:我国进入了新时代,工业的发展水平不断提升,发展速度不断加快,对能源的需求处于不断增长的过程中,我国的能源紧缺问题也进一步加重。
相对于其他国家而言,我国的煤层气资源比较丰富,可以满足工业发展对能源的需求。
目前天然气开发的主要方向是煤层气开发,煤层气开发工程对技术的要求比较高,只有应用比较先进的技术,才可以为煤层气开发创造更多便利条件。
1常见的煤层气开发工程关键技术1.1煤层气勘探技术在煤层气开采工作之前需要做好充足的准备工作,首先需要加强对煤层气勘探的重视,因为煤层气勘探工作的开展可以帮助作业人员及时了解煤层气的具体情况。
相关研究表明,煤层气受地下构造的影响,煤层气的储集与富集程度会根据地下构造的变化而变化。
在一般情况下,压力圈闭气藏会产出大量的天然气,主要分布于单斜顶部。
倘若煤层的位置处于构造变形的地方,那么就会在原来的基础上不断提高煤层气的保存难度。
火山岩活动同样会对煤层气产生一定的影响,倘若活动比较强烈,那么便会对煤层产生较大程度的破坏,倘若活动幅度比较小,那么可以便于煤阶的升高,并且实现煤层的有机转化[1]。
煤层含气量同样受煤层顶底板岩性的影响,倘若密集程度较大,那么煤层含气量就会不断提高。
要想确保煤层气开发工作的顺利开展,就必须进行勘探工作,因为勘探工作可以让作业人员加深对地下构造形态的认识与了解[2]。
作业人员可以在勘探过程中充分了解当地的地质条件以及特征,并且根据煤层气开发要求,制定科学合理的煤层气开采方案。
煤层气企业标准煤层气井排采工程技术规范(试行)2008-08-18发布2008-08-18实施煤层气企业标准煤层气井排采工程技术规范1范围本标准规定了煤层气井排采工程施工过程中各工序的技术标准,包括排采总体方案的制定、泵抽系统、排采设备及地面流程的安装、场地标准、下泵作业、洗井、探冲砂、资料录取、分析化验、总结报告编制等技术要求。
本标准适用于煤层气井的排采作业工程。
2引用标准下列标准所包含的条文,通过对标准的引用而成为本规范的条文。
中联煤层气有限责任公司煤层气井排采作业管理暂行办法SY/T 5587.6-93 油水井常规修井作业起下油管作业规程SY/T 5587.7-93 油水井常规修井作业洗井作业规程SY/T 5587.16-93 油水井常规修井作业通井、刮削套管作业规程SY/T 5587.5-93 油水井常规修井作业探砂面、冲砂作业规程SY/T5523-92 油气田水分析方法SY/T6258-1996 有杆泵系统设计计算方法3 排采总体方案的制定3.1基本数据3.1.1钻井基本数据钻井基本数据包括地理位置、构造位置、井别、井型、施工单位、目的层、开钻日期、完钻日期、完井日期、钻井周期、完钻井深、完钻层位、最大井斜、井深、方位、人工井底、补芯高。
3.1.2完成套管程序完成程序包括套管规范、下深、钢级、壁厚、水泥返高、固井质量、短套管、油补距。
3.1.3煤层深度、厚度及射孔井段3.1.4解吸/吸附分析成果包括含气量、含气饱和度、临界压力3.1.5注入/压降测试及原地应力测试数据包括渗透率、表皮系数、储层压力、压力梯度、研究半径、煤层温度、闭合压力、闭合压力梯度、破裂压力等。
3.2 排采总体方案3.2.1排采目的3.2.2排采目的层及排采方式3.2.3排采设备及工艺流程设计3.2.4排采周期3.3工艺技术要求3.3.1动力系统3.3.2抽油机3.3.3泵挂组合3.3.4 地面排采流程a.采气系统;b.排液系统;3.4排采作业管理3.4.1设备管理3.4.2排采场地、人员3.4.3排采资料录取3.4.4排采动态跟踪3.4.5排采汇报制度3.5安全、环保及质量要求3.6应提交的资料、报告3.6.1施工设计书(一式十份)3.6.2排采资料(一式两份)a.排采日报、班报b.排采水样半分析原始记录c.排采水样全分析报告d.排采气样全分析报告e.排采水、气产量动态曲线f.液面资料、示功图资料g.修井资料h.阶段性总结报告3.6.3总结报告(一式十份)3.7排采主要设备、材料4 泵抽系统及地面流程的安装4.1泵抽系统4.1.1执行《中联煤层气有限责任公司煤层气井排采作业管理暂行办法》。
煤层气井排采试气技术姚艳芳Ξ李新春 姚小勤(中原油田井下特种作业处) 摘要 我国的煤层气资源十分丰富,但煤层的地质条件复杂,类型多样,明显不同于国外某些煤层气资源开发较为成功的国家和地区。
根据煤层特性及煤层气赋存特点、产出机理,对煤层气排采设计和设备选择作了论述。
通过实际排采曲线分析,在总结十多口井排采经验的基础上,指出了影响排采效果的一些施工因素及其影响机理。
主题词 煤成气 排水采气 工程设计 煤层气为自生自储型非常规天然气,主要以吸附状态存在于煤层中。
我国大部分煤层属于欠饱和煤层气藏,如沁水煤气田含气饱和度为84%~95%,屯留煤气田为26%~27%,吴堡煤气田为69%~85%,鄂尔多斯盆地东部煤气田为80%。
煤层气的产出可分为三个过程:排采初期煤层主要产水,同时也可能伴随有少量游离气、溶解气产出;当煤层降至临界解吸压力以下时,煤层甲烷分子迅速解吸,然后扩散到裂隙中,使气的相对渗透率增加,水的相对渗透率减小,表现为气产量逐渐增大,水产量逐渐减小;随着采出水量的增加、生产压差的进一步增大,煤层中含水饱和度相对降低,变为以产气为主,并逐渐达到产气高峰,水产量则相对稳定在一个较低的水平上。
随着地层能量的衰竭,最后进入气产量缓慢下降阶段,该阶段与常规裂缝性气藏流动相似。
排采试气设计原则1.排采试气方法目前,我国煤层气井一般采用油管排水,套管采气的方法试气。
2.排采试气原则①根据压裂裂缝闭合情况确定开井排液时间,并控制排液速度。
②降低煤层压力到解吸压力以下,同时也要使液柱对煤层造成一定的回压。
③排采试气要连续进行并持续一定时间。
3.确定煤层排采工作制度的原则煤层排采必须适应煤储层的特点,符合煤层气的产出规律。
煤层气排采试气工程应结合不同的煤岩特性和室内研究工作,在排采之前进行储层产能模拟,对气水产量、产出规律进行预测,确定合理的试采设备,控制动态参数及试采周期,以便正确评价煤层产气状况。
通常采用以下三种工作制度:①定产量制度:在煤层排采试气的各个阶段,根据地层产能和供液能力,控制水、气产量,以保障流体的合理流动。
煤层气采气井排采系统优化设计煤层气是一种重要的清洁能源资源,其开发利用对于缓解能源紧缺、减少污染排放具有重要意义。
煤层气采气井排采系统是煤层气勘探开采的关键设备,其性能优劣直接影响到煤层气的采收效果和经济效益。
因此,对煤层气采气井排采系统进行优化设计具有重要意义。
近年来,随着煤层气勘探开发的深入,煤层气采气井排采系统的设计优化也越来越受到重视。
煤层气采气井排采系统的设计优化旨在提高采气效率、降低生产成本、延长井寿命,从而实现可持续发展。
在进行时,需考虑多方面的因素,包括井筒结构、井眼装备、井底测试、压裂技术等。
首先,在井筒结构方面,需要考虑井筒直径、井深、井眼位置等因素。
井筒结构的合理设计能够提高井的稳定性和完整性,减少井漏和井壁垮塌的风险,保障井的安全运行。
同时,通过优化井筒结构还可以提高井眼通透性,增加煤层气的采收效率。
其次,在井眼装备方面,需要考虑井口装备、井下泵设备、井下测井等装备的选择和配置。
井口装备的选择应考虑到井口封堵、防喷溢、排砂排砂和排矿的功能,以保证井口的安全运行。
同时,选择适当的井下泵设备能够有效提高煤层气的采收效率,降低生产成本。
另外,在井底测试方面,需要充分考虑井底测试的频率、测试方法、测试参数等因素。
井底测试是煤层气采气井排采系统运行过程中的重要环节,通过井底测试可以实时监测煤层气产量、地层压力、水平动压力等参数,发现问题及时调整,保障井的正常运行。
此外,在压裂技术方面,需要注意压裂液配方、注入压力、注入速度等因素。
压裂技术是提高煤层气采收效率的重要手段,通过合理设计压裂液配方和控制压裂参数,可以有效改善煤层气的渗透性,提高采收率。
梳理一下本文的重点,我们可以发现,煤层气采气井排采系统的优化设计是一个复杂的系统工程,需要综合考虑多种因素,从而实现煤层气的高效开采和利用。
通过不断研究和实践,提高煤层气采气井排采系统的设计水平,促进煤层气资源的可持续开发利用。
希望未来能够有更多的研究者投入到煤层气采气井排采系统优化设计领域,为我国煤层气资源的保障和可持续发展做出更大的贡献。
中国煤层气压裂技术应用现状及发展方向一、引言煤层气压裂技术是煤炭开采中的一项重要技术,其应用可以有效地提高煤层的渗透性,增加煤炭的产量,提高开采效率。
本文将就中国煤层气压裂技术的应用现状及发展方向进行探讨。
二、高效增产技术1.水力压裂技术水力压裂技术是一种常用的煤层气压裂技术,其基本原理是通过高压泵将压裂液注入煤层,利用压裂液的流动压力使煤层产生裂缝,再通过支撑剂的填充,提高煤层的渗透性。
在中国,此技术已广泛应用于煤炭开采,并取得了良好的增产效果。
2.气体压裂技术气体压裂技术是一种新型的煤层气压裂技术,其基本原理是通过注入气体(如二氧化碳、氮气等)在煤层中形成高压,从而产生裂缝。
此技术的优点是可以有效降低对地层的伤害,提高采收率。
目前,此技术在中国的应用尚处于试验阶段,但未来有望得到广泛应用。
三、排采技术1.自动排采技术自动排采技术是一种先进的煤层气压裂技术,其基本原理是通过自动化设备进行排采,实现连续、自动的开采。
此技术的优点是可以提高开采效率,降低人工成本。
目前,此技术在中国的应用尚处于探索阶段,但未来有望得到广泛应用。
2.智能排采技术智能排采技术是一种基于物联网技术的煤层气压裂技术,其基本原理是通过传感器对煤层进行实时监测,根据监测数据调整排采参数,实现高效、安全的排采。
此技术的优点是可以提高开采效率,减少人工干预,降低事故发生率。
目前,此技术在中国的应用尚处于起步阶段,但未来有望得到快速发展。
四、发展方向1.高效增产技术的进一步发展随着煤炭开采技术的不断提高,高效增产技术将成为未来煤层气压裂技术的重要发展方向。
对于水力压裂技术,需要进一步研究新型的压裂液和支撑剂,提高压裂效果和采收率;对于气体压裂技术,需要进一步研究气体的注入方式和压力控制,实现更好的裂缝诱导和采收率提高。
2.排采技术的智能化和自动化随着自动化和智能化技术的不断发展,排采技术的智能化和自动化将成为未来煤层气压裂技术的重要发展方向。
煤矿区煤层气地面钻井抽采技术
2013-04-16 | 来源:矿产资源储量司 | 【大中小】【打印】【关闭】
一、技术类型
煤炭资源综合利用技术。
二、适用范围
适用于中硬、中渗透率、高含气量煤层的煤层气开发。
三、技术内容
(一)基本原理
采用地面钻井进入煤层排采煤层解吸和游离态的煤层气。
(二)关键技术
钻井工艺,水力压裂,煤层气排采工艺。
(三)工艺流程
钻井→固井→测井→完井→压裂→排采→集输。
四、主要技术特点
根据矿区煤层赋存条件和地形地貌,地面钻井可选用垂直井、丛式井、水平井、水平羽状井等开采煤层气。
钻井参数、井间距、井深等基本参数依据矿区具体条件设计。
如晋城矿区采用直径8英寸(215.9mm),下7英寸半(190.5mm)套管,井间距选用300m×300m。
五、典型实例及成效
该技术已在晋城、韩城、阜新、阳泉、淮南、淮北等矿区应用。
晋城无烟煤集团已形成直井为主的地面钻井规模化开采煤层气。
2010年地面井抽采煤层气9.08亿
m3。
六、推广前景
煤矿区地面煤层气开采技术解决了煤层透气性低、解吸难度大的难题,形成了从钻井、完井、压裂抽采和集气输送的成套工艺,实现了商业化运营,可以在各煤层气富集矿区推广应用。
煤层气企业标准煤层气井排采工程技术规范(试行)2008-08-18发布2008-08-18实施煤层气企业标准煤层气井排采工程技术规范1范围本标准规定了煤层气井排采工程施工过程中各工序的技术标准,包括排采总体方案的制定、泵抽系统、排采设备及地面流程的安装、场地标准、下泵作业、洗井、探冲砂、资料录取、分析化验、总结报告编制等技术要求。
本标准适用于煤层气井的排采作业工程。
2引用标准下列标准所包含的条文,通过对标准的引用而成为本规范的条文。
中联煤层气有限责任公司煤层气井排采作业管理暂行办法SY/T 5587.6-93 油水井常规修井作业起下油管作业规程SY/T 5587.7-93 油水井常规修井作业洗井作业规程SY/T 5587.16-93 油水井常规修井作业通井、刮削套管作业规程SY/T 5587.5-93 油水井常规修井作业探砂面、冲砂作业规程SY/T5523-92 油气田水分析方法SY/T6258-1996 有杆泵系统设计计算方法3 排采总体方案的制定3.1基本数据3.1.1钻井基本数据钻井基本数据包括地理位置、构造位置、井别、井型、施工单位、目的层、开钻日期、完钻日期、完井日期、钻井周期、完钻井深、完钻层位、最大井斜、井深、方位、人工井底、补芯高。
3.1.2完成套管程序完成程序包括套管规范、下深、钢级、壁厚、水泥返高、固井质量、短套管、油补距。
3.1.3煤层深度、厚度及射孔井段3.1.4解吸/吸附分析成果包括含气量、含气饱和度、临界压力3.1.5注入/压降测试及原地应力测试数据包括渗透率、表皮系数、储层压力、压力梯度、研究半径、煤层温度、闭合压力、闭合压力梯度、破裂压力等。
3.2 排采总体方案3.2.1排采目的3.2.2排采目的层及排采方式3.2.3排采设备及工艺流程设计3.2.4排采周期3.3工艺技术要求3.3.1动力系统3.3.2抽油机3.3.3泵挂组合3.3.4 地面排采流程a.采气系统;b.排液系统;3.4排采作业管理3.4.1设备管理3.4.2排采场地、人员3.4.3排采资料录取3.4.4排采动态跟踪3.4.5排采汇报制度3.5安全、环保及质量要求3.6应提交的资料、报告3.6.1施工设计书(一式十份)3.6.2排采资料(一式两份)a.排采日报、班报b.排采水样半分析原始记录c.排采水样全分析报告d.排采气样全分析报告e.排采水、气产量动态曲线f.液面资料、示功图资料g.修井资料h.阶段性总结报告3.6.3总结报告(一式十份)3.7排采主要设备、材料4 泵抽系统及地面流程的安装4.1泵抽系统4.1.1执行《中联煤层气有限责任公司煤层气井排采作业管理暂行办法》。