七年级数学上册 第四章 基本平面图形 4_3 角教案 (新版)北师大版1
- 格式:doc
- 大小:522.50 KB
- 文档页数:6
4。
3角教学过程第一环节:预习新课——阅读书本P114-115页,完成学案预习导学第二环节:情景引入——在现实生活中发现角互动一:课件展示图片(学生感受角),以提问的方式引入学习的内容——角.问:在上这节课前,我们先看一组图片,你从以上画面中发现了什么我们熟悉的图形?(角)提示:剪刀张口,屋顶的尖角,钟表的时针和分针夹角.师:在小学时,已经学过角,除了刚才我们在画面中看到的这些角外,在生活中你还能说出一些角吗?例如在我们教室周围?生:桌子的角,黑板上相邻的两条边构成角,学习工具尺子上的角和圆规两脚张开后构成角.师:可以说我们生活中处处含有角。
第三环节:新课探究互动二:明确角的概念—-角的静态定义(自主学习)师:小学,我们说从一个顶点起画的两条射线,可以组成角.师:换个说法来说,角其实就是由两条具有公共端点的射线组成的图形,其中两条射线不能乱摆,一定要有公共端点。
师生:认识角的顶点和边,(1)公共的端点其实就是角的顶点;(2)两条射线叫做角的两边。
师:这是构成角的两个要素,初中阶段,没有特别说明,我们只研究小于或等于180°的角.互动三:用运动的观点描述角,认识平角、周角—-动态定义(自主学习)师:前面在静止的情况下,通过观察角,我们给角下定义,角是由两条具有公共端点的两条射线组成, 下面,我们从运动的观点观察一下角的形成(几何画板动态演示)。
现在有一条射线,绕着其端点旋转,我们可以发现初始位置和最终位置作为始边和终边,也会形成不同的角.师:因此角又可以看成是一射线绕其端点旋转所形成的图形,那么,旋转时有无特殊情况呢?由电脑演示并说明:当终边和始边成一条直线时,所成的角叫做平角;终边继续旋转一周,终边回到始边,和始边重合时,所成的角叫做周角.师说明:(1)平角与直线、周角与射线是两个不同的概念,它们的图形表面上看一样,但本质上不同,它们含有两条射线.(2)在这一书中,所说的角,除非特殊注明,都是指没有旋转到成为平角的角。
第四章基本平面图形第三节角一、教学目标1.知识与技能掌握角的两种定义及表示方法,并在图形中认识角、熟悉角的表示方法,并了解角的度量单位以及掌握它们之间的相互转化。
学生经历“观察——对比——归纳”的学习过程,培养用数学语言描述图形的能力及类比的数学思想方法。
3.情感态度与价值观认识到数学源于生活,又为生活服务。
培养学生学习数学的兴趣和学好数学的自信心。
二、教学重点与难点重点:角的定义、表示方法及角的度量和换算。
难点:角的第二定义的理解与角的单位换算。
三、教学方法本节课尽量以学生的发展为主线,以学生的活动为主体,教学中注重联系学生已有的知识,注重提供直观素材,各环节循序渐进进行展现。
为了使中下学生更好的掌握本节课知识,我在学生展示后对展示的内容进行补充和强调,教学中加强课堂指导和交流反馈,确保教学目标的实现。
四、教学过程(一)情景引入1.从生活中引入提问:(1)以前我们曾经认识过角,那你们能从这两个图形中指出哪些地方是角吗?(2)在我们的生活当中存在着许许多多的角,一起看一看,谁能从这些常用的物品中找出角?2.从射线引入提问:(1)昨天我们认识了射线,想从一点可以引出多少条射线?(2)如果从一点出发任意取两条射线,那出现的是什么图形?(二)认识角,总结角的第一定义:演示:老师在这画上一个点,现在从这点出发引出一条射线,再从这点出发引出第二条射线.提问:观察从这点引出了几条射线?此时所组成的图形是什么图形?谁能用自己的话来概括一下怎样组成的图形叫做角?总结:有公共端点的两条射线所组成的图形叫做角(angle)(三)角的表示方法:提问:那么,角的符号是什么?该怎么写呢?(1)在只有一个角的时候,我们可以写作:∠O,读作:角O(1)可以标上三个大写字母,写作:∠AOB或∠BOA,读作:角AOB或角BOA(3)可以标上希腊字母,写作∠α,读作:角α(4)可以标上数字表示,写作∠1,读作:角1(四)角的第二定义:1.多媒体出示角的动态图,由学生观察后尝试总结出角的第二定义角的第二定义:角也可以看做由一条射线绕端点旋转所形成的图形.如下图中的角,可以看做射线OA绕端点O按逆时针方向旋转到OB所形成的,我们把OA叫做角的始边,OB叫做角的终边.2.平角和周角定义:射线OA绕点O旋转,当终止位置OB和起始位置OA成一条直线时,形成什么角?平角。
3 角1.理解角的相关概念,会根据具体情境恰当地表示一个角;能进行简单的度、分、秒的互化.2.会在实例中找角,体会角在实际生活中的应用.重点掌握角的相关概念及表示方法.难点理解角的换算关系.一、复习导入教师:在小学时,我们已经认识了角,你能说一说你理解的角的概念,并举一些角的例子吗?学生思考后举手回答,教师点评.二、探究新知1.角的相关概念教师:在小学,我们说从一个顶点起画的两条射线,可以组成角.换句话说,角由两条具有公共端点的射线组成,两条射线不能乱摆,一定要有公共端点.那么,构成角的两个要素是什么呢?学生思考后举手回答,教师点评,并进一步讲解:构成角的两个要素为角的顶点和边,公共的端点就是角的顶点;两条射线叫做角的两边.说明:初中阶段,没有特别说明,我们只研究小于或等于180°的角.教师:前面在静止的情况下,通过观察角,我们给角下定义,下面我们在运动的情况下观察角的形成(课件演示).教师:一条射线绕着其端点旋转,我们可以发现初始位置和最终位置作为始边和终边,也会形成不同的角.因此角又可以看成是一射线绕其端点旋转所形成的图形,那么,旋转时有无特殊情况呢?教师课件演示并讲解:当终边和始边成一条直线时,所成的角叫做平角.终边继续旋转,当它又和始边重合时,所成的角叫做周角.说明:(1)平角与直线、周角与射线是两个不同的概念,它们的图形表面上看起来一样,但本质上不同,角含有两条射线.(2)本书中所说的角,除非特殊注明,都是指没有旋转到成为平角的角.2.角的表示方法课件出示:教师:我们在前面知道,用一个大写字母表示点,而由于两点确定一条直线,因此我们用两个大写字母表示线(包括射线),角应该怎样表示呢?学生:角内一弧线,标1,表示∠1.教师:有没有别的方法表示角呢?学生思考后回答,教师进一步讲解:角是由两条具有公共端点的射线组成,仿照射线的表示方法,我们也可以用大写字母表示端点和射线上的点,用三个大写字母表示角,记为∠BAC,注意三个字母的顺序有规定,顶点的字母必须写在中间,当然还可以只用顶点一个字母表示角,记为∠A.课件出示练习:指出图中(包含平角在内)有几个角,并用适当的方法表示这些角.学生回答后,教师点评:用顶点的一个字母表示角虽然很方便,但在顶点处有多个角时就不适用,否则会造成歧义.用三个字母表示角时顶点字母要放中间.找角的时候可以按一定顺序来,这样不容易遗漏,可以先找单个角,再找两个、三个角拼成的大角.教师引导学生总结角的表示方法:(1)在角的内部靠近角的顶点处画一弧线,用一个数字或小写的希腊字母(如α,β,γ)表示角;(2)用三个大写字母表示角,中间的字母表示顶点,其他两个字母表示角的两边上的点;(3)如果一个顶点只对应一个角时(即不歧义时)可只用顶点的大写字母表示角.3.度、分、秒的换算课件出示教材第116页图4-16,提出问题:(1)请用字母表示图中的每个城市.(2)请用字母分别表示以北京为中心的每两个城市之间的夹角.(3)请用量角器测量出西安和福州、哈尔滨和上海两城市之间的夹角,与同伴交流自己的量法和读法.学生独立完成,教师点评.强调:用三个大写字母表示角;量角时需注意:一对,角的顶点对准量角器的中心,二重,角的一边与量角器的零刻度线重合,三读数,读出角的另一边所指的度数.终边所指度数读始边指着0°的那一圈的刻度.教师:想一想,如何测量哈尔滨在北京的北偏东多少度?学生:先以北京为中心画个十字架,上北下南、左西右东,量正北方向所在射线与北京和哈尔滨所连射线的夹角.教师:在测量角的度数时我们发现,有时候量角器量出来的度数不是整数,还有没有比“度”更小的单位,让测量得更精确些?教师:在实际生活中,有时我们要求角的测量结果更精确,这时就要用比度数更小的单位表示结果.比度还小的角的单位是分、秒,它们之间的换算关系是1°=60′,1′=60″,右上角的小圆圈表示度,一撇表示分,两撇表示秒.三、举例分析例(课件出示教材第115页例题)学生完成后教师点评.四、练习巩固教材第116页“随堂练习”第1,2题.五、小结1.什么是角?2.如何表示角?3.度、分、秒之间怎样换算?六、课后作业教材第117页习题4.3第1~3题.本节课的内容是角,是在学生已经初步认识长方形、正方形、三角形的基础上进行教学的.在教学过程中,使用课件及实物图进行演示,并联系实际让学生理解角的概念,切实感受到数学来源于生活,生活中处处有数学.课堂上,以学生为主,教师引导学生探索角的初步知识,为学生提供足够的时间和空间,使学生在轻松愉快的环境下学习.。
北师大版七年级数学上册《第四章基本平面图形4.3角》说课稿一. 教材分析北师大版七年级数学上册《第四章基本平面图形4.3角》这一节的内容,主要介绍了角的定义、分类和性质。
通过这一节的学习,使学生能够理解角的概念,掌握角的分类和性质,能够运用角的知识解决一些简单的问题。
在教材的处理上,我将以角的定义和分类为主线,通过对角的性质的探究,使学生能够深入理解角的概念,掌握角的分类和性质。
在教学过程中,我会注重学生的参与,通过观察、思考、讨论等方式,使学生能够主动地参与到学习中来,提高学生的学习兴趣和学习效果。
二. 学情分析面对的是一群刚从小学升入初中的学生,他们对数学的基础知识有一定的掌握,但对于角的概念和性质可能还比较陌生。
因此,我需要通过一些简单的实例和生活中的实际问题,引导学生理解角的概念,掌握角的分类和性质。
同时,学生的学习习惯和学习方法可能还不够成熟,我需要通过引导和示范,使学生能够掌握科学的学习方法和思考方式,提高他们的学习效率和解决问题的能力。
三. 说教学目标1.知识与技能:理解角的概念,掌握角的分类和性质,能够运用角的知识解决一些简单的问题。
2.过程与方法:通过观察、思考、讨论等方式,培养学生的观察能力、思考能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的参与意识和团队精神。
四. 说教学重难点1.重点:理解角的概念,掌握角的分类和性质。
2.难点:对角的概念的深入理解,对角的分类和性质的灵活运用。
五. 说教学方法与手段1.教学方法:采用引导法、讨论法、实例法等,引导学生主动参与学习,提高学生的学习兴趣和学习效果。
2.教学手段:利用多媒体课件、实物模型等,直观地展示角的概念和性质,帮助学生理解和掌握知识。
六. 说教学过程1.导入:通过一些生活中的实际问题,引导学生思考角的概念,激发学生的学习兴趣。
2.新课导入:介绍角的定义和分类,引导学生理解角的概念,掌握角的分类。
第四章基本平面图形3.角一、学生起点分析本节课是教材第四章《平面图形及其位置关系》的第三节,学生在学习了直线、射线和线段性质的基础上,学习由它们组成新的几何图形——角,同时使学生认识:几何图形是由简单到复杂的组合过程。
本课主要通过丰富的实例理解角的概念(包括角的静态描述和动态描述),知道角的多种表示方法和角的度量单位及其简单换算。
二、教学目标和重难点教学目标:1.通过丰富的实例,理解角的静态定义,能在具体情境中表示角。
2.通过实物演示,理解角的动态定义,进一步认识锐角、钝角、直角、平角、周角及其大小关系。
3.认识角的常用度量单位:度、分、秒,并会进行简单的换算。
教学重点:角的概念及表示方法,角的度量单位换算。
教学难点:在不同环境中恰当地表示角。
三、教学过程设计本节课由五个教学环节组成,它们是①直观感知“角”,描述角的静态定义;②归纳角的四种表示方法;③演示动态,引出角的动态定义;④角的度量单位及换算;⑤达标反思,归纳交流。
其具体内容与分析如下:(一)直观感知“角”,描述角的静态定义内容:1、“角”在我们生活中随处可见,你能在图中找到角吗?2.活动:画一个角。
问题:大家都是画了两条什么线?(射线)这两条射线有什么关系?(有公共端点)3.角的定义:角是由两条具有公共端点的射线所组成的图形,两条射线的公共端点叫这个角的顶点,两条射线是这个角的两边。
目的:用丰富的实例,让学生对角有直观认识,激发学生进一步探索的兴趣。
通过画角引出角的静态定义。
效果:角的概念的表述是一个难点。
让学生先画角,回顾画角的过程启发学生描述角的定义,显得自然,水到渠成。
(二)归纳角的四种表示方法BAC ∠ , A ∠ α∠ 1∠1.归纳角的四种表示方法:(1)用三个大写字母;如∠BAC ;(2)用一个大写字母,如∠A ;(3)用一个希腊字母,如∠α;(4)用一个数字,如∠1。
2.下面每幅图中各有几个角?用适当方法分别表示下图中的每个角。
第四章最新北师大版七年级数学上册第四章基本平面图形教案主备人:王竞红第一节线段、射线和直线【学习目标】1.使学生在了解直线概念的基础上,理解射线和线段的概念,并能理解它们的区别与联系.2.通过直线、射线、线段概念的教学,培养几何想象能力和观察能力,用运动的观点看待几何图形.3.培养对几何图形的兴趣,提高学习几何的积极性.【学习重难点】重点:直线、射线、线段的概念.难点:对直线的“无限延伸”性的理解.【学习方法】小组合作学习【学习过程】模块一预习反馈一、学习准备1.请同学们阅读教材,并完成随堂练习和习题2.(1)绷紧的琴弦、人行横道线都可以近似地看做.线段有端点.(2)将线段向一个方向无限延长就形成了.射线有端点.(3)将线段向两个方向无限延长就形成了.直线端点.3.线段射线和直线的比较概念图形表示方法向几个方向延伸端点数可否度量线段射线直线4.点与直线的位置关系点在直线上,即直线点;点在直线外,即直线点.5.经过一点可以画条直线;经过两点有且只有条直线,即确定一条直线.二、教材精读6.探究:(1)经过一个已知点A画直线,可以画多少条?解:(2)经过两个已知点A、B画直线,可以画多少条?解:(3)如果你想将一根细木条固定在墙上,至少需要几枚钉子?解:归纳:经过两点有且(“有”表示“存在性”,“只有”表示“唯一性”)实践练习:如图,已知点A、B、C是直线m上的三点,请回答A B Cm(1)射线AB与射线AC是同一条射线吗?(2)射线BA与射线BC是同一条射线吗?(3)射线AB与射线BA是同一条射线吗?(4)图中共有几条直线?几条射线?几条线段?分析:线段有两个端点;射线有一个端点,向一方无限延伸;直线没有端点,向两方无限延伸解:三、教材拓展7.已知平面内有A,B,C,D四点,过其中的两点画一条直线,一共能画几条?分析:因题中没有说明A,B,C,D四点是否有三点或四点在同一直线上,所以应分为三种情况讨论解:实践练习:如图,图中有多少条线段?分析:在直线BE上共有3+2+1= (条),而以A点为端点的线段有条,所以图中共有条线段解:模块二合作探究8.如图,如果直线l上一次有3个点A,B,C,那么(1)在直线l上共有多少条射线?多少条线段?(2)在直线l上增加一个点,共增加了多少条射线?多少条线段?(3)若在直线l上增加到n个点,则共有多少条射线?多少条线段?(4)若在直线l上增加了n个点,则共有多少条射线?多少条线段?分析:两条射线为同一射线需要两个条件:①端点相同;②延伸方向相同.由特殊到一般知,若直线上有n个点,则可以确定1+2+3+…+(n-1)=n(n-1)/2条线段解:(1)以A、B、C为端点的射线各有条,因而共有射线_____条,线段有_____共线段3条.(2)增加一个点增加_____条射线,增加_____条线段.(3)由(1)、(2)总结归纳可得:共有_____条射线,线段的总条数是_____.(4)增加了n个点,即直线上共有(n+3)个点,则有_____条射线,_____条线段.实践练习:如果直线上有4个点,5个点,图中分别又有多少条射线?多少条线段?解:模块三形成提升1.线段有______个端点,射线有_____个端点,直线_____端点2.在直线L上取三点A、B、C,共可得_______条射线,______条线段.3.(1)可表示为线段(或)或者线段______(2)可表示为射线(3)可表示为直线或或者直线4.图中给出的直线、射线、线段,根据各自的性质,能相交的是( )CA DB5.小明从某地乘车到成都,发现这条火车路线上共有7个站,且任意两站之间的票价都不相同,请你帮他解决下列问题.(1)有多少种不同的票价?(2)要准备多少种不同的车票?模块四小结评价一、课本知识:1.线段有两个特征:一是直的,二是有______个端点.射线有三个特征:一是直的,二是有______个端点,三是向______无限延伸.直线有三个特征:一是直的,二是有______个端点,三是向______无限延伸.2.经过两点______一条直线(有表示______,只有体现______)aA BO ElBAEDCBAA B C二、本课典型:经过任意三点中的两点画直线,由于这三个点的位置不确定,所以需要分类讨论.第二节 比较线段的长短【学习目标】1.理解两点间距离的概念和线段中点的概念及表示方法. 2.学会线段中点的简单应用.3.借助具体情境,了解“两点间线段最短”这一性质,并学会简单应用. 4.培养学生交流合作的意识,进一步提高观察、分析和抽象的能力. 【学习重难点】重点:线段中点的概念及表示方法. 难点:线段中点的应用 . 【学习方法】小组合作学习. 【学习过程】模块一 预习反馈 一、学习准备1、绷紧的琴弦、人行横道线都可以近似地看做 .线段有 个端点. 2.(1)可表示为线段 __ (或) __或者线段______3.请同学们阅读教材第2节《比较线段的长短》,并完成随堂练习和习题 二、教材精读4、线段的性质:两点之间的所有连线中,_____最短.简单地说:两点之间,_____最短.5、线段大小的比较方法 (1)观察法;(2)叠合法:将线段AB 和线段CD 放在同一条直线上,并使点A 、C 重合,点B 、D 在同侧,若点B 与点D 重合,则得到线段AB ,可记做 (几何语言)若点B 落在CD 内,则得到线段AB ,可记做: 若点B 落在CD 外,则得到线段AB ,可记做: (3)度量法:用 量出两条线段的长度,再进行比较. 6、线段的中点线段的中点是指在 上且把线段分成 两条线段的点.线段的中点只有 个. 文字语言:点M 把线段AB 分成_____的两条线段AM 与BM ,点M 叫做线段AB 的中点. 用几何语言表示: ∵点M 是线段AB 的中点 )22(21BM AM AB AB BM AM ====∴或 实践练习:若点A 、B 、C 三点在同一直线上,线段AB=5cm ,BC=4cm ,则A 、C 两点之间的距离是多少? (提示:C 点的具体位置不知道,有可能在AB 之前,有可能在AB 之外) 解:归纳:两点之间的距离:两点之间______________,叫做两点之间的距离.线段是一个几何图形,而距离是长度,为非负数. 三、教材拓展7、已知线段cm AB 20=,直线AB 上有一点C ,且cm BC 6=,D 是AC 的中点,求CD 的长? 分析:点A,B,C 在同一条直线上,点C 有两种可能:(1)点C 在线段AB 的延长线上;(2)点C 在线段AB 上解:(1)当点C 在线段AB 的延长线上时, (2)当点C 在线段AB 上时, ∵D 是AC 的中点a ABC AD B CM A DB ∴=CD _____AC∵cm AB 20=,cm BC 6=, ∴AC=___ ∴CD=____实践练习:如图所示:点P 是线段AB 的中点,带你C 、D 把线段AB 三等分.已知线段CP=2cm ,求线段AB 的长 解:模块二 合作探究如图,C,D 是线段AB 上两点,已知AC:CD:DB=1:2:3,M 、N 分别为AC 、DB 的中点,且cm AB 18=,求线段MN 的长.分析:遇到比例就设x ,根据3:2:1::=DB CD AC ,可设三条线段的长分别是x 、x 2、x 3,在根据线段的中点的概念,表示出线段MC 、CD 、DN 的长,进而计算出线段MN 的长.实践练习:如图所示:(1)点C 是线段AB 上的一点,M 、N 分别是线段AC 、CB 的中点.已知AC=4,CB=6,求MN 的长; (2)点C 是线段AB 上的任意一点,M 、N 分别是线段AC 、CB 的中点.AB=10,求MN 的长; (3)点C 是线段AB 上的任意一点,M 、N 分别是线段AC 、CB 的中点.AB=a ,求MN 的长; 解:模块三 形成提升 1、如图,直线上四点A 、B 、C 、D,看图填空:①=AC _____BC +;②-=AD CD _____;③=++BC BD AC _____ 2、在直线AB 上,有cm AB 5=,cm BC 3=,求AC 的长.⑴当C 在线段AB 上时,=AC _______.(2)当C 在线段AB 的延长线上时,=AC _______.3、如图,cm AB 20=,C 是AB 上一点,且cm AC 12=,D 是AC 的中点,E 是BC 的中点,求线段DE 的长.E CAD B模块四 小结评价 一、本课知识:1、我们把两点之前的_____,叫做这两点之前的距离.2、点M 把线段AB 分成相等的两条线段AM 和_____,点_____叫做线段AB的_____.3、比较线段长度的方法有三种是_____、_____、_____.二、本课典型:两点之前线段最短在实际生活中的应用,线段中点有关的计算.第三节 角【学习目标】1.理解角的概念,掌握角的表示方法2.理解平角、周角的概念,掌握角的常用度量单位:度、分、秒,及他们之间的换算关系,并会进行简单的换算.【学习重难点】重点:角的概念及表达方法; 难点:正确使用角的表示法. 【学习方法】小组合作学习 【学习过程】模块一 预习反馈 一、学习准备1、将线段向一个方向无限延长就形成了 .射线有 端点. 2请同学们阅读教材第3节《角》,并完成随堂练习和习题 二、教材精读 3.角的概念(1)角的定义:角是由两条具有__________的射线所组成的图形.两条射线的________是这个角的顶点. (2)角的(动态)定义:角也可以由一条射线绕着它的________旋转而成的图形.(3)一条射线绕着它的_________旋转,当终边和始边成一条_________时,所成的角叫做_________;终边继续旋转,当它又和始边_________时,所成的角叫做_________ 4、角的表示方法:角用符号:“___”表示,读作“角”,通常的表示方法有:(1)用三个大写字母表示,其中表示顶点的字母必须写在__________,在不引起混淆的情况下,也可以只用__________表示角.如图4-3-1的角可以表示为______________(2)用一个希腊字母表示角方法(如α、β、γ),这种方法表示角式要在靠近顶点处加上弧线,并标注__________如图4-3-2中的角分别可表示为_______、_______、_______等. (3)用一个数字表示角方法(1∠、2∠、3∠Λ,)这种方法表示角式要在靠近顶点处加上弧线,并标注________.实践练习:试用适当的方法表示下列图中的每个角:解: (1) (2)归纳:角的表示方法有三种:(1)用三个______英文字母表示; (2)用______大写英文字母表示;(3)用______或小写______字母表示; 三、教才拓展 5.例 计算:(1) ︒65.1等于多少分?等于多少秒?1αB C O A B A C 图4-3-1 图4-3-2 αβD C B A B CA(2) 0270''等于多少分?等于多少度? (3)247453343547'''+'''︒︒分析:(1)根据061,061''=''=︒进行换算 (2)根据)601(1,)601(1'=''='︒进行换算 (3)角度的加减乘除混合运算,其运算顺序仍是先乘除后加减,计算的方法是度与度、分与分、秒与秒之间分别进行计算,注意运算中的进位、错位、退位规则. 归纳;角的度量(1)角的度量单位有______ ______ ______(2)角的单位的换算:1度=60分 1分=60秒 1秒= ______分 1秒=____度实践练习:(1)化︒21.43为度分秒的形式 (2)化638175'''︒为度的形式(3)56695376'+'︒︒(4)9627319⨯'''︒模块二 合作探究 6、(1)当1点20分时,时钟的时针与分针的夹角是多少度?当2点15分时,时钟的时针与分针的夹角又是多少度?(2)从1点15分到1点35分,时钟的分针与时针各转过了多大角度?(3)时针的分针从4点整的位置起,按顺时针方向旋转多少度时才能与时针重合?分析:在钟表盘上,分针每分钟转︒6,时针每分钟转︒5.0;分针每小时转︒360,时针每小时转︒30,以此计算所求的角度.解:(1)______、______ (2)从1点15分到1点35分,时钟的分针共走了20分钟,转过的角度为______,时针转过的角度是______. (3)设经过x 分钟分针可与时针重合(即追上时针),4点时二者夹角是120度(即相距120度),则列方程:_____________________,解得x =______.分针按顺时针转过的度数为x 6=______度时,才能与时针重合.实践练习:时钟的分针,1分钟转了_____度的角,1小时转了_____度的角;5点钟时,时针与分针所成的角度是______.模块三 形成提高1.(1)钟表上8点15分时,时针和分针所夹的角是多少度?(2)3点40分时,时针和分针所夹的角又是多少度? 2.10°20′24″=_____°,47.43°=_____°____′_____″.3.计算: (1)180°-46°42′ (2)28°36′+72°24′(3)50°24′×3; (4)49°28′52″÷4.模块四 小结评价 一、课本知识:1、角是由两条具有_____的射线组成,两条射线的公共断点是这个角的_____,这两条射线叫做角_____.构成角的两个基本条件:一是角的_____,二是角的_____.2、角的表示方法:(1)用三个_____字母表示,(2)用_____大写字母表示,(3)用_____或小写_____字母表示.3、用量角器量角时要注意:(1)对中;(2)重合;(3)读数二、本课典例:角的表示和角度的计算.第四节 角的比较【学习目标】1、运用类比的方法,学会比较两个角的大小.2、理解角的平分线的定义,并能借助角的平分线的定义解决问题.3、理解两个角的和、差、倍、分的意义,会进行角的运算. 【学习重点难点】认识角平分线及画角平分线,角的计算. 【学习方法】小组合作学习. 【学习过程】模块一 预习反馈 一、学习准备1.线段的长短比较方法:_________、__________、____________2. 角的分类(1)_____:大于0度小于90度的角; (2)____________:等于90度的角;(3)_____:大于90度而小于180度的角; (4)平角:__________________; (5)周角:__________________; 3.阅读教材第4节《角的比较》 二、教材精读 4. 角的大小比较(1)___________:把两个角的顶点及一边重合,另一边落在重合边得同旁,则可比较大小. 如图:AOB ∠与CED ∠,重合顶点O 、E 和边OA 、EC 、OB 、ED 落在重合边同旁,符号语言:内部,落在AOB OD ∠ΘAOB CED ∠<∠∴(2)____________:量出两角的度数,按度数比较角的大小. 5. 角平分线的定义从一个角的顶点引出一条________,把这个角分成两个_________的角,这条_________叫做这个角的平分线. 符号语言:AOB OC ∠平分ΘBOC AOC ∠=∠∴(∠=∠2AOB _____或∠AOB =2∠ ; 或∠AOC=21∠ ,∠BOC =21∠_____ )实践练习:如下图所示,求解下列问题:(1)比较∠AOB,∠AOC,∠AOD,∠AOE 的大小,并指出其中的锐角、直角、钝角、平角. (2)写出AOB ∠,AOC ∠,BOC ∠,AOE ∠中某些角之间的两个等量关系.分析:因为这4个角有共同的顶点O 和边OA ,所以运用叠合法比较大小很简便;小于直角的角是_____,角的两边夹角为90°的角是_____,大于直角且小于平角的角是_____.解:D C BO A实践练习:O 是直线AB 上一点,53=∠AOC °,OD 平分BOC ∠求BOD ∠的度数? 解:三、教材拓展6、如图:AC 为一条直线,O 是AC 上一点,∠AOB=o120,OE 、OF 分别平分∠AOB 和∠BOC.(1)求∠EOF 的大小;实践练习:上体中当OB 绕点O 向OA 或OC 旋转时(但不与OA 、OC 重合),OE 、OF 仍为∠AOB 和∠BOC 的平分线,问:∠EOF 的大小是否改变?并说明理由.模块二 合作探究7、如图1,已知70=∠AOB °,AOB OC ∠是内部的任意一条射线,,,AOC OE BOC OD ∠∠平分平分试求DOE ∠的度数.分析:运用角平分线的定义求解.解:归纳:相邻两个角的角平分线的夹角始终未两个角的和的一半,而与BOC AOC ∠∠,的大小无关. 实践练习:模块三 形成提升1.若OC 是∠AOB 的平分线,则(1)∠AOC=______; (2)∠AOC=12______;(3)∠AOB=2_______. 2.12平角=____直角, 14周角=____平角=_____直角,135°角=______平角. 3.如图:∠AOC= ∠BOD=90°(1)∠AOB=62°,求∠COD 的度数;(2)若∠DOC =2∠COB ,求∠AOD 的度数.模块四 小结评价一、本课知识: 1、角的比较:(1)用量角器量出它们的度数,再进行比较;(2)将两个角的______及______重合,另一条边放在重合边的______ 就可以比较大小.2、角的分类,小于平角的角按大小分成三类:当一个角等于平角的一半时叫______;大于零度角小于直角的角叫______;大于直角小于平角的叫______.O图1EDC B AAD E B C 3、从一个角的顶点引出的一条射线,把这个角分成两个______的角,这条射线叫做这个角的______.第五节 多边形和圆的初步认识【学习目标】1.了解多边形的概念,知道三角形、四边形、五边形、六边形等都是多边形. 2.掌握多边形的顶点、边、内角、对角线、正六边形的概念. 3.从运动的角度理解圆的定义,掌握圆弧、圆心角、扇形的概念.4.把圆分成扇形,能理解每个扇形的面积和整个圆的面积的关系,并会求出扇形的圆心角. 【学习重难点】重点:三角形等的概念.难点:多边形、圆的有关概念. 【学习方法】小组合作学习 【学习过程】模块一 预习反馈 一、学习准备1.线段有__个端点,可以用__个大写字母来表示,与字母的顺序无关,也可以用__个小写字母来表示.2.角是由两条具有______________________组成的,两条射线的公共端点是这个角的____,两条_____是角的两条边.3.三角形的内角和等于__________.4.请同学们阅读教材第5节《多边形和圆的初步认识》,并完成随堂练习和习题 二、教材精读5.三角形的定义:由___________________的三条线段___________________所组成的图形叫三角形,用符号“_________” 来表示.实践练习:观察图形:图中共有________个三角形,它们 分别是______ ______________, 以AB 为边的三角形有_________________________ ⊿ABC 的三边分别是__ __ ______, ⊿ADE 的三个内角分别是____ ___________. 6.多边形的定义:由若干条_______________线段首尾顺相连组成的_______平面图形叫做多边形.三角形、四边形、五边形、六边形等都是多边形.7.圆、圆弧、扇形、圆满心角的概念:平面上,一条线段绕着它固定的一个端点旋转一周,另一个端点形成的图形叫做____.圆上任意两点间的部分叫做_____,简称____.一条弧和经过这条弧的端点的两条半径所组成的图形叫做_____.顶点在圆心的角叫_________.8.正多边形的定义:各边______,各____也相等的多边形叫正多边形.实践练习:如图1,图中一共有_______个三角形,分别是__________________在⊿ABE 中, ∠A 的对边是___________,在⊿ABC 中,∠A 的对边是________,在⊿BEC 中,BC 的对角是___________,在⊿ABC 中,BC 的对角是___________,以AB 为边的三角形一共有_______个.分析:此题主要是考察有关三角形的概念,解题时要按照一定顺序依次寻找,做到不重不漏.EABCDFCABED图1 图2 三、教材拓展如图2(1)图中一共有_____个三角形,它们分别是________________;(2)以AB为边的三角形共有_____个,它们分别是____________;(3)以∠A为内角的三角形有_____个,它们分别是_______________;(4)⊿CFD的3条边分别是____________,3个角分别是_____________,(5)∠BEF是______的内角模块二合作探究(1)一个三角形的内角和为______;(2)一个四边形从一个顶点出发,连接其他各顶点,可把这个三角形分成_____个三角形,所以四边形的内角和为_______;(3)一个五边形从一个顶点出发,连接其他各顶点,可把这个三角形分成_____个三角形,所以五边形的内角和为_______;(4)一个n边形从一个顶点出发,连接其他各顶点,可把这个三角形分成_______个三角形,所以一个n边形的内角和为__________.归纳:从n边形的一个顶点出发,连接不相邻的两个顶点,可以把n边形分割成___个三角形.n边形的内角和为_____________.模块三形成提升1、平面内有5个点,每两个点都用直线连接起来,则最多可得条直线,最少可得条直线.2、从一个八边形的某个顶点出发,分别连接这个顶点与其余各顶点,把八边形分割成_________三角形.3、如图,如果OA,OB,OC是圆的三条半径,那么图中有个扇形4、从多边形一条边上的一点(不是顶点)出发,连接各个顶点得到2003个三角形,则这个多边形的边数为()A、2001B、2005C、2004D、20065、已知圆上有5个点,这5个点把这个圆周共分成____条不同的弧.模块四小结评价一、课本知识1、多边形是由若干条____ 上的线段首尾顺次相连组成的_____平面图形.2、连接_____两个顶点的线段叫做多变形的对角线,n边形从一个顶点出发有_____条对角线,n边形一共有_____条对角线.回顾与思考【学习目标】进一步了解线段与角的度量、表示、比较,并能用数学符号表示角、线段.【学习重难点】重点:线段、角的有关概念、性质、图形表示难点:刚开始学习几何知识,对几何知识的概念不理解,对几何图形的识别不熟悉,对几何语言的运用不习惯【学习方法】小组合作学习【学习过程】模块一知识回顾一、线段、射线、直线1、线段射线和直线的比较概念图形表示方法向几个方向延伸端点数可否度量线段射线 直线2、直线的基本性质:经过两点有且只有一条直线.3、线段(1)线段的性质:两点之间的所有连线中,线段最短. (2)两点之间的距离:两点之间线段的长度. (3)线段长短的比较方法:叠合法和度量法 (4)线段的中点线段的中点是指在 上且把线段分成 两条线段的点.线段的中点只有 个.1)文字语言:点M 把线段AB 分成_____的两条线段AM 与BM ,点M 叫做线段AB 的中点. 2)用几何语言表示: ∵点M 是线段AB 的中点∴ AM=BM=12AB (或AB=2AM=2BM ) 例如:如图所示,点M 、N 分别是线段AB 、BC 的中点①若AB=4cm ,BC=3cm ,则MN= .②若AB=4cm ,NC=2cm ,则AC= . ③若AB=4cm ,BN=1cm ,则AN= .④若MN=6cm ,则AB= . 二、角1、角的概念(1)角的定义:角是由两条______________的射线所组成的图形.两条射线的________是这个角的顶点. (2)角的(动态)定义:角也可以由一条射线绕着它的________旋转而成的图形.(3)一条射线绕着它的_________旋转,当终边和始边成一条_________时,所成的角叫做_________;终边继续旋转,当它又和始边_________时,所成的角叫做_________ 2、角的表示方法: 角用符号:“___”表示,读作“角”,通常的表示方法有:(1)用三个大写字母表示,其中表示顶点的字母必须写在__________,在不引起混淆的情况下,也可以只用__________表示角.如图4-3-1的角可以表示为______________(2)用一个希腊字母表示角方法(如α、β、γ),这种方法表示角式要在靠近顶点处加上弧线,并标注___________如图4-3-2中的角分别可表示为_______、______、_____等. (3)用一个数字表示角方法(∠1、∠2、∠3…),这种方法表示角式要在靠近顶点处加上弧线,并标注____________. 3、角的度量(1)角的度量单位有______ ______ ______(2)角的度量但却诶的换算: 1度=60分 1分=60秒 1秒= ______分 1秒=____度 4、角平分线:∵OC 是∠AOB 的平分线∴∠AOC=∠BOC= ∠AOB模块二 合作探究1.如图,B 为线段AC 上的一点,AB=4cm ,BC=3cm ,M ,N 分别为AB ,BC 的中点,求MN 的长.ANMCBB ACD α β图4-3-2 B A C图4-3-12.如图,已知AOC是一条直线,OD是∠AOB的平分线,OE是∠BOC的平分线,求∠EOD的度数.。
第四章基本平面图形3.角一、学生起点分析本节课是教材第四章《平面图形及其位置关系》的第三节,学生对点、线、角这些基本的几何元素在小学阶段已经有了一定的认知水平,在此基础上进一步对这些几何元素进行再认知、再探索,通过螺旋上升的方式加深拓展。
本课主要通过丰富的实例回顾和理解角的概念(包括角的静态描述和动态描述),知道角的多种表示方法。
具体讲,角就是在学习了直线、射线和线段性质的基础上,由它们组成新的几何图形,从而使学生认识:几何图形是由简单到复杂的组合过程。
通过角的不同表示法,使学生看到解决一个问题有多种方法以及每一种方法的适用条件,培养学生思维的发散性和严谨性。
二、教学任务分析本课时的教学内容安排,首先引导学生回顾小学阶段对于角的概念的认知,通过生活中角的实例的例举和展示,让学生比较、讨论角的特征,认识到角就是在学习了直线、射线和线段的基础上,由它们组成新的几何图形。
再帮助学生归纳出角的定义,通过角的不同表示方法的比较,在学生充分对比、讨论、交流的基础上,归纳出角的不同表示方法的特点和适用条件,最后在巩固练习和评价小结的基础上结束。
教学中要通过创设适当的情境激发学生的求知欲,引导学生在充分比较讨论的基础上解决问题并归纳结论。
根据以上分析,确定本节课的教学目标如下:1.通过丰富的实例,进一步理解角的有关概念;会根据具体环境恰当的表示一个角。
认识角的常用度量单位:度、分、秒,并会进行简单的换算。
(知识与技能)2.通过实际操作,体会角在实际生活中的应用,培养学生的抽象思维。
(过程与方法)3.通过在图片、实例中找角,培养学生的观察力,能把实际问题转化为数学问题,培养学生对数学的好奇心与求知欲。
(情感与态度)教学重点:角的概念及表示方法;教学难点:在不同环境中恰当地表示角。
三、教学过程设计本节课由五个教学环节组成,它们是①情景引入;②感知定义;③自学归纳,思辨求真;④动手操作、解决问题;⑤师生交流,归纳小结。
2023-2024学年北师大版七年级数学上册《第四章基本平面图形4.3角》教案一. 教材分析《第四章基本平面图形4.3角》这一节主要让学生了解角的定义、分类和性质。
通过本节课的学习,学生能够理解角的概念,掌握角的分类,了解角的性质,并能运用角的性质解决一些实际问题。
本节课的内容是学生学习几何的基础,对于学生来说非常重要。
二. 学情分析七年级的学生已经学习了初步的图形知识,对于图形的认知有一定的基础。
但是,对于角的概念和性质,他们可能还比较陌生。
因此,在教学过程中,需要通过具体的例子和实际操作,让学生理解和掌握角的概念和性质。
三. 教学目标1.让学生了解角的定义,掌握角的分类,了解角的性质。
2.培养学生观察、思考、动手操作的能力,提高学生解决问题的能力。
3.培养学生合作学习的精神,提高学生的团队协作能力。
四. 教学重难点1.角的定义和分类2.角的性质五. 教学方法1.采用直观演示法,通过实物和图形,让学生直观地理解角的概念和性质。
2.采用自主探究法,让学生通过观察、思考、操作,自己发现角的性质。
3.采用合作学习法,让学生通过小组讨论,共同解决问题。
六. 教学准备1.准备一些角模型,如三角板、四边形等。
2.准备一些图片,如角的示意图、角的分类图等。
3.准备一些练习题,如判断题、填空题等。
七. 教学过程1.导入(5分钟)通过展示一些角模型和图片,让学生观察并说出它们的名称。
引导学生思考:角是由哪两个点确定的?角有哪些分类?2.呈现(10分钟)介绍角的定义和分类。
给出角的定义:由一个点引出的两条射线所围成的图形,这个点叫做角的顶点,这两条射线叫做角的边。
介绍角的分类:锐角、直角、钝角、平角、周角。
3.操练(10分钟)让学生自己动手操作,用量角器测量一些角的度数,并判断它们的类型。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)让学生完成一些判断题和填空题,巩固所学的内容。
教师及时批改,给予反馈。
5.拓展(10分钟)介绍一些角的性质,如:角的度数与边的长短无关;角的度数与两边叉开的大小有关等。
课题:角●教学目标:一、知识与技能目标:1.认识角是一种基本的图形,理解角的概念2.认识角的度量单位度,分,秒,会进行简单的换算二、过程与方法目标:1.提高学生的识图能力,用运动变化的观点看问题2.通过教学活动培养学生自主探究能力,合作学习能力三、情感态度与价值观目标:感受图形世界的丰富多彩,能利用所学知识解决生活问题●重点:会用不同的方法表示一个角,学会角度换算●难点角的表示、角度的换算●教学流程:一、情景导入观察下面图形,你能发现他们有什么相同的图形?它们都有角。
二、解答困惑,讲授新知1、什么是角呢?角是由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点达标测验:判断下列图形是不是角答案:×××√2、通常用以下方式来表示角∠BAC或∠A ∠α∠1三、实例演练深化认识(1)用适当的方式表示图中的角(2)在图中,∠BAC.∠CAD和∠BAD都能用∠A表示吗?解:(1)∠1=∠BAC ∠2=∠CAD ∠3=∠BAD(2)不能,因为这样容易造成混淆。
如果一个点引出两条以上的线,那么其中两条线所组成的角就不能用该点的字母表示思考探究:在放大镜下,一个角的度数变大了吗?没有变大角的两边的长短与角的大小有关系吗?没有关系四、讲授新知角的另一种表示方法:角也可以看成是由一条射线绕它的端点旋转而成的如图,一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。
终边继续旋转,当它又和始边重合时,所成的角叫做周角。
平角周角平角就是一条直线,周角是一条射线,这样的说法对吗?不对,平角也有顶点和两条边,只是这两条边在同一条直线上。
周角其实是两条射线重合在了一起的图形,不能单纯的说“周角是一条射线”。
在小学数学中,我们已经知道:1平角=180° ,1周角=360°为了更精密地度量角,我们规定:1°的为1分,记作1′,即1°=60′1′的为1秒,记作1″,即1′=60″五、实例讲解计算:(1)1.45°等于多少分?等于多少秒?(2)1800″等于多少分?等于多少度?解:(1)60′×1.45=87′,60″×87=5220″,即1.45°=87′=5220″;(2)()′×1800=30′,()°×30=0.5°,即1800″=30′=0.5°六、做一做钟表上的时针、分针始终在围绕中心旋转,两针所成的夹角也随时间变化而变化。
集体备课教案
课件出示:
教师:我们在前面知道,
因此我们用两个大写字母表示线
学生:角内一弧线,标1
教师:有没有别的方法表示角呢?
学生思考后回答,教师进一步讲解:
角是由两条具有公共端点的射线组成
们也可以用大写字母表示端点和射线上的点
BAC,注意三个字母的顺序有规定
当然还可以只用顶点一个字母表示角
教师点评:用顶点的一个字母表示角虽然很方便但在顶点处有多个角时就不适用,否则会造成歧义.用三个字母表示角时顶点字母要放中间.找角的时候可以按一定顺序来。
4.1 线段、射线、直线教学目标:1、在现实情境中理解线段、直线、射线等简单的平面图形,感受图形世界的丰富多彩。
2、通过操作活动,了解两点确定一条直线等事实,积累操作活动经验。
教学重点:线段、射线、直线的概念及表示方法;了解三者的基本的特点,理解一个公理教学难点:几何语言的表达方法教学过程:一.预习:1.请同学们阅读教材,勾出重点和不懂的。
2.(1)绷紧的琴弦、人行横道线都可以近似地看做。
线段有端点。
(2)将线段向一个方向无限延长就形成了。
射线有端点。
(3)将线段向两个方向无限延长就形成了。
直线端点。
34.点与直线的位置关系点在直线上,即直线点;点在直线外,即直线点。
5.经过一点可以画条直线;经过两点有且只有条直线,即确定一条直线。
二.探究新知(一)创设情境,引入课题:用多媒体出示一组生活中的图片,有绷紧的琴弦、手电光束、笔直铁轨、筷子图、人行横道.让学生观察,问:你们能在其中发现我们所熟知的几何图形吗?(二)探究1. 线段射线和直线的概念及表示方法:讨论后讲解后完善预习中的表格。
线段特点及表示方法:射线特点及表示方法:直线特点及表示方法:探究2:(1)经过一个已知点A画直线,可以画多少条?经过两个点A、B画直线,又可以画多少条?(2)如果你想将一根细木条固定在墙上,至少需要几枚钉子?归纳:经过两点有且(“有”表示“存在性”,“只有”表示“唯一性”)练习1:如图,已知点A、B、C是直线m上的三点,请回答(1)射线AB与射线AC是同一条射线吗?cba BCADB CA(2)射线BA 与射线BC 是同一条射线吗? (3)射线AB 与射线BA 是同一条射线吗?(4)图中共有几条直线?几条射线?几条线段?分析:线段有两个端点;射线有一个端点,向一方无限延伸;直线没有端点,向两方无限延伸2、判断题: 1)、射线是向两方无限延伸的; ( ) 2)、可以用直线上的一个点来表示该直线 ( ) 3)、“射线AB ”也可以写成“射线BA ” ( ) 4)、线段AB 与线段BA 是指同一条线段 ( ) 探究3:点与直线的位置关系:(画图)1)、点P 在直线a 上(或说:直线a 经过点P ) 2)点P 在直线a 外 (或说:直线a 不经过点P )4.两条直线相交:当两条不同的直线有一个公共点时,称两条直线相交,公共点叫做它们的交点。
cbaBCA第四章基本平面图形 41 线段、射线、直线教学目标:知识与技能:1、在现实情境中理解线段、直线、射线等简单的平面图形,感受图形世界的丰富多彩。
2、通过操作活动,了解两点确定一条直线等事实,积累操作活动经验。
过程与方法:数形结合情感态度价值观:经历从现实世界中抽象出图形的过程,通过丰富的生活实例,认识线段、射线、直线的概念,发展抽象思维。
教学重点:1、线段、射线、直线的概念;2、线段、射线、直线表示方法;了解线段、射线、直线的基本的特点,知道一个公理 教学难点:几何语言的表达方法教学方法:自主探索式学习法、谈论法。
教学过程:(一)课前研究:1.看一看,观察美丽的图片,从数学角度阐述你观察到的与数学有关的事实,尽可能用数学词汇来表达极光 铁轨 输油管道 2.让学生举出实际生活中所见到的直线的实例可请5~6位学生发言. 106--107,要求:(1)直线的概念,线段定义,射线的定义。
(2)直线、射线和线段的表示。
(二)课中展示:1、各小组展示探究结果2、总结归纳: 直线的表示有两种:一个小写字母或两个大写字母.但前面必须加“直线”两字,如:直线;直线m ,直线AB ;直线CD .线段的表示也有两种:一个小写字母或用端点的两个大写字母.但前面必须加“线段”两字.如:线段a ;线段AB .射线的表示同样有两种:一个小写字母或端点的大写字母和射线上的一个大写字母,前面必须加“射线”两字.如:射线a ;射线OA . (三)应用新知:1N 分别是AC 、BC 的中点,则MN =______________=_______AC _______BC =_______2、 已知线段AB ,在AB 的延长线上取一点C ,使BC=2AB ,再在BA 的延长线上取一点D ,使DA=AC ,则线段DC=______AB ,BC=_____CD3、 已知线段AB=10㎝,点C 是AB 的中点,点D 是AC 中点,则线段CD=_________㎝。
第四章基本平面图形1 线段、射线、直线1.了解线段的描述性概念,了解射线、直线的概念,了解线段、射线、直线之间的区别与联系.2.掌握线段、射线、直线的表示方法.3.通过操作活动了解两点确定一条直线等事实,积累操作活动经验,培养学生的观察能力.4.能使学生积极参与到数学活动中来,感受图形世界的丰富多彩,激发学生的学习兴趣.【教学重点】线段、射线与直线的概念及表示方法【教学难点】直线的性质的发现、理解及应用.一、情境导入,初步认识线段、射线、直线对大家而言并不陌生,在小学里我们对它已有了了解.现在我们继续学习线段、射线,直线的相关知识.【教学说明】学生通过回忆小学里学过的知识,加深印象,激发学生探求新知的欲望.二、思考探究,获取新知1.线段、射线、直线的概念问题1生活中,有哪些物体可以近似地看做线段、射线,直线?【教学说明】学生很容易从生活中找到线段、射线、直线的例子,通过观察,加深对线段、射线、直线概念的理解.教材第106页“议一议”上面的内容.【归纳总结】线段、射线都是直线的一部分,射线、直线不可度量,线段可以度量.2.线段、射线、直线的表示方法.问题2线段、射线、直线该怎样表示呢?【教学说明】学生通过观察,了解并掌握线段、射线、直线的表示方法.我们可以用以下方式分别表示线段、射线、直线:【归纳结论】线段、射线、直线都可以用两个大写字母表示,也可以用一个小写字母表示.注意:表示射线时,端点字母必须写在前面.3.直线的性质问题3教材第107页上面的“做一做”.【教学说明】学生通过动手操作,进一步掌握直线的性质,体会数学与生活的密切联系,激发学生的积极性和主动性.【归纳结论】经过两点有且只有一条直线.这一事实可以简述为:两点确定一条直线.4.几何画图问题4按下列语句画图:(1)点P不在直线l上;(2)线段a、b相交于点P;(3)直线a经过点A,而不经过点B;(4)直线l和线段a、b分别交于A、B两点.【教学说明】学生通过动手操作,理解相应几何语句的意义,同时能结合语句画出正确的几何图形.【归纳结论】规范画图是学好几何的基础,要养成规范画图,画图完毕即标上表示点或线的字母的良好习惯.三、运用新知,深化理解1.下列语句错误的是()A.延长线段ABB.延长射线ABC.直线m和直线n相交于P点D.直线AB向两方无限延伸,所以不能延长直线AB2.举出一个能反映“经过两点有且只有一条直线”的实例.3.指出下图中的直线、射线、线段,并一一表示出来.4.作图题:已知平面上四点A、B、C、D,如图.(1)画直线AB;(2)画射线AD;(3)直线AB、CD相交于E;(4)连接AC、BD相交于点F.【教学说明】学生自主完成,加深对教学知识的理解,检测本节课内容的掌握情况,为后面的学习打下坚实的基础.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.B2.如栽树时只要确定两个树坑的位置,就能确定同一行的树坑所在的直线.3.直线AB(或直线AC,直线BC);射线AB,射线BC,射线CB,射线BA;线段AB,线段AC,线段BC.4.四、师生互动,课堂小结1.师生共同回顾线段、射线、直线的有关知识.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对新学知识的理解与运用.【板书设计】1.布置作业:从教材“习题4.1”中选取.2.完成练习册中本课时的相应作业.本节课从学生了解线段、射线、直线的概念及表示方法到探究直线的性质和通过动手操作,培养学生动手、动脑习惯,激发学生学习兴趣.2 比较线段的长短1.了解“两点之间线段最短”的性质;能借助尺、规等工具比较两条线段的大小;能用圆规作一条线段等于已知线段;理解线段中点的概念,会用数量关系表示中点及进行相应的计算.2.感受用类比的思想比较两条线段的大小,经过体会由感性认识上升到理性认识的过程,发展学生的符号感和数感;发展几何图形意识和探究意识.3.在积极参与、合作交流中体验到教学活动中充满着探索和创造,在学习中获得成功的经验,提高学习数学的兴趣.【教学重点】线段长短的两种比较方法:线段中点的概念及表示方法;线段的和、差、倍、分关系.【教学难点】叠合法比较两条线段大小;会画一条线段等于已知线段.一、情境导入,初步认识把弯曲的河道改直就可以缩短航程.在公园的河面上修建曲折的桥,就能增加观光的路程,你知道这其中的道理吗?怎样比较两个同学的高矮?你有哪些方法?【教学说明】通过生活中常见的例子,体会数学与生活的紧密联系,激发学生学习兴趣.二、思考探究,获取新知1.线段公理问题1 教材第110页图4—6及有关图的内容.【教学说明】学生通过观察,实际操作,很容易得出正确的结论.【归纳结论】两点之间的所有连线中,线段最短.这一事实可以简述为:两点之间,线段最短.我们把两点之间线段的长度,叫做这两点之间的距离.2.线段的比较问题2 教材第110页的“议一议”.【教学说明】学生通过实物的比较到线段的比较,归纳比较两条线段长短的方法.【归纳结论】如果直接观察难以判断,我们可以有两种方法进行比较:一种方法是用刻度尺量出它们的长度,再进行比较,即度量法;另一种方法是把其中的一条线段移到另一条线段上去,将其中的一个端点重合在一起加以比较,即叠合法.3.作一条线段等于已知线段问题3 如图,已知线段AB,用尺规作一条线段等于已知线段AB.【教学说明】学生通过操作,掌握作一条线段等于已知线段的方法.作图规律如下:(1)作射线A′C′(如图所示);(2)用圆规在射线A′C′上截取A′B′=AB.线段A′B′就是所求作的线段.4.线段中点的定义及表示方法如图,点M把线段AB分成相等的两条线段AM与BM,点M叫做线段AB的中点,这时AM=BM=12AB(或AB=2AM=2BM).5.线段中点性质的运用问题4 在直线l上顺次取A,B,C三点,使得AB=4cm,BC=3cm.如果点O是线段AC的中点,那么线段OB的长度是多少?【教学说明】学生画图加以分析,与同伴进行交流,进一步掌握线段中点的性质.【归纳结论】线段的和,差,中点计算时,应注意数形结合,根据已知条件画出图形再加以分析.三、运用新知,深化理解1.如图,从A到B有3条路径,最短的路径是()A.①B.②C.③D.都一样第1题图第2题图2.如图,已知线段AD>BC,则线段AC与BD的关系是()A.AC>BDB.AC=BDC.AC <BDD.不能确定3.已知线段AB=8cm,在直线AB上取点C,使BC=2cm,则线段AC的长是___cm.4.教材第112页上方的“随堂练习”第1题.5.教材第112页上方的“随堂练习”第2题.6.已知点A、B、C是同一直线上的三个点,且AC=9cm,BC=5cm,求线段AB和BC的中点间的距离.【教学说明】学生自主完成,加深对新学知识的理解,检测线段的比较,线段的中点等知识的掌握情况,对学生的疑惑教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.C2.A3.10或64.可用刻度尺量出AB各线段的长度,再量出线段A′B′的长度.将AB各线段和与A′B′长度作比较,也可用尺规作图法将AB的每段长度移到线段A′B′上,再做判断.5.6. 4.5cm四、师生互动,课堂小结1.师生共同回顾线段的公理,线段的比较,线段的中点等有关知识.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,进行知识的提炼和归纳.【板书设计】1.布置作业:从教材“习题4.2”中选取.2.完成练习册中本课时的相应作业.本节课从学生探究线段的公理,线段的比较方法,线段的中点的表示方法,到运用线段中点的性质解决具体问题等方面,培养学生动手、动脑习惯,提高学生解决问题的能力.3 角1.通过实际情境,理解角的有关概念,掌握角的表示方法.2.会进行角的度量,以及度、分、秒的互化.3.进一步认识锐角、钝角、直角、平角、周角及其大小关系.4.通过问题情境,认识角、表示角、度量角、进行角的互化,经历角的静态定义到动态定义的形成过程,体会运动变化的思想方法.发展学生的符号感和数感.5.结合本课教学特点,教育学生热爱生活,热爱学习,激发学生学习兴趣.【教学重点】理解角的概念与表示方法,学会角度的测量,以及度、分、秒的互化.【教学难点】度、分、秒的互化.一、情境导入,初步认识教材第114页最上方的彩图及相关问题.【教学说明】学生很容易从生活中的图形中找到角.初步感受角的形象,体会角与生活的紧密联系.二、思考探究,获取新知1.角的概念与表示方法问题1 角是由什么图形组成的?角有哪些表示方法?【教学说明】学生在小学对角的概念与表示方法有一定的了解,此时教师加以规范,有助于学生进一步掌握角的概念及表示方法.【归纳结论】角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点,这两条射线是角的两边.角的表示方法常见的有三种:(1)用三个或一个大写的英文字母表示;(2)用一个小写的希腊字母表示;(3)用数学标注.注意:顶点处只有一个角时才能用一个大写的英文字母表示.问题2 教材第114页下方“做一做”.【教学说明】学生通过观察,分析,进一步掌握角的表示方法.2.用旋转的观点描述角及认识平角,周角问题3 教材第115页“议一议”.【教学说明】学生通过观察,从旋转的角度体会角的形成.【归纳结论】角可以看成是由一条射线绕着它的端点旋转而成的.3.角的度量及度、分、秒的换算问题4 在小学数学中,我们已知道:1平角=180°,1周角=360°.度量角的单位除了度,还有哪些?相邻单位间的进率又是多少呢?【教学说明】教师引导学生了解角的度量单位,掌握相邻单位间的进率.【归纳结论】为了更精密地度量角,我们规定:问题5 计算:(1)1.45°等于多少分?等于多少秒?(2)1800″等于多少分?等于多少度?【教学说明】学生通过计算,与同伴进行交流,熟练掌握度、分、秒的计算.问题6 教材第116页“做一做”.【教学说明】学生通过观察,动手操作,进一步掌握角的表示方法和角的度量,会用角度来表示方位.三、运用新知,深化理解1.下列说法正确的是()A.平角是一条直线B.一条射线是一个周角C.两边成一条直线时组成的角是平角D.一个角不是锐角就是钝角2.教材第116页下方的“随堂练习”第1题.3.教材第116页下方的“随堂练习”第2题.【教学说明】学生自主完成,检测对角的有关知识的掌握情况,加深对新学知识的理解,对学生的疑惑、教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.C2.(1)北偏东90°(2)虎豹园在南偏东0°(正南方),猴山在北偏东0°(正北方),大象馆在北偏东45°;(3)图略.∠AOC=∠AOB=90°,∠AOD=∠BOD=45°,∠COD=135°,∠BOC=180°;(4)锐角有∠BOD、∠AOD、∠AOC,钝角为∠COD、∠BOC,直角为∠AOB、∠AOC,平角为∠BOC.3.(1)15 ′,900″;(2)45′,0.75°.四、师生互动,课堂小结通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对知识的理解.【板书设计】1.布置作业:从教材“习题4.3”中选取.2.完成练习册中本课时的相应作业.本节课从学生了解角的概念及表示方法,到角的度量及度、分、秒的换算,培养学生动手动脑习惯,激发学生学习兴趣.4 角的比较1.运用类比的方法,会比较两个角的大小.2.认识角的平分线,掌握角的和、差、倍、分关系.3.通过类比线段大小的比较,掌握角的大小比较方法,认识角的平分线及表示方法,发展学生的符号感和数感,发展几何图形意识和探究意识.4.在积极参与,合作交流中体验到教学活动充满着探索和创造,提高学生学习数学的兴趣.【教学重点】会比较角的大小,会分析图中角的和差关系,能熟练运用角的平分线.【教学难点】角的和、差、倍、分关系.一、情境导入,初步认识还记得怎样比较线段的长短吗?类似地,你能比较角的大小吗?【教学说明】通过类比线段大小的比较方法,学生很容易得到角的大小比较方法.二、思考探究,获取新知1.角的大小比较问题1 怎样比较角的大小呢?【教学说明】学生通过类比线段大小的比较方法,再与同伴交流,归纳角的大小比较方法.【归纳结论】与比较线段的长短类似,如果直接观察难以判断,我们可以有两种方法对角进行比较:一种方法是用量角器量出它们的度数,再进行比较,即度量法;另一种方法是将两个角的顶点及一条边重合,另一条边放在重合边的同侧就可以比较大小,即叠合法.问题2 教材第119页上方的“做一做”.【教学说明】学生通过观察、分析,与同伴进行交流,进一步掌握角的大小比较方法.3.角的平分线定义及表示方法教材第119页上方的“做一做”.问题 3 已知EOF为一直线,∠AOB=90°,OE平分∠COB,∠EOC=15°,求∠AOF的度数.【教学说明】学生观察、分析,与同伴交流,通过计算,进一步掌握角的平分线的性质及角的和差关系.【归纳结论】在进行角的和、差、倍、分计算时,往往结合图形来分析数量关系.4.估量角的度数问题4 (1)如图估计∠AOB,∠DEF的度数.(2)量一量,验证你的估计.【教学说明】学生先估量,再用量角器量一量,验证自己的估计是否正确.三、运用新知,深化理解1.∠AOB的内部任取一点C,作射线OC,那么下列各式中正确的是()A.∠AOB>∠AOCB.∠AOC>∠BOCC.∠BOC=∠AOCD.∠BOC>∠AOC2.教材第120页上面“随堂练习”第1题.3.教材第120页上面“随堂练习”第2题.4.如图所示,OB是∠AOC的平分线,DO平分∠COE,若∠AOE=128°,求∠BOD的度数.【教学说明】学生自主完成,加深对新学知识的理解,检测对角的大小比较,角的平分线性质的掌握情况,对学生的疑惑教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.A2.(1)135°,135°,45°(2)图中两个钝角相等,一个钝角和一个锐角的和为180°.3.45°,30°,60°4.64°四、师生互动,课堂小结1.师生共同回顾角的大小比较,角的平分线性质等知识点.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对知识的理解.【板书设计】1.布置作业:从教材“习题4.4”中选取.2.完成练习册中本课时的相应作业.本节课从学生探究角的大小比较方法,角的平分线定义及性质,到运用角的和、差、倍、分解决具体问题,培养学生应用知识的能力,激发学生学习的兴趣.5 多边形和圆的初步认识1.在具体情境中认识多边形和圆,了解与多边形和圆有关的概念.2.会计算扇形圆心角的度数.3.经历从现实世界中抽象出平面图形的过程,感受图形世界的丰富多彩,在丰富的活动中训练发散思维和逻辑思维.4.结合本课教学特点,教育学生热爱生活,热爱学习,体验数学与生活的密切联系,激发学生学习数学的兴趣.【教学重点】掌握正多边形的边、角特点和扇形圆心角的求法.【教学难点】多边形对角线条数计算公式的推导.一、情境导入,初步认识教材第122页最上方的彩图及相关问题.【教学说明】学生很容易从生活中的例子找到多边形和圆,使学生有一个初步认识.二、思考探究,获取新知1.多边形及有关概念教材第122页彩图下方的内容.问题1 (1)n边形有多少个顶点、多少条边、多少个内角?(2)过n边形的每一个顶点有几条对角线?【教学说明】学生通过观察,动手操作,与同伴进行交流,找出一般规律.【归纳结论】n边形有n个顶点,n条边,n个内角.过n边形的每一个顶点有(n-3)条对角线.n边形一共有32n n()条对角线.问题2 各边相等,各角也相等的多边形叫做正多边形.【教学说明】学生通过观察、比较、度量,验证自己的猜测. 【归纳结论】各边相等,各角也相等的多边形叫做正多边形.2.圆及有关概念问题3 教材第123页下方的“做一做”.【教学说明】学生通过观察生活中的例子,再通过画图,初步认识圆和扇形.【归纳结论】平面上,一条线段,绕着它固定的一个端点旋转一周,另一个端点形成的图形叫做圆.固定的端点O称为圆心,线段OA称为半径.圆上任意两点A,B间的部分叫做圆弧,简称弧.记作AB,读作“圆弧AB”或“弧AB”;由一条弧AB和经过这条弧的端点的两条半径OA,OB所组成的图形叫做扇形,顶点在圆心的角叫做圆心角.3.求扇形的圆心角和扇形面积问题4 将一个圆分割成三个扇形,它们的圆心角的度数比为1∶2∶3,求这三个扇形的圆心角的度数.【教学说明】学生通过计算,掌握扇形圆心角的求法.【归纳结论】把一个圆分成若干个扇形,这些扇形的圆心角度数之和为360°.问题5(1)将一个圆分成三个大小相同的扇形,你能算出它们的圆心角的度数吗?你知道每个扇形的面积和整个圆的面积的关系吗?与同伴进行交流.(2)画一个半径是2cm的圆,并在其中画一个圆心角为60°的扇形,你会计算这个扇形的面积吗?与同伴进行交流.【教学说明】学生通过思考、分析,进一步掌握扇形圆心角和扇形面积的求法.三、运用新知,深化理解1.从六边形的一个顶点出发可引____条对角线,它们将这个六边形分割成___个三角形.六边形一共有___条对角线.2.教材第124页下方的“随堂练习”第1题.3.教材第124页下方的“随堂练习”第2题.【教学说明】学生自主完成,加深对新学知识的理解,检测对多边形和圆的有关知识的掌握情况,对学生的疑惑,教师应及时指导.完成上述题目后,教师引导学生完成练习册中本课时练习的课堂作业部分.【答案】1.3,4,92.如地板砖是正方形,蜂巢是正六边形.3.∠AOB=72°,∠AOC=108°,∠BOC=180°.四、师生互动,课堂小结1.师生共同回顾多边形和圆及有关概念.2.通过这节课的学习,你掌握了哪些新知识?还有哪些疑问?【教学说明】教师引导学生回顾知识点,让学生大胆发言,积极与同伴交流,加深对知识的理解.【板书设计】1.布置作业:从教材“习题4.5”中选取.2.完成练习册中本课时的相应作业.本节课从学生了解多边形和圆的相关概念,到计算扇形圆心角的度数,培养学生分析问题、解决问题的能力,激发学生学习兴趣.章末复习1.掌握本章重要知识,能灵活运用所学知识解决具体问题.2.通过梳理本章知识,感受图形世界的丰富多彩,回顾解决问题中所涉及的分类和类比思想.体会由感性认识上升到理性认识的过程,发展学生的符号感和数感.3.在运用本章知识解决具体问题过程中,进一步体会数学与生活的密切联系,增强数学应用意识,激发学生学习兴趣.【教学重点】回顾本章知识,构建知识体系.【教学难点】利用本章相关知识解决具体问题教学过程.一、知识框图,整体把握二、释疑解感,加深理解1.直线的性质经过两点有且只有一条直线,即两点确定一条直线.2.线段公理两点之间的所有连线中,线段最短,即两点之间,线段最短.3.线段的中点把线段分成相等的两条线段的点,叫做线段的中点.4.角的平分线从一个角的顶点引出一条射线,把这个角分成两个相等的角.这条射线叫做这个角的平分线.三、典例精析,复习新知例1过平面内的四个点中的任意两个点可以画直线的条数是().A.4B.6C.4或6D.1,4或6【分析】平面内的四个点的位置关系有三种:①四个点在同一直线上,②有三个点在同一直线上,③任意三个点都不在同一直线上,所以应分三种情况讨论,故选D.例2 如图,从A到B最短的路线是().A.A—G—E—BB.A—C—E—BC.A—D—G—E—BD.A—F—E—B【分析】从A到B,EB这一段是必走的,关键是看从A到E哪条路最近,由“两点之间线段最短”可知应选D.例3计算:(1)47°53′43″+53°47′42″;(2)22°30′16″×6;(3)92°56′3″-46°57′54″;(4)176°52′÷3.【分析】角之间的运算是60进制,加减运算要将度与度、分与分、秒与秒之间分别加减;分、秒相加时逢60要进位,相减时要借1当60;乘法运算要用乘数分别与度、分、秒相乘,然后逢60进位;除法运算要用除数分别去除度、分、秒,度、分的余数乘60分别化为分、秒,一般除到秒,然后四舍五入.解:(1)47°53′43″+53°47′42″=(47°+53°)+(53′+47′)+(43″+42″)=100°+100′+85″=101°41′25″;(2)22°30′16″×6;=(22°+30′+16″)×6=132°+180′+96″=135°1′36″;(3)92°56′3″-46°57′54″;=(91°-46°)+(115′-57′)+(63″-54″)=45°+58′+9″=45°58′9″;(4)176°52′÷3=58°+(2°+52′)÷3=58°+172′÷3=58°+57′+1′÷3=58°57′20″.例4 在同一个小学的小明、小伟、小红三位同学住在A、B、C三个在住宅区,如图所示:A、B、C三点共线,且AB=60m,BC=100m.他们打算合租一辆车去上学,准备只设一个停靠点,为使三位同学步行到停靠点的路程之和最小,你认为停靠点应该设在_____________.【分析】若设在A处,三人步行路程之和为60+(60+100)=220m;若设在B处,则三人步行路程之和为60+100=160m;若设在C处,三人步行路程之和为(60+100)+100=260m.解:B处例5 已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,M是线段AC的中点,求线段AM的长度.【分析】题中说明A、B、C三点共线,但无法判断点C是线段AB上,还是在AB 的延长线上,所以要分两种情况,求AM的长.例6 如图所示,已知AB为一条直线,O是AB上一点,OC是∠AOD的平分线,OE在∠BOD内,∠DOE=13∠BOD,∠COE=72°,求∠EOB的度数.【分析】本题主要考查角的平分线与角的和、差、倍分问题的应用,找准各角之间的关系,列等式解决.四、复习训练,巩固提高1.如图,A,B,C三点共线,图中有___条线段,___条射线,能用字母表示的射线有____条.第1题图第2题图2.比较如图所示的线段的长度:(1)DC_____AC;(2)AD+DC_____AC;(3)AD+BD______AB.其依据是___________________________.3.下列说法中,错误的是().A.经过一点的直线可以有无数条B.经过两点的直线只有一条C.一条直线只能用一个字母表示D.线段CD和线段DC是同一条线段4.如图所示,如果∠AOD>∠BOC,那以下列说法正确的是().A.∠COD>∠AOBB.∠AOB>∠CODC.∠COD=∠AOBD.∠COD与∠AOB的大小关系不能确定5.已知:如图所示,点A、B、C、D,按下列要求画图:(1)射线AD,直线BC;(2)射线BA,射线CD;(3)连接AC,并延长AC.第5题图第6题图6.如图所示,已知线段a、b、c,用圆规和直尺画线段.使它等于2a+b-c.(只需画图,不要求写画法).7.计算:(1)43°25′+54°46′;(2)90°3′-57°21′44″;(3)33°15′6″×4;(4)176°52′÷3.8.半径为6的圆中,扇形AOB的圆心角为150°,请在图中圆内画出这个扇形,并求出它的面积(结果保留π).9.如图,已知点C为线段AB上一点,AC=12cm,CB=23AC,D、E分别为AC、AB的中点,求DE的长.【教学说明】这部分安排了几个比较典型的重点题型,加深对本章知识的理解,进一步提高学生综合运用所学知识的能力,前几题可由学生自主完成,最后两题可由师生共同探讨得出结论.【答案】1. 3 6 42. <= >两点之间,线段最短3.C4.B5.6.如图所示,线段AE就是所求作的线段2a+b-c.7.(1)98°11′(2)32°41′16″(3)133°24″(4)58°57′20″8.如图,扇形∠AOB的面积为:π×62×150360=15π.五、师生互动,课堂小结本课堂你能完整地回顾本章所学的有关知识吗?你学会了哪些与本章有关的数学思想方法?你还有哪些困惑与疑问?【教学说明】学生回顾本章知识,积极与同伴交流,对于学生的困惑与疑问,教师应及时指导.1.布置作业:从教材“复习题4”中选取.2.完成练习册中本章复习课的练习.。
课题:角
●教学目标:
一、知识与技能目标:
1.认识角是一种基本的图形,理解角的概念
2.认识角的度量单位度,分,秒,会进行简单的换算
二、过程与方法目标:
1.提高学生的识图能力,用运动变化的观点看问题
2.通过教学活动培养学生自主探究能力,合作学习能力
三、情感态度与价值观目标:
感受图形世界的丰富多彩,能利用所学知识解决生活问题
●重点:
会用不同的方法表示一个角,学会角度换算
●难点
角的表示、角度的换算
●教学流程:
一、情景导入
观察下面图形,你能发现他们有什么相同的图形?
它们都有角。
二、解答困惑,讲授新知
1、什么是角呢?
角是由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点达标测验:
判断下列图形是不是角
2
答案:×××√
2、通常用以下方式来表示角
∠BAC 或∠A ∠α ∠1
三、 实例演练 深化认识
(1)用适当的方式表示图中的角
(2)在图中,∠BAC.∠CAD 和∠BAD 都能用∠A 表示吗?
解:(1)∠1=∠BAC ∠2=∠CAD ∠3=∠BAD
(2)不能,因为这样容易造成混淆。
如果一个点引出两条以上的线,那么其中两条线所组成的角就不能用该点的字母表示
思考探究:
在放大镜下,一个角的度数变大了吗? 没有变大
角的两边的长短与角的大小有关系吗? 没有关系
四、讲授新知
角的另一种表示方法:
角也可以看成是由一条射线绕它的端点旋转而成的
如图,一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。
终边继续旋转,当它又和始边重合时,所成的角叫做周角。
平角周角
平角就是一条直线,周角是一条射线,这样的说法对吗?
不对,平角也有顶点和两条边,只是这两条边在同一条直线上。
周角其实是两条射线重合在了一起的图形,不能单纯的说“周角是一条射线”。
在小学数学中,我们已经知道:1平角=180° ,1周角=360°
为了更精密地度量角,我们规定:
1°的为1分,记作1′,即1°=60′
1′的为1秒,记作1″,即1′=60″
五、实例讲解
计算:
(1)1.45°等于多少分?等于多少秒?
(2)1800″等于多少分?等于多少度?
解:(1)60′×1.45=87′,60″×87=5220″,
即1.45°=87′=5220″;
(2)()′×1800=30′,()°×30=0.5°,
即1800″=30′=0.5°
六、做一做
钟表上的时针、分针始终在围绕中心旋转,两针所成的夹角也随时间变化而变化。
3
4
1.时针或分针走一圈=______
2.时针走一分钟对应的角度=____________
3.分针走一分钟对应的角度=______
4.分针走五分钟对应的角度=______
答案:360°,0.5°,6°,30°
确定相应钟表上时针与分针所成的角度
120° 30°
七、 达标测评
计算:
(1)28°32′46″+ 15°36′48″
(2)(30°-23°15′40″)×3
(3)108°18′36″-56.5°(结果用度、分、秒表示)
(4)123°24′-60 °36′ (结果用度表示)
解:(1) 28°32′46″+ 15°36′48″
= (28°+15°)+(32′+36′)+(46″+48″)
= 43°68′94″
= 44°9′34″
(2)(30°-23°15′40″)×3
=6°44′20″×3
=18°132′60″
=20°13′
(3)108°18′36″-56.5°
=108°18′36″-56°30′
=107°78′36″-56°30′
=51°48′36″
(4)123°24′-60 °36′
=122°84′- 60°36′
=62°48′
=62.8°
八、拓展提升
1.α、β、γ中有两个锐角和一个钝角,其数值已经给出,在计算(α+β+γ)的值
时,有三位同学分别算出了23°、24°、25°这三个不同的结果,其中只有一个是正确的答案,则α+β+γ= ___ °.
解:∵α、β、γ中有两个锐角和一个钝角,
∴0°<α<90°,0°<β<90°,90°<γ<180°
∴α+β+γ<360°,
∵15×23°=345°,15×24°=360°,15×25°=375°
∴α+β+γ=345°.
故答案是345°
2.如图,某轮船上午6时在A处测得灯塔5在北偏东30°的方向上,向东行驶至上午
9时,轮船在B处测得灯塔S在北偏西60°的方向上,已知轮船行驶速度为20km/h。
在图中画出灯塔S的位置
解:如图所示,方位角的画法,S在A的北偏东30°,在B的北偏西60°
九、体验收获
1.角的定义
2.角的表达方式
5
3.角的度量
十、布置作业
课本第117页2、 3 题
6。