高中数学:2.3-2.4《离散型随机和正态分布 》单元测试新课标人教A版选修2-3
- 格式:doc
- 大小:53.50 KB
- 文档页数:3
2.4 正态分布课时过关·能力提升基础巩固1下面给出了关于正态曲线的叙述:①曲线在x 轴上方且与x 轴不相交;②当x>μ时,随着x 的增加曲线逐渐下降;当x<μ时,随着x 的增加曲线逐渐上升;③当μ一定时,σ越小,总体分布越分散;σ越大,总体分布越集中;④曲线关于直线x=μ对称,且当x=μ时,位于最高点.其中正确的有( ) A.1个B.2个C.3个D.4个μ一定时,σ越小,曲线越“瘦高”,即总体分布越集中;σ越大,曲线越“矮胖”,总体分布越分散.只有③错误,①②④正确.2设随机变量X~N (1,22),则D (12D )等于( ) A.4B.2C .12D .1X~N (1,22),∴D (X )=4.∴D (12D )=14D (D )=1.3设两个正态分布N (μ1,D 12)(D 1>0)和D (D 2,D 22)(D 2>0)的密度曲线如图所示,则有( )A.μ1<μ2,σ1<σ2B.μ1<μ2,σ1>σ2C.μ1>μ2,σ1<σ2D.μ1>μ2,σ1>σ2是均值,σ2是方差,μ是密度曲线的对称轴的位置,图象越“瘦高”,数据越集中,σ2越小.4已知随机变量X 服从正态分布N (3,1),且P (2≤X ≤4)=0.682 7,则P (X>4)=( )A.0.158 55B.0.158 85C.0.158 65D.0.158 75随机变量X~N(3,1), ∴正态曲线关于直线x=3对称,∴P(X>4)=12[1−D(2≤X≤4)]=12×(1−0.6827)=0.15865,故选C.5已知某批材料的个体强度X服从正态分布N(200,182).现从中任取一件,则取得的这件材料的强度高于182但不高于218的概率为()A.0.997 3B.0.682 7C.0.841 3D.0.815 9μ=200,σ=18,μ-σ=182,μ+σ=218,由P(μ-σ<X≤μ+σ)=0.6827知,应选B.6如图是当σ取三个不同值σ1,σ2,σ3的三种正态曲线,那么σ1,σ2,σ3的大小关系是()A.σ1>1>σ2>σ3>0B.0<σ1<σ2<1<σ3C.σ1>σ2>1>σ3>0D.0<σ1<σ2=1<σ3μ=0,σ=1时,正态曲线f(x)=√2π-D22.在x=0时,√2π故D2=1.由正态曲线的性质,当μ一定时,曲线的形状由σ确定.σ越小,曲线越“瘦高”;σ越大,曲线越“矮胖”,于是有0<σ1<σ2=1<σ3.7已知ξ~N(0,82),且P(-2≤ξ≤0)=0.4,则P(ξ>2)等于()A.0.1B.0.2C.0.3D.0.4P(ξ>2)+P(0≤ξ≤2)+P(-2≤ξ≤0)+P(ξ<-2)=1,P(ξ>2)=P(ξ<-2),P(0≤ξ≤2)=P(-2≤ξ≤0),所以P(ξ>2)=12[1−2D(−2≤D≤0)]=0.1.8设随机变量ξ~N(μ,σ2),且P(ξ<1)=12,D(D>2)=D,则D(0<D<1)=.P(ξ<1)=12,则D=1.故P(0<ξ<1)=P(1<ξ<2)=P(ξ<2)-P(ξ<1)=1-p−12=12−D.−D9设随机变量ξ服从正态分布N(2,9),若P(ξ>c+1)=P(ξ<c-1),则c的值为.,c+1与c-1关于ξ=2对称,则(D+1)+(D-1)2=2,故c=2.10已知正态分布总体落在区间(0.2,+∞)的概率为0.5,那么相应的正态曲线φμ,σ(x)在x=时达到最高点.P(X>0.2)=P(X≤0.2)=0.5,则正态曲线关于x=0.2对称.由正态曲线性质得正态曲线在x=μ=0.2时达到最高点..2能力提升1某厂生产的零件直径ξ~N(10,0.22),今从该厂上午和下午生产的零件中各随机取出一个,测得其外直径分别为9.9 cm和9.3 cm,则可认为()A.上午生产情况未见异常现象,下午生产情况出现了异常现象B.上午生产情况出现了异常,而下午生产情况正常C.上午和下午生产情况均是正常D.上午和下午生产情况均出现了异常现象σ原则:(10-3×0.2,10+3×0.2),即(9.4,10.6),9.9∈(9.4,10.6),9.3∉(9.4,10.6),所以,上午生产情况未见异常,下午生产情况出现了异常.2设X1~N(0,1),X2~N(1,1),X3~N(0,9).下列答案正确的是()A.P(|X1|<1)=P(|X2|<1)=P(|X3|<1)B.P(|X1|<1)=P(|X2-1|<1)=P(|X3|<1)C.P(|X1|<1)=P(|X2|<1)=P(|X3|<3)D.P(|X1|<1)=P(|X2-1|<1)=P(|X3|<3)X1~N(0,1)知,μ1=0,σ1=1,则P(|X1|<1)=P(|X1-μ1|<σ1)=0.6827.由X2~N(1,1)知,μ2=1,σ2=1,则P(|X2-1|<1)=P(|X2-μ2|<σ2)=0.6827.由X3~N(0,9)知,μ3=0,σ3=3,则P(|X3|<3)=P(|X3-μ3|<σ3)=0.6827.故P(|X1|<1)=P(|X2-1|<1)=P(|X3|<3).3设随机变量ξ服从正态分布N(3,σ2),若P(ξ>m)=a,则P(ξ>6-m)=()A.aB.1-2aC.2aD.1-aξ=m与直线ξ=6-m关于直线ξ=3对称,得P(ξ>m)=P(ξ<6-m)=a,则P(ξ>6-m)=1-a.4某种零件的尺寸X(单位:cm)服从正态分布N(3,1),则不属于区间(1,5)这个尺寸范围的零件数约占总数的.(μ-2σ,μ+2σ),即区间(1,5)的取值概率约为95.45%,故不属于区间(1,5)这个尺寸范围的零件数约占总数1-95.45%=4.55%..55%5在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为.ξ服从正态分布N(1,σ2)(σ>0),正态曲线的对称轴为x=1,ξ在(0,1)内取值的概率为0.4,可知,随机变量ξ在(1,2)内取值的概率与ξ在(0,1)内取值的概率相同,也为0.4,这样随机变量ξ在(0,2)内取值的概率为0.8..86若随机变量ξ~N(10,σ2),若ξ在(5,10)内的概率等于a,a∈(0,0.5),则ξ在(-∞,15)内的概率等于.P(10<ξ<15)=a,则P(-∞<ξ≤5)=12(1−2D)=12−D,故D在(-∞,15)上的概率等于12−D+D+D=12+D.+D7某人乘车从A地到B地,所需时间X(单位:min)服从正态分布N(30,100),求此人在40 min至50 min到达目的地的概率.μ=30,σ=10.因为P(μ-σ<X≤μ+σ)=P(20<X≤40)=0.6827,所以,此人在20min至40min到达目的地的概率为0.6827.又因为P(μ-2σ<X≤μ+2σ)=P(10<X≤50)=0.9545,所以,此人在10min至50min到达目的地的概率为0.9545.那么,此人在10min至20min或40min至50min到达目的地的概率为0.9545-0.6827=0.2718;由于正态曲线关于x=30对称,因此,此人在40min至50min到达目的地的概率为0.2718÷2=0.1359.8在某次数学考试中,考生的成绩ξ服从一个正态分布,即ξ~N(90,100).(1)试求考试成绩ξ位于区间(70,110)内的概率;(2)若这次考试共有2 000名考生,试估计考试成绩位于区间(80,100)内的考生大约有多少人.ξ~N(90,100),所以μ=90,D=√100=10.(1)由于正态变量在区间(μ-2σ,μ+2σ)内取值的概率是0.9545,而该正态分布中,μ-2σ=90-2×10=70,μ+2σ=90+2×10=110,于是考试成绩ξ位于区间(70,110)内的概率就是0.9545.(2)由μ=90,σ=10,得μ-σ=80,μ+σ=100.因为正态变量在区间(μ-σ,μ+σ)内取值的概率是0.6827,所以考试成绩ξ位于区间(80,100)内的概率是0.6827.又一共有2000名考生,所以考试成绩在(80,100)间的考生大约有2000×0.6827≈1365(人).★9已知某地农民工年均收入ξ服从正态分布,其密度函数图象如图.(1)写出此地农民工年均收入的概率密度曲线的函数解析式;(2)求此地农民工年均收入在8 000~8 500之间的人数百分比.ξ~N(μ,σ2),结合题中图象可知,μ=8000,σ=500.(1)此地农民工年均收入的正态分布密度函数解析:式f(x)=D√2π-(D-D)22D2=500√2π-(D-8000)22×5002,D∈(-∞,+∞).(2)∵P(7500<ξ≤8500)=P(8000-500<ξ≤8000+500)=0.6827,且正态曲线关于直线x=μ=8000对称,∴P(8000<ξ≤8500)=12D(7500<ξ≤8500)=0.34135.即农民工年均收入在8000~8500之间的人数占总体的34.135%.。
高中数学系列2—3 单元测试题(2.3 ,2.4 )一、选择题:21.设随机变量X 服从正态分布,即X ~ N( , ),则随着的增大,P( X ) 的值()A. 单调递增B. 单调递减C. 保持不变D. 增减不定2( x 1)1( 82 设正态总体密度函数为 f x) e , x R2 2,则总体的平均数为()A. -1B. 0C. 1D. 23.已知随机变量X 满足DX 2 ,则D(2X 3) 等于()A. 2B. 4C. 8D. 74.已知随机变量X 满足P( X 0) 0.3 , P( X 1) 0.7,则EX 和DX 的值分别为()A.0.6 和0.7B.1.7 和0.3C.0.3 和0.7D.0.7 和0.215.随机变量X 的分布列是X 1 2 3P 0.4 0.2 0.4 则EX和DX 分别是()A.2 和0.8B.1.8 和0.8C.2 和1D.2 和1.86.设随机变量X ~ B (n, p) ,且EX 1.6 ,DX 1.28,则()A. n 8, p 0.2B. n 4, p 0.4C. n 5, p 0.32D. n 7, p 0.45k 1 57.设随机变量X 的概率分布为P(X k) , k 1,2,3, 4,5 ,则P( X ) ()15 2 2A. 15B.25C.35D.4158.若X ~ N (5,1) ,则P(6 X 7) ()A. 0.6826B. 0.8413C. 0.9772D. 0.6179二、填空题9. 正态分布的性质:①曲线在x轴上方,并且关于直线对称;②曲线在x 时处达到,由这一点向左、右两边延伸时,曲线逐渐降低;③曲线的对称位置由确定;曲线的形状由确定,越大,曲线越“”;反之,曲线越“”;110.已知X 服从二项分布即X ~ B(100, ) ,则E(2 X 3) ;211. 投掷一颗骰子的点数为X ,则EX ; DX ;三、解答题12.某市有48000 名高二同学,一次统考后数学成绩服从正态分布,平均分为80 分,标准差为10,问从理论上讲在80 分到90 分之间有多少人?第1 页共2 页2.有三张形状、大小、质量完全一致的卡片,在每张卡片上写0,1,2,现从中任意抽取一张,将其上的数字记作x,然后放回,在抽取一张,其上数字记作y ,令X xy ;求①X 所取各值的概率;②随机变量X 的数学期望与方差;高中数学系列2-3单元测试题(2.3,2.4)参考答案一、选择题:ACCDA AAA二、填空题:9、①x ②峰值12③矮胖瘦高10、103 11、3512三、解答题:12、16382 人13、①X 0,1,2 ,4 ②EX 1 , DX 16 9第2 页共2 页。
人教A版高中数学教材目录(必修+选修)必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数小结复习参考题第三章函数的应用3.1 函数与方程3.2 函数模型及其应用实习作业小结复习参考题必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式小结复习参考题第四章圆与方程4.1 圆的方程4.2 直线、圆的位置关系4.3 空间直角坐标系小结复习参考题必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术小结复习参考题第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型阅读与思考概率与密码小结复习参考题必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ) 的图象1.6 三角函数模型的简单应用小结复习参考题第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例小结复习参考题第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换小结复习参考题必修5第一章解三角形1.1 正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2 应用举例阅读与思考海伦和秦九韶1.3 实习作业小结复习参考题第二章数列2.1 数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4 基本不等式2abba+≤小结复习参考题选修1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.2 双曲线2.3 抛物线阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章导数及其应用3.1 变化率与导数3.2 导数的计算探究与发现牛顿法──用导数方法求方程的近似解3.3 导数在研究函数中的应用信息技术应用图形技术与函数性质3.4 生活中的优化问题举例实习作业走进微积分小结复习参考题选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题第二章推理与证明2.1 合情推理与演绎推理阅读与思考科学发现中的推理2.2 直接证明与间接证明小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题第四章框图4.1 流程图4.2 结构图信息技术应用用Word2002绘制流程图小结复习参考题选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2.3 双曲线探究与发现2.4 抛物线探究与发现阅读与思考小结复习参考题第三章空间向量与立体几何3.1 空间向量及其运算阅读与思考向量概念的推广与应用3.2 立体几何中的向量方法小结复习参考题选修 2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用小结复习参考题第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法小结复习参考题第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1.2 排列与组合探究与发现组合数的两个性质1.3 二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用探究与发现服从二项分布的随机变量取何值时概率最大2.3 离散型随机变量的均值与方差2.4 正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用实习作业小结复习参考题选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身学习总结报告选修3-3球面上的几何第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性思考题第二讲球面上的距离和角一球面上的距离二球面上的角思考题第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形思考题第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和思考题第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理思考题第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式思考题第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证法三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离思考题第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史学习总结报告选修3-4对称与群第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质思考题二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换思考题三平面图形的对称群思考题第二讲代数学中的对称与抽象群的概念一n元对称群Sn思考题二多项式的对称变换思考题三抽象群的概念1.群的一般概念2.直积思考题第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论学习总结报告附录一附录二选修4-1 几何证明选讲第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行射影二平面与圆柱面的截线三平面与圆锥面的截线学习总结报告选修 4-2矩阵与变换第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法三线性变换的基本性质(一)线性变换的基本性质(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组探究与发现三阶矩阵与三阶行列式第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Anα的简单表示2.特征向量在实际问题中的应用学习总结报告选修4-4 坐标系与参数方程引言第一讲坐标系一平面直角坐标系二极坐标系三简单曲线的极坐标方程四柱坐标系与球坐标系简介第二讲参数方程一曲线的参数方程二圆锥曲线的参数方程三直线的参数方程四渐开线与摆线学习总结报告选修4-5 不等式选讲引言第一讲不等式和绝对值不等式一不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法第二讲证明不等式的基本方法一比较法二综合法与分析法三反证法与放缩法第三讲柯西不等式与排序不等式一二维形式柯西不等式阅读与思考法国科学家柯西二一般形式的柯西不等式三排序不等式第四讲数学归纳法证明不等式一数学归纳法二用数学归纳法证明不等式学习总结报告选修4-6 初等数论初步引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程1.一次同余方程2.大衍求一术五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数论在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7 优选法与试验设计初步引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用学习总结报告附录一、附录二、附录三选修4-9 风险与决策引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例学习总结报告附录。
学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.设随机变量ξ~N (2,2),则D ⎝ ⎛⎭⎪⎫12ξ=( )A .1B .2 C.12D .4【解析】 ∵ξ~N (2,2),∴D (ξ)=2. ∴D ⎝ ⎛⎭⎪⎫12ξ=122D (ξ)=14×2=12.【答案】 C2.下列函数是正态密度函数的是( ) A .f (x )=12σπe (x -μ)22σ2,μ,σ(σ>0)都是实数B .f (x )=2π2πe -x 22C .f (x )=122πe -(x -1)24D .f (x )=12πe x 22【解析】 对于A ,函数的系数部分的二次根式包含σ,而且指数部分的符号是正的,故A 错误;对于B ,符合正态密度函数的解析式,其中σ=1,μ=0,故B 正确;对于C ,从系数部分看σ=2,可是从指数部分看σ=2,故C 不正确;对于D ,指数部分缺少一个负号,故D 不正确.【答案】 B3.(2015·湖北高考)设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图2-4-6所示,下列结论中正确的是( )图2-4-6A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≥t )≥P (Y ≥t )D .对任意正数t ,P (X ≤t )≥P (Y ≤t )【解析】 由图象知,μ1<μ2,σ1<σ2,P (Y ≥μ2)=12, P (Y ≥μ1)>12,故P (Y ≥μ2)<P (Y ≥μ1),故A 错; 因为σ1<σ2,所以P (X ≤σ2)>P (X ≤σ1),故B 错; 对任意正数t ,P (X ≥t )<P (Y ≥t ),故C 错; 对任意正数t ,P (X ≤t )≥P (Y ≤t )是正确的,故选 D .【答案】 D4.某厂生产的零件外直径X ~N (8.0,0.022 5),单位:mm ,今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为7.9 mm 和7.5 mm ,则可认为( )A .上、下午生产情况均为正常B .上、下午生产情况均为异常C .上午生产情况正常,下午生产情况异常D .上午生产情况异常,下午生产情况正常【解析】 根据3σ原则,在(8-3×0.15,8+3×0.15]即(7.55,8.45]之外时为异常.结合已知可知上午生产情况正常,下午生产情况异常.【答案】 C5.(2015·山东高考)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)A .4.56%B .13.59%C.27.18% D.31.74%【解析】由正态分布的概率公式知P(-3<ξ<3)=0.682 6,P(-6<ξ<6)=0.954 4,故P(3<ξ<6)=P(-6<ξ<6)-P(-3<ξ<3)2=0.954 4-0.682 62=0.135 9=13.59%,故选B.【答案】 B二、填空题6.已知正态分布落在区间(0.2,+∞)内的概率为0.5,那么相应的正态曲线f(x)在x=________时达到最高点. 【导学号:97270054】【解析】由正态曲线关于直线x=μ对称且在x=μ处达到峰值和其落在区间(0.2,+∞)内的概率为0.5,得μ=0.2.【答案】0.27.已知正态总体的数据落在区间(-3,-1)里的概率和落在区间(3,5)里的概率相等,那么这个正态总体的数学期望为________.【解析】正态总体的数据落在这两个区间的概率相等说明在这两个区间上位于正态曲线下方的面积相等,另外,因为区间(-3,-1)和区间(3,5)的长度相等,说明正态曲线在这两个区间上是对称的,我们需要找出对称轴.由于正态曲线关于直线x=μ对称,μ的概率意义是期望,因为区间(-3,-1)和区间(3,5)关于x=1对称(-1的对称点是3,-3的对称点是5),所以数学期望为1.【答案】 18.已知正态分布N(μ,σ2)的密度曲线是f(x)=12πσe-(x-μ)22σ2,x∈R.给出以下四个命题:①对任意x∈R,f(μ+x)=f(μ-x)成立;②如果随机变量X服从N(μ,σ2),且F(x)=P(X<x),那么F(x)是R上的增函数;③如果随机变量X服从N(108,100),那么X的期望是108,标准差是100;④随机变量X服从N(μ,σ2),P(X<1)=12,P(X>2)=p,则P(0<X<2)=1-2p.其中,真命题的序号是________.(写出所有真命题的序号)【解析】 画出正态分布N(μ,σ2)的密度曲线如下图: 由图可得:①图象关于x =μ对称,故①正确;②随着x 的增加,F(x)=P(ξ<x)也随着增加,故②正确;③如果随机变量ξ服从N(108,100),那么ξ的期望是108,标准差是10; ④由图象的对称性,可得④正确.故填①②④. 【答案】 ①②④ 三、解答题9.在一次测试中,测量结果X 服从正态分布N(2,σ2)(σ>0),若X 在(0,2]内取值的概率为0.2,求:(1)X 在(0,4]内取值的概率; (2)P(X>4). 【解】(1)由于X ~N(2,σ2),对称轴x =2,画出示意图如图.因为P(0<X ≤2)=P(2<X ≤4),所以P(0<X ≤4)=2P(0<X ≤2)=2×0.2=0.4. (2)P(X>4)=12[1-P(0<X ≤4)]=12(1-0.4)=0.3.10.一建筑工地所需要的钢筋的长度X ~N(8,22),质检员在检查一大批钢筋的质量时,发现有的钢筋长度小于2米,这时,他是让钢筋工继续用切割机截钢筋呢,还是停下来检修切割机?【解】 由于X ~N(8,22),根据正态分布的性质可知,正态分布在(8-3×2,8+3×2)之外的取值概率仅为0.3%,长度小于2米的钢筋不在(2,14)内,所以质检员应让钢筋工马上停止切割,并对切割机进行检修.[能力提升]1.(2015·湖南高考)图2-4-7在如图2-4-7所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N(0,1)的密度曲线)的点的个数的估计值为()A.2 386B.2 718C.3 413 D.4 772附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+2σ)=0.954 4.【解析】由P(-1<X≤1)=0.682 6,得P(0<X≤1)=0.341 3,则阴影部分的面积为0.341 3,故估计落入阴影部分的点的个数为10 000×0.341 31×1=3 413,故选C.【答案】C2.已知一次考试共有60名同学参加,考生的成绩X~N(110,52),据此估计,大约应有57人的分数在下列哪个区间内()A.(90,110] B.(95,125]C.(100,120] D.(105,115]【解析】由5760=0.95,符合P(μ-2σ<X≤μ+2σ),所以在(100,120]内.故选C.【答案】C3.设随机变量ξ服从正态分布N(0,1),则下列结论正确的是________.(填序号)①P(|ξ|<a)=P(ξ<a)+P(ξ>-a)(a>0);②P(|ξ|<a)=2P(ξ<a)-1(a>0); ③P(|ξ|<a)=1-2P(ξ<a)(a>0); ④P(|ξ|<a)=1-P(|ξ|>a)(a>0).【解析】 因为P(|ξ|<a)=P(-a<ξ<a),所以①不正确; 因为P(|ξ|<a)=P(-a<ξ<a)=P(ξ<a)-P(ξ<-a)=P(ξ<a)-P(ξ>a)=P(ξ<a)-(1-P(ξ<a))=2P(ξ<a)-1,所以②正确,③不正确;因为P(|ξ|<a)+P(|ξ|>a)=1,所以P(|ξ|<a)=1-P(|ξ|>a)(a>0),所以④正确. 【答案】 ②④4.(2014·全国卷Ⅰ)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:图2-4-8(1)求这500件产品质量指标值的样本平均数x -和样本方差s 2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z 服从正态分布N(μ,σ2),其中μ近似为样本平均数x -,σ2近似为样本方差s 2.①利用该正态分布,求P(187.8<Z<212.2);②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数,利用①的结果,求E(X).附:150≈12.2.若Z ~N(μ,σ2),则P (μ-σ<Z<μ+σ)=0.682 6,P(μ-2σ<Z<μ+2σ)=0.954 4.【解】 (1)抽取产品的质量指标值的样本平均数x -和样本方差s 2分别为 x -=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s 2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)①由(1)知,Z ~N(200,150),从而P(187.8<Z<212.2)=P(200-12.2<Z<200+12.2)=0.682 6.②由①知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,依题意知X ~B(100,0.682 6),所以E(X)=100×0.682 6=68.26.。
人教新课标A版选修2-3 2.4正态分布A卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019高二下·蓝田期末) 已知随机变量服从正态分布,则等于()A .B .C .D .【考点】2. (2分) (2020高三上·红桥期中) 设随机变量,则()A . 0B . 1C .D .【考点】3. (2分) (2020高二下·南昌开学考) 某校约有1000人参加模块考试,其数学考试成绩服从正态分布N(90,a2)(a>0),统计结果显示数学考试成绩在70分到110分之间的人数约为总人数的0.6,则此次数学考试成绩不低于110分的学生人数约为()A . 600B . 400C . 300D . 200【考点】4. (2分) (2018高二下·保山期末) 已知服从正态分布,则“ ”是“关于的二项式的展开式的常数项为3”的()A . 充分不必要条件B . 必要不充分条件C . 既不充分又不必要条件D . 充要条件【考点】5. (2分)(2017·广元模拟) 已知某次数学考试的成绩服从正态分布N(116,82),则成绩在140分以上的考生所占的百分比为()(附:正态总体在三个特殊区间内取值的概率值①P(μ﹣σ<X≤μ+σ)=0.6826;②P(μ﹣2σ<X≤μ+2σ)=0.9544;③P(μ﹣3σ<X≤μ+3σ)=0.9974)A . 0.3%B . 0.23%C . 1.3%D . 0.13%【考点】6. (2分)随机变量服从二项分布~,且则等于()A . 4B . 12C . 4或12D . 3【考点】7. (2分) (2019高二下·青冈期末) 已知随机变量X服从正态分布且P(X 4)=0.88,则P(0X 4)=()A . 0.88B . 0.76C . 0.24D . 0.12【考点】8. (2分) (2017高二下·邢台期末) 已知随机变量X服从正态分布N(100,4),若P(102<X<m)=0.1359,则m等于[驸:P(μ﹣σ<X<μ+σ)=0.6826,P(μ﹣2σ<X<μ+2σ)=0.9544]()A . 103B . 104C . 105D . 106【考点】9. (2分)有以下命题:①命题“,”的否定是:“”;②已知随机变量X服从正态分布,则;③函数的零点在区间内;其中正确的命题的个数为()A . 0个B . 1个C . 2个D . 3个【考点】10. (2分) (2019高二下·吉林期中) 已知随机变量X服从正态分布,且, .若,则=()A . 0.135 9B . 0.135 8C . 0.271 8D . 0.271 6【考点】11. (2分)已知服从正态分布的随机变量,在区间,和内取值的概率分别为68.3%,95.4%和99.7%.某大型国有企业为10000名员工定制工作服,设员工的身高(单位:cm)服从正态分布,则适合身高在163~183cm范围内员工穿的服装大约要定制()A . 6830套B . 9540套C . 9520套D . 9970套【考点】12. (2分) (2017高二下·武汉期中) 设X~N(1,δ2),其正态分布密度曲线如图所示,且P(X≥3)=0.0228,那么向正方形OABC中随机投掷10000个点,则落入阴影部分的点的个数的估计值为()附:(随机变量ξ服从正态分布N(μ,δ2),则P(μ﹣δ<ξ<μ+δ)=68.26%,P(μ﹣2δ<ξ<μ+2δ)=95.44%A . 6038B . 6587C . 7028D . 7539【考点】二、多选题 (共2题;共6分)13. (3分)(2020·济宁模拟) 下列说法中正确的是()A . 对具有线性相关关系的变量有一组观测数据,其线性回归方程是,且,则实数的值是B . 正态分布在区间和上取值的概率相等C . 若两个随机变量的线性相关性越强,则相关系数的值越接近于1D . 若一组数据的平均数是2,则这组数据的众数和中位数都是2【考点】14. (3分)(2020·枣庄模拟) 下列结论正确的有()A . 若随机变量,,则B . 若,则C . 已知回归直线方程为,且,,则D . 已知一组数据丢失了其中一个,剩下的六个数据分别是3,3,5,3,6,11,若这组数据的平均数、中位数、众数依次成等差数列,则丢失数据的所有可能值的和为22【考点】三、填空题 (共4题;共5分)15. (1分)(2019·长春模拟) 设随机变量服从正态分布 ,若,则的值是________.【考点】16. (1分) (2017高二上·湖北期末) 已知随机变量ξ服从正态分布N(2,σ2),若P(ξ>﹣2)=0.964,则P(﹣2≤ξ≤6)等于________.【考点】17. (1分) (2017高二下·濮阳期末) 已知随机变量ξ服从正态分布N(0,1),若P(ξ>1)=a,a为常数,则P(﹣1≤ξ≤0)=________.【考点】18. (2分)已知随机变量ζ服从正态分布N(0,σ2),若P(ζ>2)=0.06,则P(﹣2≤ζ≤2)=________.【考点】四、解答题 (共2题;共20分)19. (10分) (2019高三上·成都月考) 某市房管局为了了解该市市民2018年1月至2019年1月期间买二手房情况,首先随机抽样其中200名购房者,并对其购房面积(单位:平方米,)进行了一次调查统计,制成了如图所示的频率分布直方图,接着调查了该市2018年1月至2019年1月期间当月在售二手房均价(单位:万元/平方米),制成了如图2所示的散点图(图中月份代码分别对应2018年月至2019年1月).(参考数据),,,,,, .(参考公式) .(1)试估计该市市民的购房面积的中位数;(2)从该市2018年1月至2019年1月期间所有购买二手房中的市民中任取3人,用频率估计概率,记这3人购房面积不低于100平方米的人数为,求的数学期望;(3)根据散点图选择和两个模型进行拟合,经过数据处理得到两个回归方程,分别为和,并得到一些统计量的值如下表所示:0.0005910.0001640.006050请利用相关指数判断哪个模型的拟合效果更好,并用拟合效果更好的模型预测出2019年12月份的二手房购房均价(精确到0.001)【考点】20. (10分) (2017高二下·临淄期末) 某校为了普及环保知识,增强学生的环保意识,在全校组织了一次有关环保知识的竞赛.经过初赛、复赛,甲、乙两个代表队(每队3人)进入了决赛,规定每人回答一个问题,答对为本队赢得10分,答错得0分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,,,且各人回答正确与否相互之间没有影响,用ξ表示乙队的总得分.(Ⅰ)求ξ的分布列和数学期望;(Ⅱ)求甲、乙两队总得分之和等于30分且甲队获胜的概率.【考点】参考答案一、单选题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、多选题 (共2题;共6分)答案:13-1、考点:解析:答案:14-1、考点:解析:三、填空题 (共4题;共5分)答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:四、解答题 (共2题;共20分)答案:19-1、答案:19-2、答案:19-3、考点:解析:答案:20-1、考点:解析:。
人教版高中数学A版目录新课标A版必修1•第一章集合与函数概念•第二章基本初等函数(Ⅰ)•第三章函数的应用•单元测试•综合专栏第一章集合与函数概念• 1.1集合• 1.2函数及其表示• 1.3函数的基本性质•实习作业•同步练习•单元测试•本章综合1.1集合• 1.1.1集合的含义与表示• 1.1.2集合间的基本关系• 1.1.3集合的基本运算•本节综合1.2函数及其表示• 1.2.1函数的概念• 1.2.2函数的表示法•本节综合1.3函数的基本性质• 1.3.1单调性与最大(小)值• 1.3.2奇偶性•本节综合实习作业同步练习单元测试本章综合第二章基本初等函数(Ⅰ)• 2.1指数函数• 2.2对数函数• 2.3幂函数•同步练习•单元测试•本章综合2.1指数函数• 2.1.1指数与指数幂的运算• 2.1.2指数函数及其性质•本节综合2.2对数函数• 2.2.1对数与对数运算• 2.2.2对数函数及其性质•本节综合2.3幂函数同步练习单元测试本章综合第三章函数的应用• 3.1函数与方程• 3.2函数模型及其应用•实习作业•同步练习•单元测试•本章综合3.1函数与方程• 3.1.1方程的根与函数的零点• 3.1.2用二分法求方程的近似解•本节综合3.2函数模型及其应用• 3.2.1几类不同增长的函数模型• 3.2.2函数模型的应用实例•本节综合实习作业同步练习单元测试本章综合单元测试综合专栏新课标A版必修2•第一章空间几何体•第二章点、直线、平面之间的位置关系•第三章直线与方程•第四章圆与方程•单元测试综合专栏第一章空间几何体• 1.1空间几何体的结构• 1.2空间几何体的三视图和直观图• 1.3空间几何体的表面积与体积•复习参考题•实习作业•同步练习•单元测试•本章综合•第二章点、直线、平面之间的位置关系• 2.1空间点、直线、平面之间的位置关系• 2.2直线、平面平行的判定及其性质• 2.3直线、平面垂直的判定及其性质•同步练习•单元测试•本章综合第三章直线与方程• 3.1直线的倾斜角与斜率• 3.2直线的方程• 3.3直线的交点坐标与距离公式•同步练习•单元测试•本章综合第四章圆与方程• 4.1圆的方程• 4.2直线、圆的位置关系• 4.3空间直角坐标系•同步练习•单元测试•本章综合单元测试综合专栏新课标A版必修3•第一章算法初步•第二章统计•第三章概率•单元测试•综合专栏第一章算法初步• 1.1算法与程序框图• 1.2基本算法语句• 1.3算法与案例•同步练习•单元测试•本章综合1.1算法与程序框图• 1.1.1算法的概念• 1.1.2程序框图和算法的逻辑结构•本节综合1.2基本算法语句• 1.2.1输入、输出、赋值语句• 1.2.2条件语句• 1.2.3循环语句•本节综合1.3算法与案例同步练习单元测试本章综合第二章统计• 2.1随机抽样• 2.2用样本估计总体• 2.3变量间的相关关系•实习作业•同步练习•单元测试•本章综合2.1随机抽样• 2.1.1简单随机抽样• 2.1.2系统抽样• 2.1.3分层抽样•本节综合2.2用样本估计总体• 2.2.1用样本的频率分布估计总体• 2.2.2用样本的数字特征估计总体•本节综合2.3变量间的相关关系• 2.3.1变量之间的相关关系• 2.3.2两个变量的线性相关•本节综合实习作业同步练习单元测试本章综合第三章概率• 3.1随机事件的概率• 3.2古典概型• 3.3几何概型•同步练习•单元测试•本章综合3.1随机事件的概率• 3.1.1随机事件的概率• 3.1.2概率的意义• 3.1.3概率的基本性质•本节综合3.2古典概型• 3.2.1古典概型• 3.2.2随机数的产生•本节综合3.3几何概型• 3.3.1几何概型• 3.3.2均匀随机数的产生•本节综合同步练习单元测试本章综合单元测试综合专栏新课标A版必修4•第一章三角函数•第二章平面向量•第三章三角恒等变换•单元测试•综合专栏第一章三角函数• 1.1任意角和弧度制• 1.2任意的三角函数• 1.3三角函数的诱导公式• 1.4三角函数的图象与性质• 1.5函数y=Asin(ωx+ψ)• 1.6三角函数模型的简单应用•同步练习•单元测试•本章综合第二章平面向量• 2.1平面向量的实际背景及基本概念• 2.2平面向量的线性运算• 2.3平面向量的基本定理及坐标表示• 2.4平面向量的数量积• 2.5平面向量应用举例•同步练习•单元测试•本章综合第三章三角恒等变换• 3.1两角和与差的正弦、余弦和正切公式• 3.2简单的三角恒等变换•同步练习•单元测试•本章综合单元测试综合专栏新课标A版必修5•第一章解三角形•第二章数列•第三章不等式•单元测试•综合专栏第一章解三角形• 1.1正弦定理和余弦定理• 1.2应用举例• 1.3实习作业•探究与发现解三角形的进一步讨论•同步练习•单元测试•本章综合第二章数列• 2.1数列的概念与简单表示法• 2.1等差数列• 2.3等差数列的前n项和• 2.4等比数列• 2.5等比数列的前n项和•同步练习•单元测试•本章综合第三章不等式• 3.1不等关系与不等式• 3.2一元二次不等式及其解法• 3.3二元一次不等式(组)与简单的线性• 3.4基本不等式:•同步练习•单元测试•本章综合单元测试综合专栏新课标A版选修一•新课标A版选修1-1•新课标A版选修1-2新课标A版选修1-1•第一章常用逻辑用语•第二章圆锥曲线与方程•第三章导数及其应用•月考专栏•期中专栏•期末专栏•单元测试•综合专栏第一章常用逻辑用语• 1.1命题及其关系• 1.2充分条件与必要条件• 1.3简单的逻辑联结词• 1.4全称量词与存在量词•同步练习•单元测试•本章综合第二章圆锥曲线与方程• 2.1椭圆• 2.2双曲线• 2.3抛物线•同步练习•单元测试•本章综合第三章导数及其应用• 3.1变化率与导数• 3.2导数的计算• 3.3导数在研究函数中的应用• 3.4生活中的优化问题举例•同步练习•单元测试•本章综合月考专栏期中专栏期末专栏单元测试新课标A版选修1-2•第一章统计案例•第二章推理与证明•第三章数系的扩充与复数的引入•第四章框图•月考专栏•期中专栏•期末专栏•单元测试•本章综合点击这里展开-- 查看子节点索引目录,更精确地筛选资料!第一章统计案例• 1.1回归分析的基本思想及其初步应用• 1.2独立性检验的基本思想及其初步应用•实习作业•同步练习•综合第二章推理与证明• 2.1合情推理与演绎推理• 2.2直接证明与间接证明•同步练习•综合第三章数系的扩充与复数的引入• 3.1数系的扩充和复数的概念• 3.2复数代数形式的四则运算•同步练习•综合第四章框图• 4.1流程图• 4.2结构图•同步练习•综合月考专栏期中专栏期末专栏单元测试本章综合新课标A版选修二•新课标人教A版选修2-1•新课标人教A版选修2-2•新课标人教A版选修2-3新课标人教A版选修2-1•第一章常用逻辑用语•第二章圆锥曲线与方程•第三章空间向量与立体几何•单元测试•本册综合第一章常用逻辑用语• 1.1命题及其关系• 1.2充分条件与必要条件• 1.3简单的逻辑联结词• 1.4全称量词与存在量词•同步练习•本章综合第二章圆锥曲线与方程• 2.1曲线与方程• 2.2椭圆• 2.3双曲线• 2.4抛物线•同步练习•本章综合第三章空间向量与立体几何• 3.1空间向量及其运算• 3.2立体几何中的向量方法•同步练习•本章综合单元测试本册综合新课标人教A版选修2-2•第一章导数及其应用•第二章推理与证明•第三章数系的扩充与复数的引入•单元测试•本册综合第一章导数及其应用• 1.1变化率与导数• 1.2导数的计算• 1.3导数在研究函数中的应用• 1.4生活中的优化问题举例• 1.5定积分的概念• 1.6微积分基本定理• 1.7定积分的简单应用•同步练习•本章综合第二章推理与证明• 2.1合情推理与演绎推理• 2.2直接证明与间接证明• 2.3数学归纳法•同步练习•本章综合第三章数系的扩充与复数的引入• 3.1数系的扩充和复数的概念• 3.2复数代数形式的四则运算•同步练习•本章综合单元测试本册综合新课标人教A版选修2-3•第一章计数原理•第二章随机变量及其分布•第三章统计案例•单元测试•本册综合第一章计数原理• 1.1分类加法计数原理与分步乘法计.• 1.2排列与组合• 1.3二项式定理•同步练习•本章综合第二章随机变量及其分布• 2.1离散型随机变量及其分布列• 2.2二项分布及其应用• 2.3离散型随机变量的均值与方差• 2.4正态分布•同步练习•本章综合第三章统计案例• 3.1回归分析的基本思想及其初步应用• 3.2独立性检验的基本思想及其初步•本章综合•同步练习单元测试本册综合新课标A版选修三•新课标A版选修3-1•新课标A版选修3-3•新课标A版选修3-4新课标A版选修3-1•第一讲早期的算术与几何•第二讲古希腊数学•第三讲中国古代数学瑰宝•第四讲平面解析几何的产生•第五讲微积分的诞生•第六讲近代数学两巨星•第七讲千古谜题•第八讲对无穷的深入思考•第九讲中国现代数学的开拓与发展•单元测试•本册综合第一讲早期的算术与几何•一古埃及的数学•二两河流域的数学•三丰富多彩的记数制度•同步练习•本章综合第二讲古希腊数学•一希腊数学的先行者•二毕达哥拉斯学派•三欧几里得与《原本》•四数学之神──阿基米德•同步练习•本章综合第三讲中国古代数学瑰宝•一《周髀算经》与赵爽弦图•二《九章算术》•三大衍求一术•四中国古代数学家•同步练习•本章综合第四讲平面解析几何的产生•一坐标思想的早期萌芽•二笛卡儿坐标系•三费马的解析几何思想•四解析几何的进一步发展•同步练习•本章综合第五讲微积分的诞生•一微积分产生的历史背景•二科学巨人牛顿的工作•三莱布尼茨的“微积分”•同步练习•本章综合第六讲近代数学两巨星•一分析的化身──欧拉•二数学王子──高斯•同步练习•本章综合第七讲千古谜题•一三次、四次方程求根公式的发现•二高次方程可解性问题的解决•三伽罗瓦与群论•四古希腊三大几何问题的解决•同步练习•本章综合第八讲对无穷的深入思考•一古代的无穷观念•二无穷集合论的创立•三集合论的进一步发展与完善•同步练习•本章综合第九讲中国现代数学的开拓与发展•一中国现代数学发展概观•二人民的数学家──华罗庚•三当代几何大师──陈省身•同步练习•本章综合单元测试本册综合新课标A版选修3-3•第一讲从欧氏几何看球面•第二讲球面上的距离和角•第三讲球面上的基本图形•第四讲球面三角形•第五讲球面三角形的全等•第六讲球面多边形与欧拉公式•第七讲球面三角形的边角关系•第八讲欧氏几何与非欧几何•单元测试•本册综合第一讲从欧氏几何看球面•一平面与球面的位置关系•二直线与球面的位置关系和球幂定理•三球面的对称性•同步练习•本章综合第二讲球面上的距离和角•一球面上的距离•二球面上的角•同步练习•本章综合第三讲球面上的基本图形•一极与赤道•二球面二角形•三球面三角形•同步练习•本章综合第四讲球面三角形•一球面三角形三边之间的关系•二、球面“等腰”三角形•三球面三角形的周长•四球面三角形的内角和•同步练习•本章综合第五讲球面三角形的全等•1.“边边边”(s.s.s)判定定理•2.“边角边”(s.a.s.)判定定理•3.“角边角”(a.s.a.)判定定理•4.“角角角”(a.a.a.)判定定理•同步练习•本章综合第六讲球面多边形与欧拉公式•一球面多边形及其内角和公式•二简单多面体的欧拉公式•三用球面多边形的内角和公式证明欧拉公式•同步练习•本章综合第七讲球面三角形的边角关系•一球面上的正弦定理和余弦定理•二用向量方法证明球面上的余弦定理•三从球面上的正弦定理看球面与平面•四球面上余弦定理的应用──求地球上两城市间的距离•同步练习•本章综合第八讲欧氏几何与非欧几何•一平面几何与球面几何的比较•二欧氏平行公理与非欧几何模型──庞加莱模型•三欧氏几何与非欧几何的意义•同步练习•本章综合单元测试本册综合新课标A版选修3-4•第一讲平面图形的对称群•第二讲代数学中的对称与抽象群的概念•第三讲对称与群的故事•综合专栏•单元测试第一讲平面图形的对称群•平面刚体运动•对称变换•平面图形的对称群•同步练习•本章综合第二讲代数学中的对称与抽象群的概念•n元对称群S•多项式的对称变换•抽象群的概念•同步练习•本章综合第三讲对称与群的故事•带饰和面饰•化学分子的对称群•晶体的分类•伽罗瓦理论•同步练习•本章综合综合专栏单元测试新课标A版选修四•新课标人教A版选修4-1•选修4-2•新课标A版选修4-4•新课标A版选修4-5新课标人教A版选修4-1•第一讲相似三角形的判定及有关性质•第二讲直线与圆的位置关系•第三讲圆锥曲线性质的探讨•单元测试•本册综合第一讲相似三角形的判定及有关性质•一平行线等分线段定理•二平行线分线段成比例定理•三相似三角形的判定及性质•四直角三角形的射影定理•同步练习•本章综合第二讲直线与圆的位置关系•一圆周角定理•二圆内接四边形的性质与判定定理•三圆的切线的性质及判定定理•四弦切角的性质•五与圆有关的比例线段•同步练习•本章综合第三讲圆锥曲线性质的探讨•一平行射影•二平面与圆柱面的截线•三平面与圆锥面的截线•同步练习•本章综合单元测试本册综合选修4-2•第一讲线性变换与二阶矩阵•第二讲变换的复合与二阶矩阵的乘法•第三讲逆变换与逆矩阵•第四讲变换的不变量与矩阵的特征向量•单元测试•本册综合第一讲线性变换与二阶矩阵•一线性变换与二阶矩阵•二二阶矩阵与平面向量的乘法•三线性变换的基本性质•同步练习•本章综合第二讲变换的复合与二阶矩阵的乘法•一复合变换与二阶短阵的乘法•二矩阵乘法的性质•同步练习•本章综合第三讲逆变换与逆矩阵•一逆变换与逆矩阵•二二阶行列式与逆矩阵•三逆矩阵与二元一次方程组•同步练习•本章综合第四讲变换的不变量与矩阵的特征向量•一变换的不变量---矩阵的特征向量•二特征向量的应用•同步练习•本章综合单元测试本册综合新课标A版选修4-4•第一章坐标系•第二章参数方程•单元测试•本册综合第一章坐标系• 1.1直角坐标系、平面上的伸缩变换• 1.2极坐标系• 1.3曲线的极坐标方程• 1.4圆的极坐标方程• 1.5柱坐标系与球坐标系•同步练习•本章综合第二章参数方程• 2.1曲线的参数方程• 2.2直线和圆的参数方程• 2.3圆锥曲线的参数方程• 2.4一些常见曲线的参数方程•同步练习•本章综合单元测试本册综合新课标A版选修4-5•第一讲不等式和绝对值不等式•第二讲讲明不等式的基本方法•第三讲柯西不等式与排序不等式•第四讲数学归纳法证明不等式•单元测试•本册综合第一讲不等式和绝对值不等式•一不等式•二绝对值不等式•单元测试•本章综合第二讲讲明不等式的基本方法•一比较法•二综合法与分析法•三反证法与放缩法•单元测试•本章综合第三讲柯西不等式与排序不等式•一二维形式的柯西不等式•二一般形式的柯西不等式•三排序不等式•单元测试•本章综合第四讲数学归纳法证明不等式•一数学归纳法•二用数学归纳法证明不等式•单元测试•本章综合单元测试本册综合。
学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.有以下三个问题:①掷一枚骰子一次,事件M:“出现的点数为奇数”,事件N:“出现的点数为偶数”;②袋中有3白、2黑,5个大小相同的小球,依次不放回地摸两球,事件M:“第1次摸到白球”,事件N:“第2次摸到白球”;③分别抛掷2枚相同的硬币,事件M:“第1枚为正面”,事件N:“两枚结果相同”.这三个问题中,M,N是相互独立事件的有()A.3个B.2个C.1个D.0个2.从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋各摸出一个球,则23表示()A.2个球不都是红球的概率B.2个球都是红球的概率C.至少有1个红球的概率D.2个球中恰有1个红球的概率3.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为()A.34 B.23C.35 D.124.在荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一叶跳到另一叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图2-2-2所示.假设现在青蛙在A叶上,则跳三次之后停在A叶上的概率是()图2-2-2A.13 B.29C.49 D.8275.如图2-2-3所示,在两个圆盘中,指针落在圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是()图2-2-3A.49 B.29C.23 D.13二、填空题6.在甲盒内的200个螺杆中有160个是A型,在乙盒内的240个螺母中有180个是A型.若从甲、乙两盒内各取一个,则能配成A型螺栓的概率为________.7.三人独立地破译一份密码,他们能单独译出的概率分别为15,13,14,假设他们破译密码是彼此独立的,则此密码被破译的概率为________. 【导学号:97270041】8.台风在危害人类的同时,也在保护人类.台风给人类送来了淡水资源,大大缓解了全球水荒,另外还使世界各地冷热保持相对均衡.甲、乙、丙三颗卫星同时监测台风,在同一时刻,甲、乙、丙三颗卫星准确预报台风的概率分别为0.8,0.7,0.9,各卫星间相互独立,则在同一时刻至少有两颗预报准确的是________.三、解答题9.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地的1位车主至少购买甲、乙两种保险中的1种的概率;(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.10.某城市有甲、乙、丙3个旅游景点,一位游客游览这3个景点的概率分别是0.4,0.5,0.6,且游客是否游览哪个景点互不影响,用ξ表示该游客离开该城市时游览的景点数与没有游览的景点数之差的绝对值,求ξ的分布列.[能力提升]1.设两个独立事件A和B都不发生的概率为19,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率P(A)是()A.29 B.118C.13 D.232.三个元件T1,T2,T3正常工作的概率分别为12,34,34,且是互相独立的.将它们中某两个元件并联后再和第三个元件串联接入电路,在如图2-2-4的电路中,电路不发生故障的概率是()图2-2-4A.1532 B.932C.732 D.17323.本着健康、低碳的生活理念,租自行车骑游的人越来越多,某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算),有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14,12,两小时以上且不超过三小时还车的概率分别是12,14,两人租车时间都不会超过四小时.求甲、乙两人所付的租车费用相同的概率为________. 【导学号:97270042】4.在一段线路中并联着3个自动控制的开关,只要其中1个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率.学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.有以下三个问题:①掷一枚骰子一次,事件M:“出现的点数为奇数”,事件N:“出现的点数为偶数”;②袋中有3白、2黑,5个大小相同的小球,依次不放回地摸两球,事件M:“第1次摸到白球”,事件N:“第2次摸到白球”;③分别抛掷2枚相同的硬币,事件M:“第1枚为正面”,事件N:“两枚结果相同”.这三个问题中,M,N是相互独立事件的有()A.3个B.2个C.1个D.0个【解析】①中,M,N是互斥事件;②中,P(M)=3 5,P(N)=12.即事件M的结果对事件N的结果有影响,所以M,N不是相互独立事件;③中,P(M)=1 2,P(N)=12,P(MN)=14,P(MN)=P(M)P(N),因此M,N是相互独立事件.【答案】 C2.从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋各摸出一个球,则23表示()A.2个球不都是红球的概率B.2个球都是红球的概率C.至少有1个红球的概率D.2个球中恰有1个红球的概率【解析】分别记从甲、乙袋中摸出一个红球为事件A,B,则P(A)=13,P(B)=12,由于A,B相互独立,所以1-P(A)P(B)=1-23×12=23.根据互斥事件可知C 正确.【答案】 C3.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( )A.34B.23C.35D.12【解析】 问题等价为两类:第一类,第一局甲赢,其概率P 1=12;第二类,需比赛2局,第一局甲负,第二局甲赢,其概率P 2=12×12=14.故甲队获得冠军的概率为P 1+P 2=34.【答案】 A4.在荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一叶跳到另一叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图2-2-2所示.假设现在青蛙在A 叶上,则跳三次之后停在A 叶上的概率是( )图2-2-2A.13B.29C.49D.827【解析】 青蛙跳三次要回到A 只有两条途径: 第一条:按A →B →C →A , P 1=23×23×23=827; 第二条,按A →C →B →A , P 2=13×13×13=127.所以跳三次之后停在A叶上的概率为P=P1+P2=827+127=13.【答案】 A5.如图2-2-3所示,在两个圆盘中,指针落在圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是()图2-2-3A.49 B.29C.23 D.13【解析】“左边圆盘指针落在奇数区域”记为事件A,则P(A)=46=23,“右边圆盘指针落在奇数区域”记为事件B,则P(B)=23,事件A,B相互独立,所以两个指针同时落在奇数区域的概率为23×23=49,故选A.【答案】 A二、填空题6.在甲盒内的200个螺杆中有160个是A型,在乙盒内的240个螺母中有180个是A型.若从甲、乙两盒内各取一个,则能配成A型螺栓的概率为________.【解析】“从200个螺杆中,任取一个是A型”记为事件 B.“从240个螺母中任取一个是A型”记为事件C,则P(B)=C1160C1200,P(C)=C1180C1240.∴P(A)=P(BC)=P(B)·P(C)=C1160C1200·C1180C1240=35.【答案】3 57.三人独立地破译一份密码,他们能单独译出的概率分别为15,13,14,假设他们破译密码是彼此独立的,则此密码被破译的概率为________. 【导学号:97270041】【解析】用A,B,C分别表示“甲、乙、丙三人能破译出密码”,则P(A)=15,P(B)=13,P(C)=14,且P(A B C)=P(A)P(B)P(C)=45×23×34=25.所以此密码被破译的概率为1-25=35.【答案】358.台风在危害人类的同时,也在保护人类.台风给人类送来了淡水资源,大大缓解了全球水荒,另外还使世界各地冷热保持相对均衡.甲、乙、丙三颗卫星同时监测台风,在同一时刻,甲、乙、丙三颗卫星准确预报台风的概率分别为0.8,0.7,0.9,各卫星间相互独立,则在同一时刻至少有两颗预报准确的是________.【解析】设甲、乙、丙预报准确依次记为事件A,B,C,不准确记为A,B,C,则P(A)=0.8,P(B)=0.7,P(C)=0.9,P(A)=0.2,P(B)=0.3,P(C)=0.1,至少两颗预报准确的事件有AB C,A B C,A BC,ABC,这四个事件两两互斥且独立.所以至少两颗预报准确的概率为P=P(AB C)+P(A B C)+P(A BC)+P(ABC)=0.8×0.7×0.1+0.8×0.3×0.9+0.2×0.7×0.9+0.8×0.7×0.9=0.056+0.216+0.126+0.504=0.902.【答案】0.902三、解答题9.根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地的1位车主至少购买甲、乙两种保险中的1种的概率;(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.【解】记A表示事件:该地的1位车主购买甲种保险;B表示事件:该地的1位车主购买乙种保险;C表示事件:该地的1位车主至少购买甲、乙两种保险中的一种;D表示事件:该地的1位车主甲、乙两种保险都不购买;E表示事件:该地的3位车主中恰有1位车主甲、乙两种保险都不购买.(1)P(A)=0.5,P(B)=0.3,C=A+B,P(C)=P(A+B)=P(A)+P(B)=0.8.(2)D=C,P(D)=1-P(C)=1-0.8=0.2,P(E)=0.8×0.2×0.8+0.8×0.8×0.2+0.2×0.8×0.8=0.384.10.某城市有甲、乙、丙3个旅游景点,一位游客游览这3个景点的概率分别是0.4,0.5,0.6,且游客是否游览哪个景点互不影响,用ξ表示该游客离开该城市时游览的景点数与没有游览的景点数之差的绝对值,求ξ的分布列.【解】设游客游览甲、乙、丙景点分别记为事件A1,A2,A3,已知A1,A2,A3相互独立,且P(A1)=0.4,P(A2)=0.5,P(A3)=0.6,游客游览的景点数可能取值为0,1,2,3,相应的游客没有游览的景点数可能取值为3,2,1,0,所以ξ的可能取值为1,3.则P(ξ=3)=P(A1·A2·A3)+P(A1·A2·A3)=P(A1)·P(A2)·P(A3)+P(A1)·P(A2)·P(A3)=2×0.4×0.5×0.6=0.24.P(ξ=1)=1-0.24=0.76.所以分布列为:1.设两个独立事件A和B都不发生的概率为19,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率P(A)是()A.29 B.118C.13 D.23【解析】 由P (A B )=P (B A ),得P (A )P (B )=P (B )·P (A ),即P (A )[1-P (B )]=P (B )[1-P (A )],∴P (A )=P (B ).又P (A B )=19, ∴P (A )=P (B )=13,∴P (A )=23. 【答案】 D2.三个元件T 1,T 2,T 3正常工作的概率分别为12,34,34,且是互相独立的.将它们中某两个元件并联后再和第三个元件串联接入电路,在如图2-2-4的电路中,电路不发生故障的概率是( )图2-2-4A.1532B.932C.732D.1732【解析】 记“三个元件T 1,T 2,T 3正常工作”分别为事件A 1,A 2,A 3,则P (A 1)=12,P (A 2)=34,P (A 3)=34.不发生故障的事件为(A 2∪A 3)A 1, ∴不发生故障的概率为 P =P [(A 2∪A 3)A 1]=[1-P (A 2)·P (A 3)]·P (A 1) =⎝ ⎛⎭⎪⎫1-14×14×12=1532.故选A. 【答案】 A3.本着健康、低碳的生活理念,租自行车骑游的人越来越多,某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算),有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14,12,两小时以上且不超过三小时还车的概率分别是12,14,两人租车时间都不会超过四小时.求甲、乙两人所付的租车费用相同的概率为________. 【导学号:97270042】【解析】 由题意可知,甲、乙在三小时以上且不超过四个小时还车的概率分别为14,14,设甲、乙两人所付的租车费用相同为事件A ,则P (A )=14×12+12×14+14×14=516.所以甲、乙两人所付的租车费用相同的概率为516.【答案】 5164.在一段线路中并联着3个自动控制的开关,只要其中1个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率.【解】 如图所示,分别记这段时间内开关J A ,J B ,J C 能够闭合为事件A ,B ,C .由题意,这段时间内3个开关是否能够闭合相互之间没有影响,根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是P (A -B -C -)=P (A )P (B )P (C )=[1-P (A )][1-P (B )][1-P (C )]=(1-0.7)×(1-0.7)×(1-0.7)=0.027.于是这段时间内至少有1个开关能够闭合,从而使线路能正常工作的概率是1-P (A -B -C -)=1-0.027=0.973.即在这段时间内线路正常工作的概率是0.973.。
人教新课标A版选修2-3 2.4正态分布D卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2017高二下·临泉期末) 已知随机变量ξ服从正态分布N(1,σ2),若P(ξ>2)=0.15,则P(0≤ξ≤1)=()A . 0.85B . 0.70C . 0.35D . 0.15【考点】2. (2分)已知某次月考的数学考试成绩,统计结果显示,则()A . 0.2B . 0.3C . 0.1D . 0.5【考点】3. (2分) (2016高二下·武汉期中) 设有一正态总体,它的概率密度曲线是函数y=f(x)的图象,且f(x)= ,则这个正态总体的期望与标准差分别是()A . 10与4B . 10与2C . 4与10D . 2与10【考点】4. (2分) (2019高二上·双鸭山期末) 某市进行一次高三教学质量抽样检测,考试后统计的所有考生的数学成绩服从正态分布.已知数学成绩平均分为90分,60分以下的人数占10%,则数学成绩在90分至120分之间的考生人数所占百分比约为()A . 40%B . 30%C . 20%D . 10%【考点】5. (2分)已知随机变量X服从正态分布N(3,1),且=0.6826,则()A . 0.1585B . 0.1588C . 0.1587D . 0.1586【考点】6. (2分)(2018·榆社模拟) 若随机变量服从二项分布,则()A .B .C .D .【考点】7. (2分)已知某批零件的长度误差(单位:毫米)服从正态分布,从中随机取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布,则%,%A . 4.56%B . 13.59%C . 27.18%D . 31.74%8. (2分)已知随机变量,且,则等于()A . 0.1585B . 0.1586C . 0.1587D . 0.1588【考点】9. (2分)下图是正态分布N(0,1)的正态曲线图,下面3个式子中,等于图中阴影部分面积的个数为()。
2.4正态分布基础梳理1.正态曲线函数φμ,σ(x)=12πσe-(x-μ)22σ2,x∈(-∞,+∞)(其中实数μ和σ(σ>0)为参数)的图象为正态分布密度曲线,简称正态曲线.2.正态分布(1)如果对于任何实数a,b(a<b),随机变量X满足P(a<X≤b)=b aφμ,σ(x)d x,则称随机变量X 服从正态分布.(2)记作:X~N(μ,σ2).3.正态曲线的性质(1)曲线在x轴上方,与x轴不相交.(2)曲线是单峰的,关于直线x=μ对称.(3)曲线在x=μ处达到峰值1σ2π.(4)曲线与x轴之间的面积为1.(5)当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移.(6)如图所示:当μ一定时,曲线的形状由σ确定.σ越大,曲线越“辞矮”,表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.4.3σ原则:正态总体几乎取值于区间(μ-3σ,μ+3σ)之内,而在此区间以外取值的概率只有0.002_6,通常认为这种情况在一次试验中几乎不可能发生.自测自评1.设有一正态总体,它的正态分布密度曲线是函数f (x )的图象,且f (x )=18πe -(x -10)28,则这个正态总体的均值与标准差分别是(B )A .10与8B .10与2C .8与10D .2与10 解析:把函数f (x )=18πe -(x -10)28化简成正态密度函数为f (x )=12π×2e -(x -10)22×22,易知这个正态总体的均值与标准差分别是10与2.2.如图,曲线C 1:f (x )=12πσ1e -(x -μ1)22σ21(x ∈R ),曲线C 2:φ(x )=12πσ2e -(x -μ2)22σ22(x ∈R ),则(D )A .μ1<μ2B .曲线C 1与x 轴相交 C .σ1>σ2D .曲线C 1、C 2分别与x 轴所夹的面积相等3.(2013·惠州一模)设随机变量ξ服从正态分布N (3,4),若P (ξ<2a -3)=P (ξ>a +2),则a 的值为 (A )A.73B.53C .5D .3 解析:因为随机变量ξ服从正态分布N (3,4),因为P (ξ<2a -3)=p (ξ>a +2),所以2a -3与a +2关于x =3对称,所以2a -3+a +2=6,所以3a =7,所以a =73.故选A.不能正确应用正态分布的对称性致误【典例】 随机变量ξ服从正态分布N (0,1),如果P (ξ≤1)=0.841 3,求P (-1<ξ≤0). 解析:如图所示,因为P (ξ≤1)=0.413,所以P (ξ>1)=1-0.413=0.158 7.所以P (ξ≤-1)=0.158 7,所以P (-1<ξ≤0)=0.5-0.158 7=0.341 3.【易错剖析】本题易有如下错解: P (-1<ξ≤0)=12[1-P (ξ≤1)]=12(1-0.841 3)=0.0793 5.这是用错正态分布的对称性造成的.由于ξ~N (0,1),所以对称轴为x =0,所以与(-1,0)对称的区间应为(0,1),与(1,+∞)对称的区间为(-∞,-1).基础巩固1.设随机变量X ~N (μ,σ2),且P (X ≤c )=P (X >c ),则c 的值是(C) A .-μ B .0 C .μ D .σ22.已知随机变量ξ服从正态分布N (3,σ2),则P (ξ<3)等于(D) A.15 B.14 C.13 D.12解析:∵ξ~N (3,σ2),∴ξ=3为正态分布的对称轴,∴P (ξ<3)=12.3.已知随机变量ξ服从正态分布N (0,σ2),若P (ξ>2)=0.023,则P (-2≤ξ≤ 2)=(C) A .0.477 B .0.628 C .0.954 D .0.977 解析:∵ξ~N (0,σ2),∴μ=0,即图象关于y 轴对称,∴P (-2≤ ξ≤ 2)=1-P (ξ<-2)-P (ξ>2)=1-2P (ξ>2)=1-2× 0.023=0.954.4.正态变量的概率密度函数f (x )=12πe -(x -3)22,x ∈R 的图象关于直线x =3对称,f (x )能力提升5.工人制造的零件尺寸在正常情况下服从正态分布N (μ,σ2),在一次正常的试验中,取1 000个零件,不属于(μ-3σ,μ+3σ)这个尺寸范围的零件个数可能为(C)A .7B .10C .3D .6解析:∵P (μ-3σ≤ξ≤μ+3σ)=0.9974,∴不属于区间(μ-3σ,μ-3σ)内的零点个数约为1000×(1-0.9974)=2.6≈3个.6.(2014·哈师大附中高二期中)已知随机变量ξ服从正态分布N (1,4),则P (-3<ξ<5)= (参考数据:P (μ-σ<ξ<μ+σ)=0.6826,P (μ-2σ<ξ<μ+2σ)=0.9544,P (μ-3σ<ξ<μ+3σ)=0.9974)(B)A .0.6826B .0.9544C .0.0026D .0.9974解析:由ξ~N (1,4)知,μ=1,σ=2,∴μ-2σ=-3,μ+2σ=5,∴P (-3<ξ<5)=P (μ-2σ<ξ<μ+2σ)=0.9544,故选B.7. 一批灯泡的使用时间X (单位:小时)服从正态分布N (10 000,4002),则这批灯泡使用时间在(9 200,10 800]内的概率是________.解析:μ=10 000,σ=400,所以P (9 200<X ≤10 800)=P (10 000-2×400<X ≤10 000+2×400)=0.954 4.答案:0.954 4 8.设X ~N (0,1):①P (-ε<X <0)=P (0<X <ε); ②P (X <0)=0.5;③若P (-1<X <1)=0.683,则P (X <-1)=0.158 5; ④若P (-2<X <2)=0.954,则P (X <2)=0.977; ⑤若P (-3<X <3)=0.997,则P (X <3)=0.998 5. 其中正确的有①②③④⑤(填序号).9.某个工厂的工人月收入服从正态分布N (500,202),该工厂共有1200名工人,试估计月收入在440元以下和560元以上的工人大约有多少.解析:设该工厂工人的月收入为ξ,则ξ~N (500,202),所以μ=500,σ=20,所以月收入在区间(500-3×20,500+3×20)内取值的概率是0.9974,该区间即(440,560). 因此月收入在440元以下和560元以上的工人大约有1200×(1-0.9974)=1200×0.0026≈3(人). 10.已知某种零件的尺寸X (单位:mm)服从正态分布,其正态分布曲线在(0,80)上是增函数,在(80,+∞)上是减函数,且f (80)=182π. (1)求正态分布的概率密度函数的解析式;(2)估计尺寸在72~88 mm(不包括72 mm ,包括88 mm)间的零件大约占总数的百分比. 解析:(1)因为正态分布曲线在(0,80)上是增函数,在(80,+∞)上是减函数. 所以正态分布关于直线x =80对称,且在x =80处达到峰值,所以μ=80. 又12πσ=182π,所以σ=8, 故正态分布的概率密度函数的解析式为f(x)=182πe-(x-80)2128.(2)由μ=80,σ=8,得μ-σ=80-8=72,μ+σ=80+8=88.所以零件的尺寸X位于区间(72,88]内的概率为0.682 6.故尺寸在72~88 mm(不包括72 mm,包括88 mm)间的零件大约占总数的68.26%.。
一、选择题1.关于正态分布N(μ,σ2),下列说法正确的是()A.随机变量落在区间长度为3σ的区间之外是一个小概率事件B.随机变量落在区间长度为6σ的区间之外是一个小概率事件C.随机变量落在(-3σ,3σ)之外是一个小概率事件D.随机变量落在(μ-3σ,μ+3σ)之外是一个小概率事件【解析】∵P(μ-3σ<X<μ+3σ)=0.9974,∴P(X>μ+3σ或X<μ-3σ)=1-P(μ-3σ<X<μ+3σ)=1-0.9974=0.0026.∴随机变量落在(μ-3σ,μ+3σ)之外是一个小概率事件.【答案】 D2.在某项测量中,测量结果ξ服从正态分布N(2,σ2)(σ>0),若ξ在(0,2)内取值的概率为0.4,则ξ在(-∞,4)内取值的概率为()A.0.1B.0.2C.0.8D.0.9【解析】∵μ=2,∴P(0<ξ<2)=P(2<ξ<4)=0.4,∴P(0<ξ<4)=0.8.∴P(ξ<0)=12(1-0.8)=0.1,∴P(ξ<4)=0.9.【答案】 D3.随机变量ξ~N(2,10),若ξ落在区间(-∞,k)和(k,+∞)的概率相等,则k等于()A.1 B.10C.2 D.10【解析】∵区间(-∞,k)和(k,+∞)关于x=k对称.∴x=k为正态曲线的对称轴,∴k=2.【答案】 C4.设两个正态分布N(μ1,σ21)(σ1>0)和N(μ2,σ22)(σ2>0)的密度函数图象如图2-4-4所示,则有()图2-4-4A.μ1<μ2,σ1<σ2B.μ1<μ2,σ1>σ2C.μ1>μ2,σ1<σ2D.μ1>μ2,σ1>σ2【解析】σ越小,曲线越“瘦高”,故σ1<σ2,μ为对称轴的位置,由图易知μ1<μ2.【答案】 A5.(2013·沈阳高二检测)设随机变量ξ~N(0,1),若P(ξ>1)=p,则P(-1<ξ<0)=()A.12+p B.1-pC.1-2p D.12-p【解析】如图,P(ξ>1)表示x轴、x>1与正态密度曲线围成区域的面积,由正态密度曲线的对称性知:x轴、x<-1与正态密度曲线围成区域的面积也为p,所以P(-1<ξ<0)=1-2p2=12-p.【答案】 D二、填空题6.(2013·黄冈高二检测)设随机变量ξ服从正态分布N(2,9),若P(ξ>c+1)=P(ξ<c-1),则c的值为________.【解析】c+1与c-1关于ξ=2对称,(c+1)+(c-1)2=2,∴c=2.【答案】 27.已知随机变量X服从正态分布N(0,σ2),且P(-2≤X≤0)=0.4,则P(X >2)=________.【解析】P(X>2)=12[1-2P(-2≤X≤0)]=0.5-0.4=0.1.【答案】0.18.据抽样统计,在某市的公务员考试中,考生的综合评分X服从正态分布N(60,102),考生共10 000人,若一考生的综合评分为80分,则该考生的综合成绩在所有考生中的名次是第________名.【解析】依题意,P(60-20<x≤60+20)=0.9544,P(X>80)=12(1-0.9544)=0.0228,故成绩高于80分的考生人数为10000×0.0228=228(人).所以该生的综合成绩在所有考生中的名次是第229名.【答案】229三、解答题9.设X~N(5,1),求P(6<X≤7).【解】由已知得P(4<X≤6)=0.682 6,P(3<X≤7)=0.954 4.又∵正态曲线关于直线x=u=5对称∴P(3<X≤4)+P(6<X≤7)=0.954 4-0.682 6=0.271 8.由对称性知P(3<X≤4)=P(6<X≤7).所以P(6<X≤7)=0.271 82=0.135 9.10.(2012·天水高二检测)某年级的一次信息技术成绩近似服从正态分布N (70,100),如果规定低于60分为不及格,不低于90分为优秀,那么成绩不及格的学生约占多少?成绩优秀的学生约占多少?(参考数据:P (μ-σ<ξ≤μ+σ)=0.682 6,P (μ-2σ<ξ≤μ+2σ)=0.954 4).【解析】 由题意得:μ=70,σ=10,P (μ-σ<ξ≤μ+σ)=0.682 6,P (μ-2σ<ξ≤μ+2σ)=0.9544.(1)P (ξ<60)=12-12P (60<ξ≤80)=12-12×0.682 6=0.158 7.(2)P (ξ≥90)=12-12P (50<ξ≤90)=12-12×0.954 4=0.022 8.答:成绩不及格的学生约占15.87%,成绩优秀的学生约占2.28%.11.假设某省今年高考考生成绩ξ服从正态分布N (500,1002),现有考生25 000名,计划招生10 000名,试估计录取分数线.【解】 这是一个实际问题,由题知其本质就是一个“正态分布下求随机变量在某一范围内取值的概率”问题.设分数线为a ,那么分数超过a 的概率应为录取率,即P (ξ≥a )=10 00025 000=0.4,因为ξ~N (500,1002),所以P (ξ≥a )=P (ξ-500100≥a -500100)=1-P (ξ-500100<a -500100)=1-Φ(a -500100).于是有Φ(a -500100)=1-P (ξ≥a )=1-0.4=0.6.从标准正态分布表中查得Φ(0.25)=0.598 7≈0.6,故a -500100≈0.25,即a ≈525.由此可以估计录取分数线约为525分.。
高中数学精品资料
2020.8
新人教A 版数学单元测试题
高中数学系列2—3单元测试题(2.3,2.4)
一、选择题:
1.设随机变量X 服从正态分布,即),(~2σμN X ,则随着σ的增大,)(σμσμ+<<-X P 的值( )
A. 单调递增
B. 单调递减
C. 保持不变
D. 增减不定
2设正态总体密度函数为R x e x f x ∈=--,221
)(8)1(2
π,则总体的平均数为( )
A. -1
B. 0
C. 1
D. 2
3.已知随机变量X 满足2=DX ,则)32(+X D 等于( )
A. 2
B. 4
C. 8
D. 7
4.已知随机变量X 满足7.0)1(,3.0)0(====X P X P ,则EX 和DX 的值分别为( )
A.0.6和0.7
B.1.7和0.3
C.0.3和0.7
D.0.7和0.21
5.随机变量X 的分布列是
则DX EX 和分别是( )
A.2和0.8
B.1.8和0.8
C.2和1
D.2和1.8
6.设随机变量),(~p n B X ,且6.1=EX ,28.1=DX ,则( )
A. 2.0,8==p n
B. 4.0,4==p n
C. 32.0,5==p n
D. 45.0,7==p n
7.设随机变量X 的概率分布为5,4,3,2,1,15)(==
=k k k X P ,则=<<)2
521(X P ( ) A. 51 B. 52 C. 53 D. 154 8.若)1,5(~N X ,则=<<)76(X P ( )
A. 0.6826
B. 0.8413
C. 0.9772
D. 0.6179
二、填空题
9. 正态分布的性质:
①曲线在x 轴上方,并且关于直线 对称;
②曲线在μ=x 时处达到 ,由这一点向左、右两边延伸时,曲线逐渐降低;
③曲线的对称位置由μ确定;曲线的形状由σ确定,σ越大,曲线越“ ”;反之,曲线越“ ”;
10.已知X 服从二项分布即)21,100(~B X ,则=
+)32(X E ; 11. 投掷一颗骰子的点数为X ,则;=EX ;=DX
三、解答题
12.某市有48000名高二同学,一次统考后数学成绩服从正态分布,平均分为80分,标准差为10,问从理论上讲在80分到90分之间有多少人?
13.有三张形状、大小、质量完全一致的卡片,在每张卡片上写0,1,2,现从中任意抽取一张,将其上的数字记作x ,然后放回,在抽取一张,其上数字记作y ,令xy X =;
求①X 所取各值的概率; ②随机变量X 的数学期望与方差;
高中数学系列2-3单元测试题(2.3,2.4)参考答案
一、选择题:
ACCDA AAA
二、填空题:
9、①μ=x ②峰值
πσ21 ③矮胖 瘦高 10、103 11、1235 三、解答题:
12、16382人 13、①4,2,1,0=X ②9
16,1=
=DX EX
精心整理资料,感谢使用!。